
3 General Question of Higher Dimensional Spaces

In this section, we will generalize the three classical questions into general

n-dimensional space. Second, we discuss the properties of maximizing regions dur-

ing point, line, and space. And then, we will generalize these properties for n-

dimensional space with a system of equations. At last, we solve this general question

by recurrence relation to get its formula.

3.1 Generalizing These Three Classical Questions

In light of the results of these questions, we are really interested in the rules of

their formulas -each increasing combination ”C” for each increasing dimension:

Maximum number of regions that k points partition a line is Ck
0 + Ck

1

Maximum number of regions that k lines partition a plane is Ck
0 + Ck

1 + Ck
2

Maximum number of regions that k plane partition a space is Ck
0 + Ck

1 + Ck
2 + Ck

3

Hence, we generalize the questions into the following one:

If there are k different (n− 1)-dimensional spaces in an n-dimensional

space, then what is the largest number of the different regions which are

formed by these k different (n − 1)-dimensional spaces?

Here, the partitioner in an n-dimensional space is a set of (n − 1)-dimensional

space. It is just like the 3-dimensional space that the partitioner is a set of 2-

dimensional space (plane).

Now, we would like to see if the formula of this solution is of the following form:

Ck
0 + Ck

1 + Ck
2 + · · · + Ck

n−1 + Ck
n

For this purpose, we have to generalize the properties of maximizing the number

of regions by k partitioner in lower dimensional space -line, plane, and 3D space
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which are described in the Section 3.2.

3.2 The Properties of Point, Line, and 3-D Space

Return to Question 2: If there are k different 1-dimensional lines in

an 2-dimensional plane, then what is the largest number of the different

regions which are formed by these k different lines?

The sufficient and necessary condition to maximize the number of regions made

up by the k lines is:

�1� any 2 of the k lines intersect in a common point.

�2� any 3 of three of the k lines do not intersect in a common point.

Now is Question 3: If there are k different 2-dimensional planes in an

3-dimensional space, then what is the largest number of the different

regions which are formed by these k different planes?

The sufficient and necessary condition to maximize the number of regions made

up by the k planes is:

�1� any 2 of the k planes intersect in a common line.

�2� any 3 of the k planes intersect in a common point.

�3� any 4 of the k planes do not intersect in a common point.
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3.3 The Properties of General Question and Standard Par-

tition System of n-Dimensional Space

Having the conclusion in the former section, we will easily generalize the proper-

ties of maximizing the number of regions made up by k different (n−1)-dimensional

space in an n-dimensional space in the following. For convenience, we have the fol-

lowing definitions that an 0-dimensional space as a point, an 1-dimensional space as

a line, an 2-dimensional space as a plane, and an 3-dimensional space as our familiar

living space. These are just what we know in Euclidean Geometry. Then we state

the properties as follows:

�1� any 2 of the k different (n − 1)-dimensional spaces intersect in a common

(n − 2)-dimensional space.

�2� any 3 of the k different (n − 1)-dimensional spaces intersect in a common

(n − 3)-dimensional space.

�3� any 4 of the k different (n − 1)-dimensional spaces intersect in a common

(n − 4)-dimensional space.

...

�n − 2� any n − 1 of the k different (n − 1)-dimensional spaces intersect in a common

1-dimensional space.

�n − 1� any n of the k different (n − 1)-dimensional spaces intersect in a common

0-dimensional space.

�n� any n + 1 of the k different (n − 1)-dimensional spaces do not intersect in a

common 0-dimensional space.

We build up a system called Standard Partition System of n-Dimensional

Space in the following. The system not only ensures that the properties of the gen-
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eralization are realized but also shows how the partitions are presented in the lower

dimensional spaces as line, plane, and space:

Ẽm : xn =
1

m
x1 +

1

m + 1
x2 + · · ·+ 1

m + (n − 2)
xn−1 + (m − 1), k ∈ N (3.1)

which is equivalent to

Ẽm :
1

m
x1 +

1

m + 1
x2 + · · · + 1

m + (n − 2)
xn−1 − xn = 1 − m, k ∈ N (3.2)

hence we have the following system of n + 1 different equations:




1
m1

x1 + 1
m1+1

x2 + · · · + 1
m1+(n−2)

xn−1 − xn = 1 − m1

1
m2

x1 + 1
m2+1

x2 + · · · + 1
m2+(n−2)

xn−1 − xn = 1 − m2

...
...

...
...

1
mn−1

x1 + 1
mn−1+1

x2 + · · · + 1
mn−1+(n−2)

xn−1 − xn = 1 − mn−1

1
mn

x1 + 1
mn+1

x2 + · · · + 1
mn+(n−2)

xn−1 − xn = 1 − mn

1
mn+1

x1 + 1
mn+1+1

x2 + · · · + 1
mn+1+(n−2)

xn−1 − xn = 1 − mn+1

3.4 Proof of the Properties

First, we shows property�n−1�any n of the k different (n−1)-dimensional

spaces intersecting in a common 0-dimensional space. That is to say, these

n different equations will have a common solution.

We check the determinant of the coefficient matrix:

det




1
m1

1
m1+1

1
m1+2

· · · 1
m1+(n−3)

1
m1+(n−2)

−1

1
m2

1
m2+1

1
m2+2

· · · 1
m2+(n−3)

1
m2+(n−2)

−1

1
m3

1
m3+1

1
m3+2

· · · 1
m3+(n−3)

1
m3+(n−2)

−1
...

...
...

. . .
...

...
...

1
mn−1

1
mn−1+1

1
mn−1+2

· · · 1
mn−1+(n−3)

1
mn−1+(n−2)

−1

1
mn

1
mn+1

1
mn+2

· · · 1
mn+(n−3)

1
mn+(n−2)

−1



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As we take all denominators of each row out of this determinant to be multi-

pliers, we will obtain the following form

∏n
i=1

∏n−2
j=0

1
mi+j

·det




f0(m1) f1(m1) · · · fn−2(m1) fn−1(m1)

f0(m2) f1(m2) · · · fn−2(m2) fn−1(m2)

f0(m3) f1(m3) · · · fn−2(m3) fn−1(m3)
...

...
. . .

...
...

f0(mn−1) f1(mn−1) · · · fn−2(mn−1) fn−1(mn−1)

f0(mn) f1(mn) · · · fn−2(mn) fn−1(mn)




Where ft(mi) = mi(mi+1)(mi+2) · · · [mi+(t−1)][mi +(t+1)] · · · [mi+(n−2)]

,for t = 0, 1, 2, . . . , n − 1 and i = 1, 2, 3, . . . , n.

Hence deg(ft(mi)) = n − 2 for t = 0, 1, 2, . . . , n − 2, and deg(ft(mi)) = n − 1

for t = n − 1

We can easily check that β = {f0(mi), f1(mi), . . . , fn−2(mi)} forms a basis of

Pn−2(R)[6]. Since each row is of the same form, we could simplify first n elements of

each row in this determinant into a standard basis of Pn−2(R) by column operation

in the following

∏n
i=1

∏n−2
j=0

1
mi+j

·det




1 m1 m1
2 · · · m1

n−1 fn−1(m1)

1 m2 m2
2 · · · m2

n−1 fn−1(m2)

1 m3 m3
2 · · · m3

n−1 fn−1(m3)
...

...
...

. . .
...

...

1 mn−1 mn−1
2 · · · mn−1

n−1 fn−1(mn−1)

1 mn mn
2 · · · mn

n−1 fn−1(mn)




Hence, we use the first n columns to reduce the last column by column opera-

tions to get the following form:
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∏n
i=1

∏n−2
j=0

1
mi+j

·det




1 m1 m1
2 · · · m1

n−1 m1
n

1 m2 m2
2 · · · m2

n−1 m2
n

1 m3 m3
2 · · · m3

n−1 m3
n

...
...

...
. . .

...
...

1 mn−1 mn−1
2 · · · mn−1

n−1 mn−1
n

1 mn mn
2 · · · mn

n−1 mn
n




=
∏n

i=1

∏n−2
j=0

1
mi+j

· ∏0≤i<j≤n(mi − mj) �= 0

Then these n different equations have a common solution since the determinant

of the coefficient matrix is not equal to zero. i.e. any n of k different (n − 1)-

dimensional space will intersect in a common 0-dimensional space.

Second, we will prove property�1�∼�n − 2�. For property (p), we choose

p different equations randomly. Here we use first p equations for convenience since

each of m1, m2, . . ., mp is different.

Now we check the matrix of the system of the p equations.


1
m1

1
m1+1

1
m1+2

· · · 1
m1+(n−3)

1
m1+(n−2)

−1

1
m2

1
m2+1

1
m2+2

· · · 1
m2+(n−3)

1
m2+(n−2)

−1

1
m3

1
m3+1

1
m3+2

· · · 1
m3+(n−3)

1
m3+(n−2)

−1
...

...
...

. . .
...

...
...

1
mp−1

1
mp−1+1

1
mp−1+2

· · · 1
mp−1+(n−3)

1
mp−1+(n−2)

−1

1
mp

1
mp+1

1
mp+2

· · · 1
mp+(n−3)

1
mp+(p−2)

−1




We use the same way as above to get the form:

∏p
i=1

∏n−2
j=0

1
mi+j

·




1 m1 m1
2 · · · m1

n−1 m1
n

1 m2 m2
2 · · · m2

n−1 m2
n

1 m3 m3
2 · · · m3

n−1 m3
n

...
...

...
. . .

...
...

1 mp−1 mp−1
2 · · · mp−1

n−1 mp−1
n

1 mp mp
2 · · · mp

n−1 mp
n



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Then we can say that the matrix is full rank, and the rank is min{row rank,

column rnak} = p. Hence the nullity = n − p. This implies that the solution of

these p equations have n − p free variables and p basic variables. Therefore, any

p of the k different equation will intersect with a (n − p)-dimensional space. For

p = 1∼(n − 2) we proof the property�1�∼�n − 2�.

At last, we show property �n�any n + 1 of the k different (n − 1)-

dimensional spaces do not intersect in a common 0-dimensional space.

Here we use the augmented matrix of the system composed of these n + 1

equations, and obtain that its determinant is not equal to zero, from which we

conclude that this matrix is full rank.

det




1
m1

1
m1+1

1
m1+2

· · · 1
m1+(n−3)

1
m1+(n−2)

−1 1 − m1

1
m2

1
m2+1

1
m2+2

· · · 1
m2+(n−3)

1
m2+(n−2)

−1 1 − m2

1
m3

1
m3+1

1
m3+2

· · · 1
m3+(n−3)

1
m3+(n−2)

−1 1 − m3

...
...

...
. . .

...
...

...
...

1
mn−1

1
mn−1+1

1
mn−1+2

· · · 1
mn−1+(n−3)

1
mn−1+(n−2)

−1 1 − mn−1

1
mn

1
mn+1

1
mn+2

· · · 1
mn+(n−3)

1
mn+(n−2)

−1 1 − mn

1
mn+1

1
mn+1+1

1
mn+1+2

· · · 1
mn+1+(n−3)

1
mn+1+(n−2)

−1 1 − mn+1




We use the same way as proving property�n− 1� to derive that the determi-

nant is not equal to zero.

Hence the Reduced Row Echelon Form of the matrix is:


1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1



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This tell us the system has no solution since the last row is a contradiction.

Finally, we complete this proof by combining all the three parts.

3.5 Solution by Recurrence Relation for General Question

With the properties in the former section, we could solve the general question

stated again in the following:

If there are k different (n− 1)-dimensional spaces in an n-dimensional

space, then what is the largest number of the different regions which are

formed by these k different (n − 1)-dimensional spaces?

In the general question, we can use the similar form of recurrence relation and

the useful equation 2.1 to count the maximum number of regions made up by k

different partitioner in a n-dimensional space that we conjectured in Section 3.1 as

Ck
0 + Ck

1 + Ck
2 + · · ·+ Ck

n−1 + Ck
n.

For the goal of obtaining the similar form of recurrence relation, we change the

notations of ak, bk, and ck into the following two numbers Pn, k and Pn−1, k for this

question.

Let Pn, k be the largest number of the different regions which are formed by k

different (n − 1)-dimensional spaces in an n-dimensional space.

Hence Pn−1, k is the largest number of the different regions which are formed by

k different (n − 2)-dimensional spaces in an (n − 1)-dimensional space.

In the following Figure 4, we can see that the total number of regions is counted

as original regions and increasing regions. The number of original regions is Pn, k−1,

made up by the former k−1 different (n−1)-dimensional spaces, won’t be eliminated

by the kth (n − 1)-dimensional space. And, each of the increasing regions made by

the kth (n − 1)-dimensional space is associated with each regions made up by k − 1
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different (k − 2)-dimensional space in the kth (n− 1)-dimensional space. Therefore,

the number of increasing regions is just Pn−1, k−1.

12

3

th

k -1

the 1st
(n-1)-dimensional space

the 2nd
(n-1)-dimensional space

the 3rd
(n-1)-dimensional space

the k
(n-1)-dimensional space

Figure 4: Translation of Recurrence Relation for Higher Dimensional Space

Hence, we have the similar form of recurrence relation

Pn, k = Pn, k−1 + Pn−1, k−1

Again, use the Equation 2.1

Cr
r + Cr+1

r + Cr+2
r + · · · + Cn

r = Cn+1
r+1

We can easily obtain that

Pn, k = Ck
0 + Ck

1 + Ck
2 + · · ·+ Ck

n
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