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2. Detection of trends and change periods 

 
 

2.1 Introduction to fuzzy logic 
 

Due to the complicated human mind and discrepant cognition in language, most 
problems concerning people often reveal its vague, obscure and uncertain property. 
However, most of our traditional tools for formal modeling, reasoning, and computing 
are, in the converse way, crisp, deterministic and precise in character. By crisp we 
mean dichotomous, that is, yes-or-no-type rather than more-or-less-type. In 
conventional dual logic, for instance, a statement can be true or false, and nothing in 
between. In set theory, an element can either belong to a set or not. Generally, 
precision also implies certainty, that is, no ambiguities. 

In many cases, we receive information that shows certain sense of vague 
concepts. Consider these statements, for example, “ It’s very hot outside.”, “Raise it 
higher a little bit.”, “She is young”. These statements are not, in comprehension, 
precise at all. Thirty degree Celsius high may be very hot for someone but not too hot 
for another. The age of thirty may means young to some people but not at all to some 
others. Under these situations, it is inappropriate to apply traditional mathematical 
tools to analyze since the conditions to the mathematical tools fail to hold.  

The usefulness of mathematical language for modeling purpose is undisputed. 
However, there are limits to the usefulness and the possibility of using classical 
mathematical language, based on the dichotomous character of set theory, to model 
particular systems and phenomena in social sciences. Real situations are very often 
uncertain or vague in a number of ways.  

Due to lack of information, the future state of the system might not be known 
completely. This type of uncertainty has long been handled appropriately by 
probability theory and statistics. This Kolmogoroff-type probability is essentially 
frequentistic and bases on set-theoretic considerations. Koopman’s probability refers 
to the truth of statements and therefore bases on logic. On both types of probabilistic 
approaches it is assumed, however, that the events or statements, respectively, are well 
defined. We shall call this type of uncertainty or vagueness stochastic uncertainty by 
contrast to the vagueness concerning statements themselves, which we shall call 
fuzziness. 

For this, Zadeh [1965] proposed fuzzy set theory, a new tool to generalize the 
classical notation of a set and accommodate semantic and conceptual fuzziness in 
statements. Fuzzy set theory provides a strict mathematical framework in which vague 
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conceptual phenomena can be precisely and rigorously studied. There is nowhere 
fuzzy in the analysis of fuzzy set theory but the name “fuzzy set theory” itself. It can 
also be considered as a modeling language well suited for situations in which fuzzy 
relations, criteria, and phenomena exits.  

Fuzzy set theory can be found be applied in many areas, such as in engineering, 
in medicine, in meteorology, in manufacturing, in bioinformatics, and others. It is 
particular frequent in all areas in which human judgment, evaluation, and decisions 
are important. These are the areas of decision making, reasoning, learning, and so on. 
Before studying fuzzy set theory, we need to know some definitions. 
 
Definition 2.1 

If X is a collection of objects denoted generically by x (the universe of discourse) 

then a fuzzy set A in X is a set of ordered pairs: ( )( ){ }XxxxA A ∈= µ, , ( )xAµ  is 

called the membership function or grade of membership (also degree of truth) of x in 
A which maps X to the membership space M. (When M contains only the two points 0 
and 1, A is nonfuzzy and ( )xAµ  is identical to the characteristic function of a 

nonfuzzy set.) The range of the membership function is [0, 1]. Elements with a zero 
degree of membership are normally not listed. 
 
Example 2.1 

Let the fuzzy set A denoted the numbers of hours you sleep a day. Suppose that 
X is the universe of discourse with integers. That is, { }24,,1,0 L=X . Then the fuzzy 
set A may be described as: ( ) ( ) ( ) ( ) ( ){ }1.0,10,2.0,9,4.0,8,2.0,7,1.0,6=A . 

 
Example 2.2 [Zimmermann 1991] 

A = “ real numbers close to 10”   

( )( ) ( ) ( )( )




 −+==

−12101, xxxxA AA µµ . 

 
There is another way of denoting fuzzy sets. When the universe of discourse X is 

discrete, we write 
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When the universe of discourse X is continuous, we write 
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Example 2.3 
In example 2.1 we can write: 

10
1.0

9
2.0

8
4.0

7
2.0

6
1.0

++++=A  

 
Example 2.4 [Zimmermann 1991] 

A = “ real numbers close to 10” 

( )( )
∫

−
−+

=
R x

x
A

12101
 

 
In the previous examples we found that the supreme of a membership function 

of a fuzzy set may not equal 1. This type of the fuzzy sets whose supreme of 
membership function equals 1 is of more interests. We call this type of fuzzy set 
normal. Each nonempty fuzzy set can always be normalize by dividing )(xAµ  by 

)(sup xAx µ . 

One special type of variables whose values are not numbers but words or 
sentence in a natural or artificial language also plays an important role in fuzzy set 
theory. This type of variable is defined to be linguistic variables. We now present its 
definition. 
 
Definition 2.2 [Zadeh 1973] 

A linguistic variable is characterized by a quintuple ( )MGUxTx ~,,),(,  in 

which x is the name of the variable; T(x) (or simply T) denotes the term set of x, that  is, 
the set of names of linguistic values of x, with each value being a fuzzy variable 
denoted generically by x and ranging over a universe of discourse U which is 
associated with the base variable u; G is a syntactic rule (which usually has the form 
of a grammar) for generating the name, X, of values x; and M is a semantic rule for 

associating with each X its meaning, )(~ xM  which is a fuzzy subset of U. A 

particular X, that is a name generated by G, is called a term. It should be noted that 
the base variable u can also be vector-valued. 

 
In order to facilitate the symbolism in what follows, some symbols will have 

two meanings wherever clarity allows this: x will denote the name of the variable 
(“the lable” ) and the generic name of its va lues. The same will be true for X, and 

)(~ xM . 
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Example 2.5 [Zadeh 1973] 
Let X be a linguistic variable with the label “Age” (i.e., the label of this variable 

is “Age” and the values of it will also be called “Age”) with U = [0, 100]. Terms  of 
this linguistic variable, which are again fuzzy sets, could be called “old”, “young”, 

“very old”, and so on. The base-variable u is the age in years of life. )(~ xM  is the 

rule that assigns a meaning, that is, a fuzzy set, to the terms. 

( ){ }]100,0[)(,)(
~

∈= uuuoldM oldµ  

where  
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T(x) will define the term set of x, for instance, in this case,  
T(Age) = { }youngveryyoungquiteyounglessormoreoldsonotoldveryold ,,,,,  

where G(x) is a rule which generates the (label of ) terms in the term set. 
 

Forty years after the proposition, fuzzy set theory has been successfully applied 
in more and more areas and has caught more and more attention. Theoretical advances 
have been made in many directions. Therefore, the fundamentals of the theory have 
also been well developed. Interested readers may refer to Klir and Folger [1988] or 
Zimmermann [1991] for more basic theory and details. 
 
 

2.2 Concept of fuzzy time series 
 

A time series is a set of observed values recorded with time. These observed 
values could be either continuous, which is called continuous time series, or discrete, 
which is called discrete time series. A time series is usually denoted by { }tX , 

nttt XXX ,,,
21

LL refer to the observed values at time nttt ,,, 21 LL  respectively.  

Time series analysis plays a very important role in forecasting and is very 
successful in many applications. Each observed value seems to be a single and precise 
one in traditional time series analysis. However, the measurement error of collecting 
data, the time lag or the interaction between variables may turn the single value into a 
range of possible values. For example, when we talk about the stock index of a day, 
which value do we indeed specify, the index at beginning of the day, the index at the 
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end of the day,  the highest index of the day or the lowest of the day? 
Conventional study on the time series analysis is based on the concept that the 

observed data are random with certain measurement errors or noise. However, in the 
empirical study we often encounter the situation that those data reveals not only the 
property of randomization but also the perception of fuzziness. In this case, the 
application of fuzzy time series leads to a better result. Thus, we firstable define the 
fuzzy time series. 
 
Definition 2.3 A fuzzy time series 

Let { }L,3,2,1, =∈ tRX t  be a time series and U be the universe of 

discourse. Let 







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UPmiP
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.,,3,2,1, be an ordered partition of U on 

which linguistic variables { }miLi ,,3,2,1, L=  are given. For each tX , if ( )tXF  
is its correspondent fuzzy set on U consists of membership { }tmtt uuu ,,, 21 L  for 
{ }mLLL ,,, 21 L . Then we say ( ){ }tXF  is a fuzzy time series corresponding to { }tX , 

and denoted by  

           ( ) ( ) ( ) ( )
m

ttmtttt
t L

X
L

X
L

X
XF

µµµ
+++= L

2

2

1

1                (2.1) 

where “+” denotes the connection, “
( )

i

tti

L
Xµ

” specifies the corresponding relation of 

the membership ( )tti Xµ  of tX  with respect to the linguistic variable iL , 

[ ] 1,1,0:
1

=→ ∑
=

m

i
titi andR µµ  

 
For simplicity, we write ( ) ( )tmtttXF µµµ ,,, 21 L=  instead of (2.1), and take 

the triangle-shaped and trapedzoid-shaped membership function as our mainly 
interested membership function in this paper. The set { }miLi ,,2,1, L=  is regarded 

as a sequence of linguistic variable, and the element of fuzzy time series 
( ){ }ntXF t ,,2,1; L=  is consisted by the memberships of linguistic variables. That 

is, for any ( ) ( )ntXF t ,,2,1 L= , it contains the membership of linguistic hedge 
corresponding to each iL . 

 
Example 2.6 

Let ( ){ } { }6.3,3.4,2.3,5.3,1.4,9.2,7.1,8.0=tX t . Choose U = [ ]1,0{ , 

[ ]2,1 , [ ]3,2 , [ ]4,3 , [ ]5,4 }, and define the linguistic variable to be very low = 1L , 
low = 2L , middle = 3L , high = 4L , very high = 5L . Moreover, we take the average 

number of the intervals as our typical values. The typical values corresponding to 
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1L , … , 5L  are now defined to be 0.5, 1.5, 2.5, 3.5, 4.5 respectively. Figure 2.1 shows 

the membership function of those linguistic variables. 
 

 

 
Thus, we have the fuzzy time series { })(tF  corresponding to { }tX  as follows: 

 
                   Very low   low   middle   high   very high 
            F( 1X ) = (   0.7     0.3      0       0       0     ) 
            F( 2X ) = (   0      0.8      0.2      0       0     ) 
            F( 3X ) = (   0       0       0.6     0.4      0     ) 

            F( 4X ) = (   0       0       0      0.4      0.6    ) 
            F( 5X ) = (   0       0       0       1       0     ) 
            F( 6X ) = (   0       0       0.2     0.8      0     ) 
            F( 7X ) = (   0       0       0      0.2     0.8     ) 
            F( 8X ) = (   0       0       0      0.9     0.1     ) 

 
 

2.3 Detection of change period 
 

Because the structural change of a time series from one pattern to another may 
not switch at once but rather experience a period of adjustment time, it is natural for 
us to apply the concept of change period instead of change points when analyzing a 
structural change process. Taking different view from the change points, the concept 
of change period provides us with a more reasonable, more comprehensible and more 
flexible way to analyze the real world problems. 

In the paper, we present an approach to find the change periods in a time series 
with fuzzy statistics. The following definitions are required. 
 
 

 
 
                L1     L2      L3     L4      L5 

1 
 
 

                0.5     1.5    2.5     3.5     4.5 
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Definition 2.4 Fuzzy trend indicator series 

Let 
( ) ( ) ( )

LL ,3,2,1)(
2

2

1

1 =+++= t
L

X
L

X
L
X

XF
m

ttmtttt
t

µµµ
be a fuzzy time 

series, then the series ( ) ( ) ( ),)( 2211 ttmmtttt XaXaXatFI µµµ +++= L   
miRa i ,,2,1 L=∀∈ is defined to be the fuzzy trend indicator series, and 

maaa ,,, 21 L  are called the fuzzy weights of this fuzzy time series. 

 
Example 2.7 

In example 2.1, we have transformed the time series { }tX  into a fuzzy time 
series ( ){ }tXF . Now let the fuzzy weights of ( ){ }tXF  21 −=a , 12 −=a , 03 =a , 

14 =a , 25 =a , then we have  

 
7.10201003.0)1(7.0)2()1( −=×+×+×+×−+×−=FI  
8.002012.008.0)1(0)2()2( −=×+×+×+×−+×−=FI  

4.0024.016.000)1(0)2()3( =×+×+×+×−+×−=FI  
6.16.024.01000)1(0)2()4( =×+×+×+×−+×−=FI  

10211000)1(0)2()5( =×+×+×+×−+×−=FI  
8.0028.012.000)1(0)2()6( =×+×+×+×−+×−=FI  
8.18.022.01000)1(0)2()7( =×+×+×+×−+×−=FI  
1.11.029.01000)1(0)2()8( =×+×+×+×−+×−=FI  

 
Definition 2.5 Change period detection sequence 

If { }∞
=1)( ttFI  is a fuzzy trend indicator series, let ∑

+−=

=
t

ntt

tFItd
1'

)'()( , then 

{ }∞
=nttd )(  forms a sequence and is called a change period detection sequence of 

degree n. 
 
Example 2.8 

Let { }8,,2,1)( L=ttFI  be the same as that in example 2.2. The change period 

detection sequence of degree 3 is constructed as follows: 
 

1.24.0)8.0()7.1()3( −=+−+−=d  
2.16.14.0)8.0()4( =++−=d  

1.216.14.0)5( =++=d  
4.38.016.1)6( =++=d  
6.38.18.01)7( =++=d  

7.31.18.18.0)8( =++=d  
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Note that the change period detection sequence of degree n is the sequence of 
the partial cumulative sum of consecutive n elements in fuzzy trend indicator series. 
The decision of the degree of a change period detection sequence and the fuzzy 
weight of a fuzzy time series determines what kind of change period you can find. 
With the definitions defined above, we can now introduce our method to find the 
change periods in a time series. 

The first step to do when we have a time series is to make the first difference, 
that is, suppose that { }tX  is the time series then we find its first difference time 
series { }tY  where 1−−= ttt XXY . Intuitively speaking, tY  is the amplitude of rising 
or falling at time t comparison to time t-1. That is to say, 0>tY  means that 1−tX  
rises to tX  at time t with the rising amplitude tY . Similarly, 0<tY  means that 

1−tX  falls to tX  at time t with the falling amplitude tY ; 0=tY  means that there’s 
no difference between 1−tX  and tX . 

After forming the time series { }tY , the first difference time series of { }tX , the 
second step is to transform { }tY  into the corresponding fuzzy time series ( )tYF  
with iL  as its linguistic level, mi ,,2,1 L= . If a time series { }tX  illustrates the 
senses of fuzziness, then so is its first difference { }tY . Therefore, that is the reason 
why we transform the first difference time series { }tY  into the corresponding fuzzy 
time series ( )tYF . 

The third step is to construct the fuzzy trend indicator series 
( ) ( ) ( )ttmmtttt YaYaYatFI µµµ +++= L2211)(  of the fuzzy time series ( )tYF . The 

rule to decide the fuzzy weights of the fuzzy time series is that if ia  is the fuzzy 
weight of some linguistic variable iL  where the negative tY  takes the membership 
function ( )tti Yµ  greater than zero, then we assign ia  a nonpositve value; if ia  is 
the fuzzy weight of some linguistic variable iL  where the positive tY  takes the 
membership function ( )tti Yµ  greater than zero, then we assign ia  a nonnegative 

value.  
The next step is to compute the change period detection sequence from the fuzzy 

trend indicator series we have constructed. We are going to detect trends and change 
periods in a time series through change period detection sequence. The degree n of the 
sequence plays a very important role in deciding what types of change periods you 
could find.  

Sometimes an obvious change in trend or a change period in a small observation 
range may seem just a small noise caused by randomness and fuzziness in a larger 
observation range. The observation range does dominate our cognition of what a 
change period will be. More than that, a noise recognized by a person in a certain 
observation range under some certain situation may be recognized as a change period 
by the same person in the same observation range but just under a different situation. 
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This shows that the standard of a change periods depends on factors like the range of 
observation, different situations, and so on. Therefore, an essential question arise: can 
we always find the appropriate type of change periods that fits our demand?  

In this paper, we propose a method to detect the suitable type of change period 
by controlling the degree n of a change period detection sequence and the fuzzy 
weights. Intuitively, the greater the n is, the greater change period you are able to find. 
In the following definition, we define what we called a change period. 
 
Definition 2.6 Change period 

Suppose that { }∞
=nttd )(  is a change period detection sequence with degree n, for 

a given h > 0, if there is a time interval { }mlll tttT ++= ,,, 11 L  such that –h < d(t) < h 

1Tt ∈∀  , and if there exist two time intervals of its direct consecutive predecessors 

and successors { }1),1(2 ,, −−−−= ljljl tttT L  and 3T  = { }kmlmlml ttt ++++++ ,,2,1 L  such 

that the signs of d(t) are all the same ∈∀ t 2T  ( )3T , but opposite to the signs of d(t) 

∈∀ t 3T ( )2T , then we call =T







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period, where [ ]x  denotes the greatest integer function. 

 
Example 2.9 

Suppose that d(t) is a change period detection sequence of degree 10 with details 
in the following table. 
 

t d(t) t d(t) t d(t) t d(t) t d(t) 

1 6.768 6 8.822 11 2.084667 16 -4.23067 21 -6.01733 
2 8.778667 7 5.718667 12 -0.46733 17 -4.272 22 -6.944 

3 7.807333 8 6.76 13 0.902667 18 -9.52533 23 -9.65133 

4 5.698667 9 6.998 14 0.557333 19 -8.63267 24 -10.074 
5 9.156667 10 3.923333 15 -4.16667 20 -9.614 25 -7.81533 

 
Let h = 4, we can see that at time 10, 11, 12, 13, 14, h− < d(t) < h. We can find 

a time interval of the direct consecutive predecessors  =2T  {1, 2, … , 9} such that 
d(t) is positive 2Tt ∈∀ , and a time interval of the direct consecutive successors =3T  
{10, 11, … , 25} such that d(t) is negative 3Tt ∈∀ . Thus, the change period T is 







 =

+
− 8,7,6,5,4]

2
110

10[ . 
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In the end of this section, we sum up with the integrated process of change period 
detection for a time series: 

 
Step 1. Obtaining the difference time series { }tY  by make the first difference 

1−−= ttt XXY  of a time series { }tX . 

Step 2. Transform the difference time series { }tY  into a fuzzy time series 
( ){ }tYF  with iL  as its linguistic level, mi ,,2,1 L= . 

Step 3. Decide the weights of this fuzzy time series ( ){ }tYF , and find the 

corresponding fuzzy trend indicator series FI(t). 

Step 4. Construct the change period detection sequence of degree n { })(td  from 

the fuzzy trend indicator series FI(t) obtained in step 3. 

Step 5. Observe the change period detection sequence { })(td and check if we 

can find some time intervals T which satisfy the condition in definition 
2.6. If such time intervals exist, then they are the change periods.  

 
 

2.4 Trends Detection 
 

Trends detection is of much importance in many applications of both practical 
and theoretical areas. With the capability of knowing the beginning and the end of 
trends, we can make correct decisions and take appropriate actions. In the paper, we 
propose an approach to detect trends with change period detection sequence. Before 
introducing this method, we define a trend in a time series. 

 
Definition 2.7 Trend 

Suppose that { }∞
=nttd )(  is a change period detection sequence with degree n, if 

we can find an time interval T = { nmmm ttt ++ ,,, 1 L } at which d(t) takes positive sign or 
zero for every t ∈T and some m,n ∈N, then { )(,),(),( 1 nmmm tXtXtX ++ L } ( or X(T) 

for abbreviation) is called an upward trend; if we can find an time interval T = 
{ nmmm ttt ++ ,,, 1 L } at which d(t) takes negative sign or zero for every t∈T and some 

m,n ∈N, then X(T) is called a downward trend. Both the upward and downward 
trends are called trends. 
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Property 2.1 
A trend must occur between two change periods. 

Proof. Suppose that { }∞
=nttd )(  is a change period detection sequence with degree n 

and T1 is a change period, then, by definition 2.6, there is a time interval T2 of the 
successors of T1 at which d(t) takes the same sign for every t∈T2. Without lose of 
generality, we assume that d(t) take positive sign on T2 and thus T2 is an upward trend. 
The sighs of the successors of T2 have only three possibilities: positive, negative or 
zero. If d(t) takes also positive sign or zero at the successors of T2, then we can 
enlarge T2 to include those successors of T2 for a larger upward trend. If d(t) takes 
negative sign at the successors of T2, the there must exist a h and a time interval T3 
such that h− ＜d(t)＜h on T3. Clearly, T3 is right behind T2 and by definition 2.6 is a 
change period. Therefore an upward trend must occur between two change periods. A 
downward trend is similar.                                             □ 
 

Property 2.1 is an important result. It tells us that when you detect a change 
period in a time series, it is the end of a trend. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


