
4 Solved By Combinatorial Argument

In this section, we will solve these three questions directly by Combinatorial

Argument. For convenience, we have the following definitions: A k-max-point-

drawing to be a drawing with k different points in a line such that these k points

create the largest number of different regions in this line, and two k-max-point-

drawings are isomorphic if their underlying graphs of these k points are isomorphic,

otherwise they are non-isomorphic. A k-max-line-drawing to be a drawing with

k different lines in a plane such that these k lines create the largest number of

different regions in this plane, and two k-max-line-drawings are isomorphic if their

underlying graphs of the intersection points are isomorphic, otherwise they are said

to be non-isomorphic. A k-max-plane-drawing to be a drawing with k different

planes in a 3-dimensional space such that these k planes create the largest number

of different regions in this space, and two k-max-plane-drawings are isomorphic if

their underlying graphs of the intersection points are isomorphic, otherwise they are

non-isomorphic.

4.1 Non-isomorphic of k-Max-Line-Drawing and k-Max-Plane-

Drawing

Lemma 4.1 All k-max-point-drawings are isomorphic.

Proof . We can easily see that all k-max-point-drawings are isomorphic in the

following figure.
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Lemma 4.2 There exist two k-max-line-drawings are non-isomorphic.

Proof . The underlying graphs are non-isomorphic since the three vertices of degree

4 forms an K3 in the upper one and an P3 in the lower one. Hence, we easily see

that the two 5-max-line-drawings are non-isomorphic.
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Lemma 4.3 There exist two k-max-plane-drawings are non-isomorphic.

Proof . We know that choosing any two of k different planes will intersect in a

common line, and there exist two non-isomorphic k-max-line-drawing. Therefore,

we conclude that there exist two non-isomorphic k-max-plane-drawing. ❑

4.2 Combinatorial Argument with Algorithm

Since the existence of non-isomorphic k-max-line-drawing and k-max-plane-

drawing, we can’t provide a special drawing of k lines or k planes to show the

formula by combinatorial argument. Here we use Algorithms to label all regions

each by levels, and collect all the labels to explain the formula directly.

Algorithm 4.4 (Label of k-max-point-drawing)

Input: k points and a line such that these k points form the greatest number of

regions in the line.

Initialization: Set L1 = {0}
Iteration: Label each regions formed by these k points as follows.

1. Label POINTp as p.

2. Do step 1 for p = 1∼k.

3. Label each region on this line as the label of its point from one end of this

line to another end.

Output: Label of k-max-point-drawing.

Proof . The output of this algorithm is L1 = {0, 1, 2, 3, . . . , k}.
Hence we can say that, {0} stands for Ck

0 , and {1, 2, 3, . . . , k} stands for Ck
1 . This

completes the proof of the largest number in a line made of k different points is just

Ck
0 + Ck

1 . ❑

Algorithm 4.5 (Label of k-max-line-drawing)

Input: k lines and a plane such that these k lines forms the greatest number of
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regions in the plane.

Initialization: Set L2 = {(0, 0)}
Iteration: Label each regions formed by these k lines as follows.

1. Label the intersection points made up by the pth line with each of the former

lines LINE1 ∼ LINEp−1 as {1, 2, 3, . . . , p − 1}.
2. Label each of the pth line’s regions in the upper plane of the pth line as

L1 = {0, 1, 2, . . . , p − 1} by Algorithm 4.4.

3. Label each of the increasing regions made up by the pth line associated with

each region on the pth line by L2, p = L1 × {p}.
4. Set L2 = L2∪L2, p.

5. Do step 1∼4 for p = 1∼k.

Output: Label of k-max-line-drawing.

Proof . The output of this algorithm is L2 = {(0, 0), (0, 1), (0, 2), . . . , (0, k), (1, 2),

(1, 3), . . . , (1, k), (2, 3), (2, 4), . . . , (2, k), (3, 4), . . . , (k − 1, k)}.
Hence {(0, 0)} stands for Ck

0 , {(0, 1), (0, 2), . . . , (0, k)} stands for Ck
1 , and {(1, 2), (1, 3),

. . . , (1, k), (2, 3), (2, 4), . . . , (2, k), (3, 4), . . . , (k − 1, k)} plays the role of Ck
2 .

This completes the proof of the greatest number of the regions made up by k d-

ifferent lines is Ck
0 + Ck

1 + Ck
2 . ❑

Algorithm 4.6 (Label of k-max-plane-drawing)

Input: k planes in a space such that these k planes forms the greatest number of

regions in the space.

Initialization: Set L3 = {(0, 0, 0)}
Iteration: Label each regions formed by these k planes as follows.

1. Label the intersection lines made up by the pth plane with each of the former

planes PLANE1 ∼ PLANEp−1 as {1, 2, 3, . . . , p − 1}.
2. Label each of the pth plane’s regions in the upper space of the pth plane as

L2 = {(0, 0), (0, 1), (0, 2), . . . , (0, p), (1, 2), (1, 3), . . . , (1, p), (2, 3), (2, 4), . . . , (2, p),

(3, 4), . . . , (p − 1, p)} by Algorithm 4.5.

3. Label each of the increasing regions made up by the pth plane associated
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with each region on the pth plane by L3, p = L2 × {p}.
4. Set L3 = L3∪L3, p.

5. Do step 1∼4 for p = 1∼k.

Output: Label of k-max-plane-drawing.

Proof . The output of this algorithm is L2 = {(0, 0, 0), (0, 0, 1), (0, 0, 2), . . . ,

(0, 0, k), (0, 1, 2), (0, 1, 3), . . . , (0, 1, k), (0, 2, 3), . . . , (0, k − 1, k), (1, 2, 3),

(1, 2, 4), . . . , (1, k − 1, k), (2, 3, 4), (2, 3, 5), . . . , (2, k − 1, k), (3, 4, 5), . . . , (k −
2, k − 1, k)}.
Hence {(0, 0, 0)} stands for Ck

0 , {(0, 0, 1), (0, 0, 2), . . . , (0, 0, k)} stands for Ck
1 ,

{(0, 1, 2), (0, 1, 3), . . . , (0, 1, k), (0, 2, 3), . . . , (0, k − 1, k)} plays the role of Ck
2 ,

and {(1, 2, 3), (1, 2, 4), . . . , (1, k − 1, k), (2, 3, 4), (2, 3, 5), . . . , (2, k − 1, k),

(3, 4, 5), . . . , (k−2, k−1, k)} plays the role of Ck
3 . This completes the proof of the

greatest number of the regions made up by k different lines is Ck
0 + Ck

1 + Ck
2 + Ck

3 .

❑

4.3 Combinatorial Argument for Higher Dimensional Space

with Algorithm

For higher dimensional spaces, we use the similar Algorithms to label all re-

gions. We also easily see that the labels increase an coordinate for each increasing

dimension. Hence, this not only successfully provide a combinatorial proof of the

formula, but also explains each component of the formula.

That is to say, if you know how to label the regions in (n − 1)-dimensional

space, you will know how to label each region in n-dimensional space by adding an

coordinate which is obtained from cartesian product with the pth hyperplane in the

Algorithm.
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4.4 Presentation of Partitions in the Lower Dimensional S-

pace

First, we set n = 1 and use familiar notations as x ≡ x1 in the Standard

Partition System of n-Dimensional Space to show the presentation of partitions in

1-dimensional space(i.e. x-line).

m = 1 : x = 0

m = 2 : x = 1

m = 3 : x = 2
...

...

m = k − 1 : x = k − 2

m = k : x = k − 1

Then we could draw these k points in a x-line as Figure 5 (here we draw 7 points

for convenience). Now we can explain why the formula ends up with Ck
1 . As we use

a big enough box to contain all the points on the line which is drawn obliquely, we

gravel a crowd of sand to each region on the line equally. Then these sand will be

pilled up at each point, and we can represents each regions by these crowd of sand.

So we can say that the formula is essentially added from Ck
0 to Ck

1 since choosing

none of these k points provides a region which is the original x− line, and choosing

any one of these k points will make a different region from the others on this line.

Hence we don’t need Ck
2 or more other combinations since each region is supported

by just only one point and the others are ineffective.

Line
Original
 Space

1 2 3 4 5 6 7

Figure 5: Presentation of Standard Partition System of 1-Dimensional Space
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Second, we set n = 2 and use familiar notations as y ≡ x2 and x ≡ x1 in

the Standard Partition System of n-Dimensional Space to show the presentation of

partitions in 2-dimensional space(i.e. xy-plane).

m = 1 : y = x

m = 2 : y = 1
2
x + 1

m = 3 : y = 1
3
x + 2

...
...

m = k − 1 : y = 1
k−1

x + (k − 2)

m = k : y = 1
k
x + (k − 1)

Then we could draw these k lines in a xy-plane as Figure 6 (here we draw 7

lines for convenience). Now we can realize why the formula ends up with Ck
2 by

the same way as before. As we use a big enough box to contain all the intersection

points about these k lines in the xy − plane, we have all the regions made up by

these k lines within this box. Then we gravel a crowd of sand to each region in this

box equally, and this act makes that each crowd of sand is pilled up at each line,

intersection point, and the bottom of this box. Hence these crowd of sand can be

used to represent every region on the xy − plane made up by these k lines.

Again, it is clearly that the formula adds form Ck
0 to Ck

2 since choosing none

from these k lines provides an original xy − plane, and choosing any one of these

k lines makes an individual region, and choosing any two of these k lines makes a

different region from others.

Also, the formula doesn’t need Ck
3 or other combinations since each region is

supported by only one or two lines and the third or the fourth line are ineffective.
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Figure 6: Presentation of Standard Partition System of 2-Dimensional Space

At last, we set n = 3 and use familiar notations as z ≡ x3, x ≡ x1, and y ≡ x2 in

the Standard Partition System of n-Dimensional Space to show the representation

of partitions in 3-dimensional space(i.e. xyz-space).

m = 1 : z = x + 1
2
y

m = 2 : z = 1
2
x + 1

3
y + 1

m = 3 : z = 1
3
x + 1

4
y + 2

...
...

m = k − 1 : z = 1
k−1

x + 1
k
y + (k − 2)

m = k : z = 1
k
x + 1

k+1
y + (k − 1)

Then we could draw these k lines in a xyz-space as Figure 7 (here we draw 5

planes for convenience). Now we can realize why the formula adds from Ck
0 and ends

up with Ck
3 . Since each region is supported by just only one plane , two planes, or

three planes. And all the others are ineffective. The representation is just the same

way as in x − line and in xy − plane.
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Figure 7: Presentation of Standard Partition System of 3-Dimensional Space

4.5 A List of All Numbers

We have the following list since the form of recurrence relation Pn, k = Pn, k−1 +

Pn−1, k−1 in Section 3.5.

Plane-Space

Line-Plane

Point-Line

k

k

k

1 2 4 8 15 26

1 2 4 7 11 16

1 2 3 4 5 6

1 1 1 1 1

c

b

a

Figure 8: A List of All Numbers
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