Chapter 5

The Chung-Feller Theorem
Revisited

Dyck paths are the most investigated objects related to the Catalan number C,,.
For other families related to Catalan number, we refer to [25, 29, 45, 44, 74]. Sur-
prisingly, the the number of the set of n—Dyck paths with £ flaws is independent
of k and equals to Catalan number C,, which is the Chung-Feller Theorem. In [19],
the famous theorem was first proved by means of analytic method. The theorem
was subsequently treated by more combinatorial methods in [51] (using cyclic per-
mutation) and in [24] ( using the cycle lemma). Recently, Eu, Fu, and Yeh [30]
proved a refinement of this result by virtue of the research of Taylor expansions of
generating functions. For more information of Chung-Feller Theorem, we refer to
[4, 31, ?, 51, 68, 83].

In this chapter, our purpose is to reprove Chung-Feller Theorem, show three
classes related to Chung-Feller Theorem, and study Chung-Feller Theorem for
Motzkin paths with flaws and a labelled minimum. In Section 5.1, we reprove
two well-known formulas: One is to provide a simple bijection between n—Dyck
paths with & flaws and n—Dyck paths with £ + 1 flaws for i = 0,1,...,n — 1 (The-
orem 5.1.1) and the other is to explain the Catalan identity appeared in Theorem
4.1.1 by n—Dyck paths with flaws (Theorem 5.1.2).

In Section 5.2, we are interested in studying bi-color plane forests (Definition
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5.2.1) and obtain two main results. Theorem 5.2.2 provides a formula to count
bi-color plane forests with n edges and k£ components. Theorem 5.2.3 is equivalent
to the Chung-Feller Theorem.

In Section 5.3, we catch two results: One is to find the number of semistandard
tableauzr (Definition 5.3.1) of shape 2 x n with k decreasing columns which is inde-
pendent of k£ (Theorem 5.3.2), and the other is to find the number of noncrossing
semiordered pairs (Definition 5.3.3) with n pairs and k d—arcs which only depends
onn for k=0,1,2,....,n (Theorem 5.3.4).

In Section 5.4, we catch two main results. Theorem 5.3.2 provides a family
related to Chung-Feller Theorem for Motzkin number. Theorem 5.3.4 provides two

families related to Chung-Feller Theorem for the Riordan number.

5.1 A Simple Proof of Chung-Feller Theorem

In this section, we provide a simple bijection to reprove Chung-Feller Theorem.
Furthermore, we explain the Catalan identity appeared in Theorem 4.1.1 by Chung-

Feller Theorem.

Theorem 5.1.1 (Chung-Feller) The number of n— Dyck paths with k flaws is the
Catalan number C,, for k=10,1,...,n.

Proof. Recall that D ; denote the set of n-Dyck paths with k flaws for £ =
0,1,...,n. We shall establish a bijection between I, , and Dj, , ; (see Figure 5.1).

On the one hand, for a given path D in D}, ,, let D = BuAdC, where u is the
first up step above the x—axis and d is the first down step touching the x—axis after
u. It is easy to see B is a path all below the x—axis with k; flaws for some ki > 0,
A is a path all above the r—axis, and C is the remaining path with & — k; flaws.
Note that A and B may be empty. Switch Bu with Ad to obtain D' = AdBuC.
Since A, dBu, and C have 0, k; + 1, and k — k; flaws, respectively, then D' is a
path in Dj ;.
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On the other hand, for a given path D" in I}, , ., let D' = AdBuC, where d is
the first down step below the x—axis and wu is the first up step touching the x—axis
after d. It is easy to see A is a path all above the r—axis, dBu is a path all belove
the x—axis with ky + 1 flaws for some k; > 0, and C' is the remaining path with
k — ki flaws. Switch Ad with Bu to obtain D = BuAdC. Since B, uAd, and C
have ki, 0, and k — k; flaws, respectively, then D is a path in D; ;. This completes
the proof. U

Figure 5.1: 3-Dyck paths with £ flaws and their corresponding 3-Dyck paths with
k + 1 flaws for £k =0,1,2

Next we reprove the Catalan identity appeared in Theorem 4.1.1. Using Equa-
tion (4.0.2) and two different methods to count n—Dyck paths with flaws, we have

the following result.

n

Theorem 5.1.2 The Catal ber Cpy = = KL (2 =R forn 1
1. € vatatan numoer n_n+1k:12n—k n orn =~ 1.

Proof. Recall that I} be the set of n-Dyck paths with flaws. We use two different
methods to calculate |Df | and then derive this identity. One the one hand, by
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Chung-Feller Theorem, D% | = (n+ 1)C,.

One the other hand, we evaluate |Df | according to the number of intersections
of n—Dyck paths with flaws with the z-axis except (0,0). Let A; be the set of
paths in D} such that each path intersects the z—axis k times except (0,0) for

k=1,2,...,n. Then |D}| = Z|Ak| It suffices to prove that |A,| = A2 (2”*’“),

2n—k n

k=1
Let Ay ¢ be the subset of A, where each path in A o has no flaw. Then, by Equation
(4.0.2), |[Ag o] = 5Z (2"7’“). Denote D € Ay g as D1 D, ... Dy, where D; is a minimal

2n—k n
Dyck path with no flaw for + = 1,2, ..., k. Each path in A; can be constructed from

some D € Ay by remaining D; or reflecting D; to the x—axis. By multiplication

k2K (2n—k
T 2n—k n

principle, we obtain |Ag| = 2%|Ay ). Hence, we complete the proof. [

5.2 Bi-color Plane Forests

In this section we wish to study the relation between plane forests and Chung-Feller

Theorem. For this purpose, we introduce the following technology.

Definition 5.2.1 A bi-color plane tree is a plane tree with vertices either black
or white such that the vertices of each subtree of the root have the same color. A

bi-color plane forest is a plane forest where each component is a bi-color plane tree.

Let BT,, denote the set of bi-color plane trees with n edges and BF, ; denote
the set of bi-color plane forests with n edges and k& components. Because BT,, has

a bijective correspondence to the set of n—Dyck paths with flaws (see Figure 5.2
for an example in BT;), we have [BF,, ;| = |BT,| = (*").

92n ("+§_1), if k is even,
(2n+k—1) (2n+k51)/(2”+%), if kis odd.

2n n 2n

Theorem 5.2.2 |BF, ;| = {

2
Proof. Clearly, the generating function of BT, is t(z) = Z ( n) z". Hence, the
n
n>0
generating function of BF, is f(x) = [t(x)]*. In [73], p. 52, we learned

3 (2;1);5 — (1 —4n) %,

n>0
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n—1
By algebraic calculation, [z"]f(z) = H(k + 2i) and the proof is completed. [
=0

Figure 5.2: A bi-color plane tree with 5 edges and its corresponding 5-Dyck paths
with 2 flaws

Let B} , be the set of bi-color plane forests with n edges and no trivial com-
ponents such that vertices of each component have same colors, the colors of com-
ponents are alternating either black or white, and there are k£ edges in white com-
ponents for £ = 0,1,...,n. We shall discover the relation between bi-color plane
forests B), , and the Chung-Feller Theorem.

Theorem 5.2.3 The number of the bi-color plane forests in By, . is the Catalan
number C,, for k=20,1,...,n.

Proof. It is well-known that the Catalan number C), counts n—plane trees. By ,
is simply the set of n—plane trees, i.e. |B; (| = C,. We shall show that there is a
bijection between B; , and By .., for k = 0,1,2,...,n — 1 (see Figure 5.3). Then
B, | =Cp for k=0,1,...,n.

Let A, B, and C be the first component, the second component, and the third
component, respectively, of a given forest in B; ;. Without loss of generality, we
may assume that B is a component with black vertices. Note that A may be empty.
Partition B into three parts: The first part f is the subtree which is rooted by the
first child of the root; the second part ¢ is the root and its remaining subtree; the
third part e is the edge adjacent to the root and its first child, and recolor the end
points of e white which is denoted by €’. There are three cases:

Case 1: f and g are nontrivial. Then we exchange f and A, and identify the root
of A and the first child of the root.

Case 2: f is trivial. Then we identify the root of A and the first child of the root.
Case 3: g is trivial. First, we exchange f and A, and identify the root of A and
the first child of the root which is denoted by W. Secondly, we identify the root of
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W and the root of C.

In any case, our construction will yield a forest in B} , ;.

The converse holds if only assume that the above B is a component with white
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Figure 5.3: An illustration of the proof of Theorem 5.2.3.

Theorem 5.2.3 immediately yields Corollary 5.2.4.

Corollary 5.2.4 The number of plane forests in F;, where there are k edges in all
odd components or in all even components , equals to the Catalan number C,,, if
n#2k; 1C, if n =2k, for k=1,2,..,n— 1.
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5.3 Semistandard Tableaux and Noncrossing Semiordered

Pairs

Recall that given a partition A of n, a standard tableau is an arrangement of [n] in
the cells of the Ferrers diagram of A which increases across rows and down columns.
The Catalan number C), counts standard tableaux in a 2 x n rectangular Ferrers

diagram (see [75]).

Definition 5.3.1 Given a partition A of n, a semistandard tableau is an arrange-
ment of [n] in the cells of the Ferrers diagram of A\ which increases only across

rows.

We shall show that the number of semistandard tableaux of shape 2 x n with

k decreasing columns only depends on n.

Theorem 5.3.2 The number of semistandard tableaux of shape 2 x n with k de-

creasing columns is the Catalan number C,, for k =0,1,2,...,n.

Proof. Let S, be the set of semistandard tableaux of shape 2 x n with k£ de-
creasing columns for k = 0,1, 2, ..., n. The bijection 1 will be from S,, ; to S, 411 for
k=0,1,2,...,n— 1. Let A be a semistandard in S,, ;. Then B = ¢)(A) is obtained
by the following steps.

1. Partition A into three parts: f, g, and h, where
(a) f contains a maximal tableau with decreasing columns, and the number
x in the first row of the first increasing column,

(b) g contains the number y in the second row of the first increasing column,
and a minimal tableau m (may be empty) with increasing columns such
that each number in g is consecutively and the number in the first row

and the first column of m is less than y, and

(c) h is the remaining tableau.

2. Switch f and g.
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3. Replace s in g with s — |f|, where |f| is the amount of numbers appeared in

f.

4. Replace s in f with s+ |g|, where |g| is the amount of numbers appeared in

g.

5. Let ¢’ be a tableau obtained by removing the first row one position toward
left in new g. Let f’ be a tableau obtained by removing the second row one

position toward right in new f.

6. Let B be the tableau composed of ¢’, f’, and h.

Clearly,

1. The set of numbers in ¢’ is [|g|] with increasing columns.
2. The set of numbers in f"is {|g|+1, |g|+2, ..., |g|+|f|} with decreasing columns.
3. The column composed of ¢’ and f’ is decreasing.

Hence B € S, ;11. In Figure 5.4 below, we have filled the numbers to help the

reader trace what happens.

Conversely, A = ¢(B) is obtained by the following steps.

1. Partition B into three parts: ¢’, f’, and h, where
(a) ¢’ contains a maximal tableau with increasing columns, and the number
y in the second row of the first decreasing column,

(b) f’ contains the number z in the first row of the first decreasing column,
and a minimal tableau m’ (may be empty) with decreasing columns such
that each number is consecutively and the number in the second row and

the first column of m’ is less than z, and

(c) h is the remaining tableau.

2. Remove the first row one position toward right in ¢’ and remove the second

row one position toward left in f’, respectively.
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Figure 5.4: An illustration for the proof of Theorem 5.3.2

3 5|16|9|10(14 415 6 9(10/14
1127 11|12|13 1|2 78 11/12}13
6 415]||9|1014
718|112 11/12}13
1(6(7|8 9(1014
213|145 11{1213
1 6|7]|8 911014
3 415 (111213
116] 7| 8]9[1014
21 3|4]5]111213

3. Replace s in ¢’ with s+ |f’|, where | f’| is the amount of numbers appeared in

f'. Denote this tableau by g.

4. Replace s in f" with s — |¢'|, where |¢’| is the amount of numbers appeared in

g'. Denote this tableau by f.

5. Let A be the tableau composed of f, g, and h.

Clearly,

1. The set of numbers in f is [| f’|] with decreasing columns.

2. The set of numbers in ¢ is {|f'| + 1, |f'| + 2,...,|f'| + |¢'|} with increasing

columns.

3. The column composed of f and g is increasing.

Hence A € S, Obviously, for each A € S, (¢ 0o ¥)(A) = A and for each

B €S, k41, (¢ 0 ¢)(B) = B. This implies 1 is a bijection.
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Figure 5.5 is an example of semistandard tableaux with k decreasing columns
and their corresponding semistandard tableaux with k£ + 1 decreasing columns for
k=0,1,2.

1{2(3 112(6 416 2|14|6
«—> «—> «—>

5|6 3145 3|5 1{3|5

1124 1/3|6 2|13|6 3(4|6

5|6 4|5 1({4|5 112|5

1{2|5 415 214|5 3|5|6
«—> «—> «—>

3(4|6 3|6 1(3|6 1124

1134 23| 4 1{5|6 5|6

2(5|6 1(5|6 3|4 1{3|4

1{3(5 3|5 3|14|5 4(5|6
> > <«

4|6 1(4|6 1(2]|6 112|3

Figure 5.5: Semistandard tableaux of shape 2 x 3.

Recall that a noncrossing pair is an arrangement of 2n points on a circle where
we join them pairwise with n noncrossing chords. The number of noncrossing pairs

of 2n points on a circle is the Catalan number C,, (see [75]).

Definition 5.3.3 A noncrossing semiordered pair is an arrangement of 2n points
on a circle with n noncrossing arcs satisfying the following conditions: The arcs of
v;vj and vy,v, has the same direction, if i < m < n < j, where vy is the k" point
clockwise for k = 1,2,...,2n. We define ’va]) to be an i—arc if 1 < j; a d—arc if
1> 7.

In what follows, we shall show that the number of noncrossing semi-ordered

pairs with n pairs and k d—arcs only depends on n.

65



Theorem 5.3.4 The number of noncrossing semi-ordered pairs with n pairs and k

d—arcs is the Catalan number C,, for k =0,1,2,...,n.

Proof. Let PP, be the set of nocrossing semi-ordered pairs with n pairs and &
d—arcs. The bijection ¢ will be from P, ; to P, 541 for £ = 0,1,2,...,n — 1. Let
P be a noncrossing semi-ordered pair in P, ;. Then P’ = ¢(P) is obtained by the

following steps. Figure 5.6 is an example for illustrating this bijection.

Denote P as BuAdC clockwise, where 171 is the first i—arc of P. It is easy to
see B only contains d—arcs, say ki d—arcs for some k; > 0, A only contains ¢—arcs,
and C'is the remaining part with k£ — k; d—arcs. Note that A and B may be empty.
Switch Bu with Ad to obtain P’ = AdBuC'. obviously, 171 is the first d—arc of P’.
Since A, dBu, and C have 0, k; + 1, and k — k; d—arcs, respectively, then P’ is a

noncrossing semi-ordered pair in [Py, 4.

Conversely, for P' € P, 1, then P = ¢(P') is obtained by the following
steps. Denote P’ as AdBuC' clockwise, where 171 is the first d—arc of P’. It is easy
to see A only contains i—arcs, dBu only contains d—arcs, say k; + 1 d—arcs for
some k; > 0, and C' is the remaining part with k£ — k; d—arcs. Switch Ad with
Bu to obtain P = BuAdC. Obviously, u—gl is the first 1—arc of P. Since B, uAd,
and C have ki, 0, and k — k; d—arcs, respectively, then P is a noncrossing semi-
ordered pair in P, ;. Obviously, for each P € P4, (¢ 0 ¢)(P) = P and for each
P € P, i1, (o ¢)(P') = P'. This implies 1) is a bijection. [

5.4 Motzkin Paths with Flaws and a Labelled

Minimum

In this section, we wish to introduce Chung-Feller Theorem for Motzkin number
and Riordan number. For convenience, let M%k) be the set of paths from (0, k) to
(n,0) allowing rise step u = (1, 1), fall step d = (1,—1), and level step | = (1,0).
Let R%) be the set of paths with n steps starting from (0, k), ending on x—axis and
allowing rise steps (7,7) for i > 1 and fall step (1, —1). In particular, MY is the set

of n—Motzkin paths with flaws.
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Figure 5.6: An illustration for the proof of Theorem 5.3.4 .

Theorem 5.4.1 The number of paths in M with a labelled minimum after k steps
for k=0,1,2,....,n is the Motzkin number M,

Proof. Let S; be the subset of M with a labelled minimum after k steps for
k =0,1,...,n. We shall provide a bijection between S; and Sy, for k = 1,2,...,n.

Figure 5.7 is an example for illustrating this bijection.

The bijection v will be from Sy to Sy ;. Let D be a path in S;. Then a path
D' = (D) is obtained by the following step. We write D = Ap and let D’ = pA
where p is the last step of D. It is easy to check that D’ is a path in S;,; and 1 is
a bijection. Hence | Sy, |=| Sg | for £ = 0,1, ...,n. By the definition of Sy, we obtain
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| So |= M,. Hence, | Sy |= M,, for k =0,1,2,...,n. O

—>—>—> S @ —e—> S > > —>—>—

Figure 5.7: An illustration for the proof of Theorem 5.4.1

If we change the labelled minimum into the step u or the step d, then we obtain

the following results. Figure 5.8 is an illustration for these correspondences.

Corollary 5.4.2 1. The number of paths in Mq(;ll) with a rightmost minimum
after k steps for k =0,1,2,...,n is the Motzkin number M,,.

2. The number of paths in Msllj_l with a leftmost minimum after k steps for
k=1,2,....,n+1 is the Motzkin number M,.

For Corollary 5.4.2-1, Shapiro [68] noted that it can be proven either by a
version of the cycle lemma (see [74], p. 67 or [83]) or by generating functions. In

[30], Eu-Fu-Yeh proved a refinement of this result.

-
[

LN AN

Figure 5.8: An illustration for Corollary 5.4.2

The following is an application of Corollary 5.4.2-1 in probability theory. Sup-
pose there is a game of rolling one die. The player must pay one coin to the banker

for entry fee. Fach turn, if the player gets a number larger than the banker, then he
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wins one coin from the banker. If the player gets a number smaller than the banker,
then he loses one coin to the banker. If there is a tie, then he neither wins nor loses
any coin. Let S, 1 be the number of coins the player wins after n+1 turns contain-
ing one coin he pays to the banker for the entry fee. Clearly, So = —1. Let By be
the event that the player’s last minimum occurs at the £ turn for k¥ = 0,1, ..., n.

By Corollary 5.4.2-1, we have the following result in conditional probability.

Corollary 5.4.3 Let S,.1 and By, be defined as above. Then | By, |= M, and the
conditional probability P(By | Spy1 =0) = #1 for k=0,1,...,n.

In what follows, we shall study Chung-Feller Theorem for Riordan number.
Recall that the Riordan number counts n—Motzkin paths without level steps on
the r—axis (see [33], p.456) and the short bushes with n edges (see [7], p. 85).
Using the technique analogous to Proposition 6.2.1 — (v) in [74], p. 169, and the

proof of Theorem 5.4.1, we shall obtain the following results.

Theorem 5.4.4 1. The number of paths in M%U) with a labelled minimum after
k steps which is not an endpoint of a level step for k = 0,1,2,...,n is the

Riordan number R,.

2. The number of paths in R with a labelled minimum after k steps for k =

0,1,2,...,n is the Riordan number R,.

Figure 5.9-(a) is an illustration for Theorem 5.4.4-1 and Figure 5.9-(b) is an
illustration for Theorem 5.4.4-2.

Again, if we change the labelled minimum into the step u or the step d, then

we obtain the following results.

Corollary 5.4.5 1. The number of paths in M,(;rll) with a rightmost minimum
after k steps for k = 0,1,2,...,n which is not an endpoint of a level step is

the Riordan number R,

2. The number of paths in M(nlll with a leftmost minimum after k steps for
k= 1,2,...n+ 1 which is not an endpoint of a level step is the Riordan

number R,,.
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Figure 5.9: An illustration for the proof of Theorem 5.4.4

3. The number of paths in R(nlll with a leftmost minimum after k steps for k =
1,2,...,n+ 1 is the Riordan number R,.
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