Chapter 6

Graceful Labellings of Some

n-Caterpillars

Let G = (V, E) be a graph with vertex set V' and edge set E. We say that G has a
graceful labelling f if

1. f is an injective mapping from V to {0,1,2, ..., |E|}, and

2. the mapping ¢ from E to {1,2,...,|E|}, defined by g(uv) = |f(u) — f(v)], is

bijective.

In 1964, Ringel [55] conjectured that if 7' is a fixed tree with n edges, then
the complete graph on 2n + 1 vertices can be decomposed into 2n + 1 copies of T
(see [84], 2.2.15. Conjecture.). To prove Ringel’s conjecture, one is led to focus
on a stronger conjecture, called Graceful Tree Conjecture claiming that all trees
have graceful labellings; following [84], this is also called Ringel-Kotzing conjecture.
In fact, Rosa [60] introduced the notion of graceful labelling originally called f—
valuation and was renamed as such by Golomb in [36]. Rosa also showed that
caterpillars (trees with a path incident to every edge) and paths both have a graceful
labelling. As an application of graceful labellings of trees, Rosa proved if a tree T
with n edges has a graceful labelling, then the complete graph on 2n + 1 edges
has a decomposition into 2n + 1 copies of T' (see [84], 2.2.17. Theorem.) The
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Graceful Tree Conjecture is still unsolved. A good reference for graceful labelling
is a survey paper by J. A. Gallian [34]. From given graceful trees to obtain new
graceful trees was described on [12, 38, 42, 76]. For convenience’s sake, we list the
following references on other families of graceful trees appeared in the literiture:
(2, 3,5, 8,9, 10, 11, 39, 40, 43, 50, 54, 61, 62, 80, 86].

In 1979, Bermond [6] conjectured that lobsters are graceful which is still open
where lobsters are trees with a path from which each vertex has distance at most 2.
Recently, Mishra and Pangrahi proved that some classes of lobsters, satisfying the
conditions in [47], p. 368, have graceful labellings. For other families of graceful
lobsters, we refer to see [15, 48, 53, 82]. In this Chapter, our first purpose is
to present a graceful labelling of a special class of lobsters, named 2-caterpillars
(Definition 6.1.1). These results supports the validity of Bermond’s conjecture and

we are motivated to study graceful labellings of some families of lobsters.

The strongest motivation for studying graceful labellings of 2-caterpillars is
the fact that caterpillars have up/down labelling which are the generalizations of
those of paths and stars (see [84], p. 70). We are not aware of any existence
literatures, including [47], that discuss 2-caterpillars, and it seem that this part is
left unstudied. In Section 6.1, we use algorithm A; to yield graceful labellings of
2-caterpillars by partitioning them into a union of 2-stars after suitably removing
some legs (Theorem 6.1.2). The algorithm is essentially simple to understand and

the technique of the proof is by induction.

Naturally, it comes to our mind whether n-caterpillars (Definition 6.1.1) have
graceful labellings analogous to those of 2-caterpillars for n > 3. Unfortunately,
similar method to algorithm A; doesn’t work for some 3-caterpillars. Therefore, we
turn to study graceful labellings of regular n— caterpillars (Definition 6.1.1). In Sec-
tion 6.2, we devote ourself to studying graceful labellings of (r, m,n)— caterpillars
( Definition 6.1.1). The Algorithm A, uses two graceful labellings of small reg-
ular n—caterpillars to yield a graceful labelling of a large regular n—caterpillar.
On the one hand, we combine two graceful labellings of a (2k,m,n)—caterpillar
and a (1, m,n)—caterpillar, respectively, to yield a graceful labelling of a (2k +
1, m,n)—caterpillar. On the other hand, we combine two graceful labellings of a

(2k, m,n)—caterpillar and a (2, m, n) caterpillar, respectively, to yield a graceful la-

72



belling of (2k+ 2, m, n)—caterpillar. The technique of the proof is also by induction.
In fact, algorithm A, can be simplified as algorithm AY,.

Let T, be the set of n—caterpillars with the single path of length divisible by
n. In Section 6.3, our main purpose is to generalize the result of Lemma 6.1.3 to
n—caterpillars in T,,. We partition [kn] into k n—sets X;,i = 1,2, ..., k and partition
any n—caterpillar 7' € T,, into a union of n—stars. Using algorithm Ay to label T'

will yield a graceful labelling of T (Proposition 6.3.11).

At step 3 of algorithm A;, as we restore removed legs and replace two vertex
labels 2n 41—y and y with y and 2n+ 1 — y, then the reconstructed 2—caterpillar
still has a graceful labelling. If we fill these four vertex labels in a square of order 2,
then it looks like a Latin square. This motivates us to study an application of Latin
squares to graceful labellings of 2" —caterpillars. The case of 4-caterpillars has been
settled recently in a master thesis by Wu [85]. In Section 6.4, we first construct a
special class of Latin squares of orders 2", named graceful Latin squares (Definition
6.4.1). Next, using Latin square, we provide algorithm A, analogous but more

complicated than algorithm Ay, to yield graceful labellings of 2" —caterpillars.

6.1 Graceful Labellings of 2-Caterpillars

For extending graceful labellings of paths and 2-stars and towards Bermond’s con-
jecture, in this Section we present graceful labellings of 2-caterpillars, special class

of lobsters, defined as follows:

Definition 6.1.1 n—Caterpillars are trees with a single path with vertices either
a single vertex or the root of an n—star. Those paths attached to the single path
are called their legs. Caterpillars are 1-caterpillars. Regular n—caterpillars are
n—caterpillars where each vertex of the single path has the same number of legs.
(r,m,n)— Caterpillars are reqular n— caterpillars where the single path has r vertices

and each vertex of the single path has exactly m legs.

In this thesis we allow n-caterpillars to grow from the leftmost vertex of the sin-

gle path by either adding an horizontal edge or a leg. Clearly, for any n-caterpillar,
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we can iterate such construction to obtain it from a single vertex and the construc-
tion is unique. Therefore we can say that an n—caterpillar has a unique single path

with vertices either a single vertex or the root of a n—star.

We herein wish to complete the following result.
Theorem 6.1.2 2-Caterpillars have graceful labellings.

For this purpose, we first offer an algorithm to yield graceful labellings of
2—caterpillars with the single path of even length and the first vertex label of the
single path is 0 where the first vertex of the single path is the leftmost vertex of
the single path. Combing this with up/down labelling yields graceful labellings of
2—caterpillars with the single path of odd length.

Recall that T, be the set of n—caterpillars with the single path of length
divisible by n.

Algorithm A;: Labelling of 2—caterpillars.
Let T be a 2-caterpillar.

1. Assume that 7' € Ty with 2n + 1 vertices and we put [2n] = {1, 2, ..., 2n}.
(a) Remove each leg incident to the 2i" vertex of the single path to be
incident to the 2i + 1% vertex of the single path for i > 1.

(b) Partition T into a union of 2—stars (2—caterpillars whose single path is
a single vertex) such that each odd vertex (except the first one) of the

single path is the last leaf of a 2—star and the root of next 2—star.
(c) Label the first vertex of the single path with 0.

(d) Label each leaf of the first 2—star with the smallest unused number odd

x in [2n] number and label its adjacent vertex with 2n + 1 — z.

(e) If each leaf of a 2—star is labelled with odd (even) number, then we label
each leaf of next 2—star with the smallest unused even (odd) number

and label its adjacent vertex with 2n + 1 — .

2. Assume that T ¢ T,.
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(a) Remove each leg incident to the 2i — 1°" vertex of the single path to be
incident to the 2" vertex of the single path for i > 1.

(b) Label the first vertex u of the single path with the number of edges of T.

(c) Apply step 1 to label vertices of the 2-caterpillar 7' — w.

3. Restore each removed leg and interchange the vertex labels between leaf and

its adjacent vertex.

Figure 6.1 and Figure 6.2 are examples of graceful labellings of 2-caterpillars

with the single paths of even and odd length, respectively.
ANTLIAL = AN T AAN
----- e
-
AT
6 3 10 12 7 9 11
2

2 4
0 26 1 19 8 22 5 13 14 0 26 1 19 8
25 21 24 17¢ %15 20 16__o 28 21 24¢ 10
23 18 23
2 4 6 3 10 127 9 11 2 4 6 3

Figure 6.1: A graceful labelling of a 2—caterpillar with the single path of even

2 5 3 14
15

AL

17 12 20 1811

length.
0 26 1 19 8 22 5 13 14

RTTIAL - TAHAL

2 4 6 3 17 1220 1811

2 4 6 3 17 12 20 18 11
Figure 6.2: A graceful labelling of a 2—caterpillar with the single path of odd length.

Lemma 6.1.3 If each 2i" vertez of the single path of any 2-caterpillar in Ty has
no legs, then algorithm Ay yields a graceful labelling and the first vertex label of the
single path s 0.
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Proof. Assume that the 2i*" vertex for i > 1 of the single path of any 2-caterpillar,
with 2n + 1 vertices, has no legs. We use induction on n. For n = 1, it is a P;
which has a graceful labelling 0,2, and 1 on its vertices in order. Suppose that for
any 2-caterpillar with 2k + 1 vertices, where each 2i'h vertex of the single path has
no legs, always has a graceful labelling by algorithm A;.

Consider a T € Ty with 2k + 3 vertices, where each 2i’* vertex of the single
path has no legs.
Case 1: The first vertex of the single path of 7" has no legs (see Figure 6.3-(a)).
Use algorithm A; to label vertices of T and partition 7" into two parts P; and 77,
where Pj is a labelled path with 3 vertices and 7 is a labelled 2—caterpillar with
2k + 1 vertices. If we replace each vertex label s with s — 1 in 77, then there yields
a new labelled 2—caterpillar T5, where the first vertex label of the single path is 0
and the other vertices are labelled by algorithm A;. By induction hypothesis, T5
has a graceful labelling which derives that 7" has a graceful labelling where the first
vertex label of the single path is 0.
Case 2: The first vertex of the single path of 7" has at least one leg (see Figure 6.3-
(b)). Use algorithm A; to label vertices of T" and partition 7" into two parts Py and
Ty, where Pj is a labelled path with 3 vertices and 77 is a labelled 2—caterpillar with
2k + 1 vertices. If we replace each odd number s with s — 2 in 77, then there yields
a new labelled 2—caterpillar T, where the first vertex of the single path is labelled
0 and the other vertices are labelled by algorithm A;. By induction hypothesis, T5
has a graceful labelling and the set of edge labels in T is [2k] which equals to

{2,4,...,2k}U{|z —y| :  +y =2k + 1,2 is odd, and y is even, for 1 < z,y < 2k}.
It is easy check that
{lt —y|: v+y=2k+1,2is odd, and y is even, for 1 < z,y < 2k}
={lr—y|: x+y=2k+3,ris odd, and y is even, for 2 < z,y < 2k + 1}.
This implies [2k] equals to
{2,4,....2k}U{|z—y| : x+y = 2k+3,x is odd, and y is even, for 2 < z,y < 2k+1},

which is the set of edge labels in 77. Combining this with the edge labels 2k+1, 2k+2
in P, we obtain that 7" has a graceful labelling, where the first vertex label of the
single path is 0. O
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0 2k+2 1 0 2k+2 1 1 0 2k+2 1 0
2k/l 2K-1 === l 2k —> 2k/l 2k-1 === { 2k SN Zk/[ 2K- 2 - l 2k-1
2 4 3 2 4 3 1 3 2
(a)
T =) T R T,
3 0 o0
----- —eo : . -----e——e
2k+2 K+l ——y 2k+2 2k T e ooke1  —> 2k*2 2k oK1
R, 2K 2k-2
1 3 5 2 1 3 5 2 1 1 3 2

Figure 6.3: An illustration for the proof of Lemma 6.1.3.

Proof of Theorem 6.1.2. Let T be a 2-caterpillar. Two cases are discussed.
Case 1: T € T, has 2n+ 1 vertices. Step la of algorithm A; turns 7" into a new 7"
such that each 2i*" vertex of the single path has no legs. By Lemma 6.1.3, 7" has
a graceful labelling. The remaining is to prove after restoring each removed leg, T'
still has a graceful labelling. In Figure 6.4, before restoring the removed leg, two
edge labels of the leg are |z — y| and |2n + 1 — 2y|. After restoring the removed
leg and exchanging the vertex labels between the leaf and its adjacent vertex, two
edge labels of the leg are still |z — y| and |2n + 1 — 2y|, i.e. T still has a graceful
labelling, where the first vertex label of the single path is 0.

Case 2: T ¢ T, has 2n + 2 vertices. Let u be the first vertex of the single path
of T. Step 2 of algorithm A; turns 7' — w into a new 7" € T,. By case 1, T" has
a graceful labelling, where the first vertex label of the single path is 0. Labelling
vertex u with 2n + 1 yields a graceful labelling of 7. U
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X 2n+l-x x  2n+l-x

ﬁ I 2n+1y[ ) — ¢ I Iy \

y 2n+1-y

Figure 6.4: An illustration for the proof of Theorem 6.1.2.

6.2 Graceful Labellings of (r, m,n)—Caterpillars

Another question arises: Are n—caterpillars graceful? Unfortunately, algorithm A,
doesn’t work for some 3-caterpillar. Hence, in this Section we focus on the existence

of graceful labellings of regular n—caterpillars.

Algorithm A,: Labelling of (r, m,n)—caterpillars
For m,n € N, let C, be the (r, m,n)—caterpillar for r > 1.

1. Forr=1,2,let z =r(mn+1) — 1.

(a) Label the i vertex of the single path with z; for i = 1,2, ..., r, where

S(mn+1), ifiis odd,
€T; =
(r—35)(mn+1), ifiis even.

(b) For the first vertex of the single path, label the k™ vertex of the j leg

with a1, for j =1,2,...,m, and k = 1,2, ...,n, where

A x—(j—l)n—%, if k is odd,
Ljk = , e s
’ (j—Dn+%, ifkis even.

(c) For the second vertex of the single path, label the k™ vertex of the j*

leg with ag j;, for j = 1,2,...,m, and k = 1,2, ..., n, where

—T9 + 1,5k, if k is Odd,
2,5k =

To + a1y, if kis even.

2. Assume that the (2¢,m,n)—caterpillar Cy; and the (1, m,n)—caterpillar C4
are labelled. We obtain a labelling of the (2t + 1, m, n)—caterpillar Cy; 41 by

the following construction.
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(a) For Cy, add mn+1 to each vertex label whose corresponding vertex has

odd distance to the vertex labelled 0.
(b) For Cy, add t(mn + 1) to each vertex label.
(c) Add an edge between the last vertex of the single path in Cy and the

root in Cf.

3. Assume that the (2¢,m,n)—caterpillar Cy; and the (2,m,n)—caterpillar Cy
are labelled. We obtain a labelling of the (2t + 2,m, n)—caterpillar C(2t + 2)

by the following construction.
(a) For Cy, add 2(mn + 1) to each vertex label whose corresponding vertex
has odd distance to the vertex labelled 0.
(b) For Cy, add t(mn + 1) to each vertex label.

(c) Add an edge between the last vertex of the single path in Cy and the

root in Cs.

Figure 6.5 and Figure 6.6 are examples of graceful labellings of (3, 3, 3) —caterpillar
and (4, 3, 3)—caterpillar by algorithm A,, respectively.

Figure 6.5: A graceful labelling of the (3, 3, 3)—caterpillar.

Lemma 6.2.1 Algorithm A, yields graceful labellings of (1, m,n)— caterpillars.
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39, 33 986 3

1 4 7 314 34 37

38 35 32 8 5 2 28 25 22 18 15 12

20A///
13
2

\4 0 30 10 2
39 33 9 3 29 23 19
36 6 26 16
1d 4 7 31f 34 37 19 14 17 214 24 7
38 35 32 8 5 2 28 25

22 18 15 12

Figure 6.6: A graceful labelling of the (4, 3, 3)—caterpillar.

Proof. It suffices to prove that a;;;’s are all different and all edge labels are

different and less than mn + 1 for j =1,2,...,mand k =1,2,...,n.

By step 1a of algorithm A,, we label the first vertex of the single path with 0.
By step 1b of algorithm A,, we obtain

2

e -(G-1n-5 ifkis odd,
1.gk (j—Dn+% ifkis even,

where x = mn. We first claim that all a,;; are different. Clearly, a; ;; doesn’t
equal to 0. Ifz — (j—)n— L =2 — (' = 1)n — klz’l, then (j — j')n = ’“/2;’“
Since the left-hand side of the equation is a multiple of n and the right-hand side

of the equation is between I_T" and "T_l, then the equality holds only when j = j'
and k = k'. With similar argument, the forth equality holds only when j = j’ and

k = k'. The second and the third equalities are impossible.

Secondly, we claim that all edge labels are different and less than mn + 1. Let
e1 ;1 be the edge label of the k" edge in j leg for j =1,2,...,mand k = 1,2, ..., n.
Then

e1ji=a ;0 =2—(—1)n

and

erjk = |arjr — a1 = | —2(j — )n — (k= 1)|, if k # 1.
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Clearly, ey ;1 # ey, for kK # 1. For k, k' # 1, if ey j 1 = €1 p, 1.€.
[z =20 —Un— (k=1 = [z —2(j' = n— (K" = 1)|,

then it is easy to check that the equality holds only when j = j and k = k’. This

means e j's are all different.

Finally, a routine work finds e, < mn for j = 1,2,...,m and & = 1,2, ..., n.

Hence, we finish this proof. U

Lemma 6.2.2 Algorithm A, yields graceful labellings of (2, m,n)— caterpillars. More-
over, the label of each vertex with even distance to the first vertex of the single path

18 less than mn + 1.

Proof. It suffices to prove that a;; # 0,mn + 1, a; ;;’s are all different, and all
edge labels are different and less than 2(mn + 1) for i = 1,2, j = 1,2,...,m, and
k=1,2,...,n.

By step la of algorithm A,, we assign 0, mn + 1 to the first vertex and the

second vertex of the single path, respectively. Step 1b implies

x—(j—1)n—E1 ifkis odd,
G/Lj’k = . k . .
(j—1)n+35, ifkis even,
and
{ —(mn+1)+z—(j—1)n— 5L ifkis odd,
a27j7k = . k . .
(mn+1)+(j —1)n+3, ifkis even,
where z = 2mn + 1. We first claim that a; j # 0, mn+1 and a; ;s are all different
for 1 <i,¢' <2,1<y,j'<m,and 1 <k, k" <n. Clearly, a; ;x # 0, mn + 1.

With the same argument as the proof of Lemma 6.2.1, it is easy to check that

for i =1,2, a; j, = a; j » holds only when j = j" and k = £
If 1,5,k = Q2,5 k', then

k-1 K1
1= (= Dn— 5= =—(mn+1)+z - (' = Yn— ——.

, k—1 , K’
:5—(]—1)n—T:mn+1+(]'—1)n+§,
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k K —1
(j—l)n—§:—(mn—i—l)—l—m—(j'—l)n— 5

or
/

. k .
(]—1)n—§:mn+1+(j'—1)n+§.

Ifz—(j—1)n—451 = —(mn+1)+2— (' = 1)n— 551, then mn+(j' = j)n = E=£=2.

Since the left-hand side of the equation is a multiple of n and the right-hand side of

—1-n
2

the equation is between and ”T’?’, equality holds only when j = 5/ and k = &'

With similar argument, the forth equality holds only when j = j' and k = k’. The

second and the third equalities are impossible.

Secondly, we claim that all edge labels are different and less than 2(mn + 1).
Note that the edge label of the single path is mn + 1. For the i vertex of the
single path, let e; ; be the label of the k' edge in the j" leg, where i = 1,2,
j=1,2,....,m,and kK =1,2,...,n. Then

€11 = 151 =2mn+1—(j = 1)n,
erik = ok — avge-nl =7 =20 —n — (k= 1), if k # 1,

€241 = MnN + 1-— Q21 = 1+ (] — 1)7’L,

and
e?,j,k = |a2,j,k — a2,j,(k71)| == k + 2(] — 1)n, lfk 7£ ]_

Clearly, all e; ;x’s are less than 2mn + 1. The remaining is to check that all e; ;s

are different and not equal to mn + 1.
If e; j = ey jo i, then a routine work finds ¢ =4, 7 = 7' and k = k'
If some e; ;, = mn + 1, then
2mn+1—(j —1)n=mn+ 1,
x—2(j—1)n—k—-1=mn+1,

1+ (j—1)n=mn+1,

or

k+2(j—1)n=mn+ 1.

2mn +1— (j — 1)n = mn + 1 implies j = m + 1 contradicting to the fact j < m.
Neither of the other three equalities hold.
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Finally, the label of any vertex with even distance to the first vertex of the

single path is either (j — 1)n+ £ for even k, or %1 — (j — 1)n — &L for odd k. In

any case, it is less than mn + 1. Hence, we complete this proof. U

Using Lemma 6.2.1 and Lemma 6.2.2, we shall prove that regular n—caterpillars

have graceful labellings.

Theorem 6.2.3 (r,m,n)-Caterpillars have graceful labellings. In particular, if r
s even, then the label of each vertex with even distance to the first vertex of the

single path is less than Z(mn + 1).

Proof. For any (r,m,n)—caterpillar, we use induction on r to verify the re-
sult. For r = 1,2, by Lemma 6.2.1 and Lemma 6.2.2, (1, m,n)—caterpillars and
(2, m, n)—caterpillars have a graceful labelling. Assume that any (i, m, n)—caterpillar,

1 < i < r, always has a graceful labelling and the label of any vertex with even

distance to the first vertex u of the single path is less than %(mn + 1) for even i.

Consider the (r 4+ 1,m, n)—caterpillar.
Case 1: r + 1 is odd and let it be 2t + 1. By step 2 of algorithm A,, it is formed
by a labelled (2¢,m,n)—caterpillar C; and a labelled (1, m,n)—caterpillar Cy. We
first claim that step 2 of algorithm A, forms a set {0,1,2, ..., (2t + 1)(mn+1) — 1}

of vertex labels for a (2t 4+ 1, m, n)—caterpillar.

For a labelled (2¢, m, n)—caterpillar, the set of vertex labels is {0, 1, ..., 2¢(mn+
1) — 1} and the label of any vertex with even distance to u is less than t(mn + 1).
After adding mn + 1 to the label of any vertex with odd distance to u, the set of
new vertex labels is {0,1,...,¢(mn+ 1) = 1} U{(t + 1)(mn+ 1), (t+ 1)(mn+1) +
L., (2t+1)(mn+1)—1}.

For a labelled (1, m,n)—caterpillar, the set of vertex labels is {0, 1,..., mn}.
After adding ¢(mn + 1) to all vertex labels, the set of new vertex labels is {¢(mn +
1),t(mn+1)+1,..,(t+1)(mn+ 1) — 1}. Combing these two sets of vertex labels
yields a set {0,1,...,(2t + 1)(mn + 1) — 1} which is the set of vertex labels for a
given (2t 4+ 1, m, n)—caterpillar.

Secondly, we claim that the set of edge labels is [(2¢ + 1)(mn + 1) — 1]. Since

(', has a graceful labelling whose label of vertex with even distance to u is less than
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t(mn + 1), adding mn + 1 to the label of any vertex with odd distance to u yields
a set of edge labels {(mn +1)+1,(mn+1)+2,...,(mn +1) 4+ 2t(mn + 1) — 1},
denoted by S;. Since Cj has a graceful labelling, adding ¢(mn + 1) to each vertex
label never change the set of edge labels {1,2,...,mn}, denoted by S,. Note that
the new label of the last vertex of the single path in C; is (¢ + 1)(mn + 1) and the
new label of the only vertex of the single path in C; is t(mn + 1). Hence, the label
of edge adjacent to the last vertex of the single path in C'; and the first vertex of
the single path in C5 is mn + 1. That is to say the set of edge labels in the given
(2t + 1, m, n)—caterpillar is S; U Sy U {mn + 1} which is [(2t + 1)(mn + 1) — 1].

Case 2: r 4+ 1 is even and let it be 2¢. By similar argument as case 1, a
(2t 4+ 2, m, n)—caterpillar has a graceful labelling. The remaining is to prove that
the label of any vertex with even distance to the vertex labelled 0 is less than
(t+1)(mn+1). Assume that a (2, m, n)—caterpillar C; and a (2, m, n)—caterpillar
Cy can form a (2t + 2, m, n)—caterpillar. In Cy, by inductive hypothesis, the label
of any vertex with even distance to the vertex labelled 0 is less than t(mn + 1),
so does its new label. In Cs, the label of any vertex is less than mn + 1. After
adding t(mn + 1), the new label of vertex is less than (¢ + 1)(mn + 1). Hence, for a
(2t 4+ 2, m,n)—caterpillar, the label of any vertex with even distance to the vertex

labelled 0 is less than (¢ + 1)(mn + 1) and the proof follows. 0

In fact, algorithm A, can be simplified as follows:
Algorithm A) : Labelling of (r,m,n)—caterpillars.
Let T be the (r,m,n)—caterpillar.

1. Assign x; to the i'" vertex of the single path, where

Sl(mn + 1), ifiis odd,
T; =
(r—=%)(mn+1), ifiis even.

2
1
2

2. Let . = r(mn + 1) — 1. For the first vertex of the single path, orderly assign
arjx to the k™ vertex of the j¥ leg for j = 1,2,...,m, and k = 1,2,...,n,

where
I x—(j—l)n—%, if £ is odd,
Lk = , I
! (j—Dn+5% ifkis even.

For the " vertex of the single path, orderly assign a; jr to the k™ vertex of
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the j leg for i = 2,3,...,7, 7 =1,2,....,m, and k = 1,2, ..., n, where

—x; + Qa1,5.ks if k is Odd,
Qijk =

T + a1, ifkis even.

Figure 6.7 is an an example of a graceful labelling of the (4, 3, 3)—caterpillar
by algorithm Aj.

0 30 10
39 33
36
1 4 7
38 35 32
0 30 10 20
39 33 9g6 3 29 23 19 13
36 26 16
1 4 7 314 34 37 114 14 17 214 24 27
38 35 32 8 5 2 28 25 22 18 15 12

Figure 6.7: A graceful labelling of the (4, 3, 3)—caterpillar by algorithm Aj.

20

6.3 n—Partitions with Parameter k

In this section we wish to generalize the result of Lemma 6.1.3 to n—caterpillars.

For this purpose, we first study some results in partitioning [kn].

Definition 6.3.1 {X;}%_, is an n—partition with parameter k if

xij:{ (k+1—i)n—13%, ifjis odd,

(i—Dn+12, ifjis even,

where X; = {2 }j_, fori=1,2,.. k.

Example 6.3.2 Set X, = {15,1,14,2,13}, X, = {10,6,9,7,8}, and
X3 ={5,11,4,12,3}. Then { X1, Xo, X3} is a 5-star partition with parameter 3.
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The following are three n—star partitions with parameter k obtained from three

n—star partitions with parameter k + 1, respectively.

Let {X; fill be an n—star partition with parameter k + 1.

T(iv1)i, if 7is odd
1. Fori=1,2,...k, set y;; = (+1)s . ] .
T(iy1); — N, if jis even.

2. Assume that n is even. For i =1,2,....,k and j = 1,2, ..., n, we set
n
Ty = T(it1); — bR and
Zij :ﬁlfigj, where f; :k—l—l—iandgj =n—+1-—j.

3. Assume that n is odd. Fori=1,2,....,k and 7 = 1,2, ...,n, we set

, n+1
:EZJ = z('iJFl)j - 2 ’

xy; = (kn+1) — xj;, and

wij = 2y, , where fi=k+1—iand gj=n+1-j.
By algebraic calculation, we easily obtain the following result.

Lemma 6.3.3 Fori=1,2,...k, let Y; = {yi;}7_,, Zi = {25}, and
Wi = {wi;}i.

1. Forn € N,
(k+1—dn— 151, ifjis odd,
Yij = :
Y (i —1)n+12L, ifjis even,

i.e., {Y;}E_| is an n—star partition with parameter k.

2. For even n,
(k+1—in— 215, if j is odd,
! (i—1)n+3, ifjis even,

i.e., {Z;}5_| is an n—star partition with parameter k.
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3. For odd n,
(k+1—in— L5, ifjis odd,
! (i—1)n+12%, ifjis even,

i.e., {W;}r_, is an n—star partition with parameter k.

Example 6.3.4 Using Lemma 6.3.3-1, we shall yield a 6-star partition with pa-

rameter 4 obtained from a 6-star partition with parameter 5 as following.

X; 30 1 29 2 28 3

Xy 24 7 23 8 22 9 Y1 24 1 23 2 22 3
X3 18 13 17 14 16 15 = Y, 18 7 17 8 16 9
Xg 12 19 11 20 10 21 Y; 12 13 11 14 10 15

Xs 6 25 5 26 4 27 Yo 6 19 5 20 4 21

Example 6.3.5 Using Lemma 6.5.3-2, we shall yield a j-star partition with pa-

rameter 4 obtained from a 4-star partition with parameter 5 as following.

X, 20 1 19 2

Xo 16 5 15 6 14 3 13 4 Zy 16 1 15 2
X3 12 9 11 10 = 10 7 9 8 = Zy, 12 5 11 6
Xy 8 13 7 14 6 11 5 12 Z3 8 9 7 10
X5 4 17 3 18 2 15 1 16 Zy 4 13 3 14

Example 6.3.6 Using Lemma 6.3.3-3, we shall yield a 3-star partition with pa-

rameter 4 obtained from a 3-star partition with parameter 5 as following.

X, 15 1 14

X, 12 4 11 10 2 9 2 10 3 w, 12 1 11
X; 9 7 8 = 7 5 6 = 5 7 6 = W 8
X, 6 10 5 4 8 3 8 4 9 Wi 5
X; 3 13 2 1 11 0 11 1 12 W, 3 10 2

To prove the Proposition 6.3.11, we need the following results.

Lemma 6.3.7 Let

Fl={z—y|l:z,y>m,a+y=2(k+1)m+1},
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F={lr—y|:z,y >m,z+y=2(k+1)m, x,y =i (mod 2m), i # 0,m},
F'={lz—y|l:2,y >0, 2 +y=2km+1}, and
F ={lzx—y|:2,y >0, z+y=2km, z,y =i (mod 2m), i # 0, m}.
Then F| = F{' and F = F'.

Proof. For i = 1,2, if we correspond z',y' satisfying conditions in F] to z",y"
satisfying conditions in F', respectively, such that z” = 2’ — m and y" = ¢’ — m,

then we complete the proof. tl

Lemma 6.3.8 Let
Fl ={|lz—y|: z,y > m—1, 24y = (k+1)(2m—1)+1, z,y =i (mod 2m—1), i # m},
Fo=A{lz—y|:z,y>m—-1z+y = (k+1)2m—1), z,y =i (mod 2m—1), i # 0},
F'={lz—y|:z,y>0,x+y=k2m —1)+ 1}, z,y =i (mod 2m — 1), i # m},
and

F ={z—yl:z,y>0,z+y=k2m —1), 2,y =i (mod 2m — 1), i # 0}.

Then F| = Fy and F = FY.

Proof. If we correspond z’, 4y’ satisfying conditions in F to z”, 4" satisfying con-
ditions in FJ such that z” = 2’ — m and y” = 3y’ — m, then we have F| = F). If
we correspond z’, 1y’ satisfying conditions in F}j to 2", y" satisfying conditions in F}’,

such that 2" =2’ —m + 1 and y" =y — m + 1, then we have F) = F}'. O

Example 6.3.9 Form =3 and k = 2,

Fl = {lz—y|:z,y>3,2+y=19}
= {|4—15|,|5— 14,16 — 13|, |7 — 12|, |8 — 11/, ]9 — 10|}
= {11,9,7,5,3,1};

Fy = {lx—y|:z,y>3, 2+y=18, 2,y =1,2,4,5 (mod 6)}
= {|4—14],|5 13|, |7 — 11],|8 — 10[}
= {10,8,4,2};
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"
Fl

"
F2

{lt =y|:2z,y >0, x+y =13}
{]1—12|,|2-11],[3—10|,|4—9|,|5— 8,6 — 7|}
{11,9,7,5,3,1};

{le—yl:2,y>0, z+y =12, 2,y =1,2,4,5 (mod 6)}
{|1 —11],]2—10[,]4 — 8], [5— 7|}

{10,8,4,2}.

Example 6.3.10 For m =3 and k = 2,

Fy

"
Fl

"
F2

Now we shall show our main result Proposition 6.3.11 below which is a gen-
eralization of Lemma 6.1.3. To this end, we need an algorithm to yield graceful

labellings of n—caterpillars in T,,. Recall that T,, is the set of n—caterpillars which

{lo =yl 2,y >2, 2 4+y=16, 2,y =0,1,2,4 (mod 5)}
(14— 12,5 —11[,]6 — 10[,|7 — 9|}

{8,6,4,2};

{le =yl 2,y >2, 2 +y =15, 2,y =1,2,3,4 (mod 5)}
{|I3—12],|4 —11|,16 — 9], |7 — 8|}

{9,7,3,1};

{le —yl:2,y>0, 2+y=11, 2,y =0,1,2,4 (mod 5)}
{I1 =10}, 12 —9|,[4 = 7[,[5 - 6[}

{9,7,3,1};

{le —=y|:z,y >0, x+y =10, z,y =1,2,3,4 (mod 5)}
{l1—9.12-8|,[3—7[,[4—-6[}

{8,6,4,2}.

have a single path with length divisible by n.
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Algorithm A;: Labellings of n—caterpillars in T, .
Assume that T' € T, has kn + 1 vertices. Let {X;}¥ | be an n—star partition with
parameter k and X; = {zy;}7_,, i.e.,

X kn 1 (kn —1) 2

Xy (k—1)n (1+n) (k—1)n—1 2+n

Xk n 1+ (k—1)n n—1 2+ (k—1)n

1. Partition T into a union of n—stars such that each (ni + 1)* vertex (except
the first one) of the single path is the last leaf of an n—star and the root of

next n—star.
2. Assign 0 to the first vertex of the single path.

3. In (2j +1)% n-star for j > 0, choose a unlabelled leg from the left to the right
and label vertices of the leg with the numbers z;, x;9, ..., z;, in X; where 7 is

the unused minimum in [k].

4. In (27)™ n-star for 5 > 1, choose a unlabelled leg from the left to the right
and label vertices of the leg with the numbers ;,, Tjpn—1), ..., 71 in X; where

i is the unused maximum in [k].

Figure 6.8 is an illustration of algorithm As.
Now we prove our main result as follows:

Proposition 6.3.11 Let T € T,. If the single path of T has no legs except in the
ni + 1°¢ vertex, then algorithm As yields a graceful labelling of T and the first vertex
label of the single path is 0.

Proof. There are two cases to be discussed.

Case 1: n = 2m. Assume that T has 2mk + 1 vertices and each vertex except the
2mi + 1% vertex of the single path of T has no legs. Algorithm Aj clearly shows that
all vertex labels of T are different and the set of vertex labels is {0, 1,2, ...,2mk}.
It suffices to prove that the set of edge labels on T is [2km).

We use induction on k. For £ = 1, no matter 7" has no leg or only one leg , it is

a Py, .1 which has a graceful labelling 0, 2m, 1, ..., m + 1, m on its vertices in order.
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X, 40 139 2 38 3 37 4
X, 32 9 311030 1129 12
X, 2417 23 18 22 19 2120
X, 16 25 15 26 14 27 13 28
X, 8 33 7346 355 36

0 X2—> 12 <—X3
X 32 9 31 10 30 11 29 20 21 19 22 18 23 17 24
L ¢ 40
\L 1
39
2
38
3
37 /! \
4 Xs 48 16 X,

Figure 6.8: An illustration for algorithm Aj .

Suppose that for any T' € Ty,,, if T" has 2mk+1 vertices and each vertex except
the 2mi + 1 vertex of the single path has no legs, then T has a graceful labelling
by algorithm Aj.

Consider a T' € Ty, with 2m(k + 1) + 1 vertices, where each vertex except the
2mi + 1 vertex of the single path has no legs.
Subcase 1.1: The first vertex of the single path in 7" has no legs. Use algorithm
Aj to label vertices of T" and partition T into two parts P, and T}, where Py, 1
is a labelled path with vertex labels {0,2(k+1)m,1,2(k+1)m —1,...,2(k+1)m —
m+1,m} and Ty is a labelled 2m—caterpillar with 2mk + 1 vertices. If we replace
each vertex label s with s — m in 7T} and rename it as 75, then the set of vertex
labels in Ty corresponds to {Z;}¥_ | the 2m—star partition with parameter k. By
Lemma 6.3.3-2, the vertices of T5 are labelled by algorithm As. Since 75 has 2km+1
vertices and is labelled by algorithm Aj, by inductive hypothesis, T, has a graceful
labelling with the set of edge labels [2mk], i.e., the set of edge labels in T} is [2mk].
Since the set of edge labels in Py, 11 is {2m(k+1),2m(k+1) — 1,....2mk + 1}, we
conclude that the set of edge labels in T" is [2m(k + 1)]. Note that the first vertex
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label of the single path is 0. Figure 6.9-(a) is an example for m = 4 and k = 4.

Subcase 1.2: The first vertex of the single path in T has at least one leg. Use
algorithm Aj to label vertices of T" and partition 7" into two parts P, 1 and 17,
where Py,,1q is a labelled path with vertex labels {0,2(k + 1)m,1,2(k + 1)m —
L,...,2(k +1)m —m + 1,m} and T} is a labelled 2m—caterpillar with 2km + 1

vertices. Figure 6.9-(b) is an example for m = 2 and k = 2.

It suffices to prove that the set of edge labels in T} is [2mk]. We first replace
the vertex label s of the vertex u in 7} with s — 2m, where u is an even vertex
of legs in 2i + 1" 2m-star or an odd vertex of legs in 2i + 2"¢ 2m-star. Then we
obtain a new 2m—caterpillar T3 in T,,, whose set of vertex labels corresponds to
{Yi}¥_|. By Lemma 6.3.3-1, T is labelled by algorithm Ajz. Since T, has 2km + 1
vertices and is labelled by algorithm Aj, by inductive hypothesis, T, has a graceful
labelling, i.e., the set of edge labels in T3 is [2km]. The remaining is to prove that
the set of edge labels in T} is equal to that in T5.

In TQ, let

S = {s: sis the i"" edge label of some leg in some 2m — star}

2m

for i =1,2,...,2m, then the set of edge labels in T3 is [2km] = U S!. In fact,
i=1
USé'i ={lz—yl:z,y>0,z+y=2km+1}, and
i=1

USé'i_l =STU{lzr—y|l:z,y >0, 2 +y=2km, z,y =i (mod 2m), i # 0, m}.
i=1

In T17 let

S = {s: sis the i" edge label of some leg in some 2m — star}

2m
for i =1,2,...,2m, then the set of edge labels in T} is U Si. In fact,
i=1

Uséi:{|x_y|3$ay>m, r+y=2(k+1)m+1}, and

=1

US;i_l =S U{|lz—y|l:z,y >mx+y=2k+1)m,z,y = i(mod 2m),i # 0,m}.
i=1
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Note that S| = S7.

By Lemma 6.3.7,

m

Ush=F=F =[] and
=1

=1

m m

/ _ ! __ " __ 1
US2z>1 =k =F= U52z>1-
i=2 i=2

2m 2m
Since S} = Sy, we obtain U Sl = U S = [2km).

i=1 i=1
Case 2: n =2m — 1. Assume that 7 has (2m — 1)k + 1 vertices and each vertex
except the (2m — 1)i + 1* vertex of the single path of T has no legs. Algorithm A;
clearly shows that all vertex labels of T" are different and the set of vertex labels
is {0,1,2,...,(2m — 1)k}. Tt suffices to prove that the set of edge labels on T is

[(2m — 1)&].

We use induction on k. For k£ = 1, no matter 7T has no leg or only one leg , it
is a Py, which has a graceful labelling 0,2m — 1,1,...,m — 1, m on its vertices in

order.

Suppose that for any T" € Ty,,_q, if T has (2m — 1)k + 1 vertices and each
vertex except the (2m — 1)i 4+ 1°* vertex of the single path has no legs, then T has
a graceful labelling by algorithm Aj.

Consider a T € Typ,—q with (2m — 1)(k + 1) + 1 vertices, where each vertex
except the (2m — 1)i 4 1°* vertex of the single path has no legs.
Subcase 2.1: The first vertex of the single path in 7" has no legs. The proof is
analogous to that in Subcase 1.1. In this subcase we use Lemma 6.3.3-3 instead of
Lemma 6.3.3-2. Figure 6.9-(c) is an example for m = 2 and k = 3.
Subcase 2.2: The first vertex of the single path in 7" has at least one leg. The
proof is is analogous to that in Subcase 1.2. In this subcase we use Lemma 6.3.8
instead of Lemma 6.3.7. Figure 6.9-(d) is an example for m = 2 and k£ = 3. Hence

we complete the proof. U
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(d)

Figure 6.9: An illustration for the proof of Proposition 6.3.11 .
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6.4 Latin Squares and Graceful Labellings of 2"—Caterpillars

In this section we wish to study graceful labellings of 2" —caterpillars using Latin

squares. First, we offer some results derived from Latin squares.

Recall that a Latin square is an n X n array such that each element in [n]

appears exactly one time in each row and each column.

Definition 6.4.1 A graceful Latin square of order n is a Latin square such that
the set of absolute value between the number and its neighbor in each column is
[n — 1]. A Latin square of order n on {yi,ya, ..., Yn} s a square such that each
element in {y1, Yz, ..., Yn} appears exactly one time in each column and each row.
A graceful Latin square of order n on {y1,yz,...,Yn} is a Latin square of order n
on {y1, Y2, .., Yn} such that the set of absolute value between the number and its

neighbor in each column is {v,v—1,...,v—n+2}, where v = max{|y; —y;| : i # j}.

Example 6.4.2 Let

4111382
1 213
A= i and
312\ 4|1
213|1)|4
12 3 11| 4
3112 11
B = 4 i
11| 4 12| 38
4 11] 3|12

Then A is a graceful Latin square of order 4 and B is a graceful square of order J
on {3,4,11,12}.

We mention an interesting result which will be used to prove Theorem 6.4.4.

The proof is obvious.

Lemma 6.4.3 1. Let {z;}2, and {y;}2-, be two sequences where

{ on — (i —1)/2, ifiis odd,
T, =

i/2, otherwise,
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and

Yi = Xony14 for 1 =1,2,...,2".
Then |z; — y;| = 2" L.
2. Let {u;}?", and {v;}?", be two sequences where

{ x; + 2", if i s odd,
U; =

x;, otherwise,

and
vi =y + 2" for i=1,2,...,2"

Then |u; — v;| = 2" fori=1,2,...,2™.

Theorem 6.4.4 There exists a symmetric graceful Latin square of order 2" for

n € N.

Proof. We use induction to construct this symmetric graceful Latin square of or-
der 2" for n € N. Let Ay = (aE?) be a Latin square of order 2 with aﬁ) = a%) =2

and ag) = agﬁ) = 1. It has the following three properties:

1. The sequence {2,1} simultaneously appears in the first row and the first

column.

2. ag-) > a?), if i+ j is even and [+ m is odd.

Im

3. It is a symmetric graceful Latin square.

Assume that Agn = (agn)) is a Latin square of order 2" satisfying the following
three properties:
P1. The sequence {z;}?_, defined in Lemma 6.4.3 simultaneously appears in the
first row and the first column.
P2. ag-n) > aﬁ:), if i + 7 is even and [ + m is odd.

P3. Ay. is a symmetric graceful Latin square.

Now we construct a graceful Latin square of order 2"*! as follows:

96



Let Bon = (bg-n)) , where bz(-?-n) = {

ag-n), if 7 + 7 is odd,
az(?n) + 2", otherwise,

ford,j =1,2, .., 2"

Let Cyn = (cﬁ”) , where cz(?n) = agn) +2" " fori,j =1,2,...,2"

Put A2n+1 — (az(?n+l)) _ Bgn 02n ‘
C’Q" B2n

Under such construction, we obtain the following results:

1.

2.

The squares By» and Cy» are symmetric.

bﬁ"’ > bl(f:) and cgn) > C(Qn), if i + 7 is even and [ + m is odd.

im

. The sequence {2"! 1,271 — 1 2 . 27=1 41 427 27~1} simultaneously ap-

pears in the first row and the first column of Byn. The sequence {z; +2"~'}2",

simultaneously appears in the first row and the first column of Csn.

The set of numbers in each row and each column of Bgn is
{1,2,..,2" L " P 1) 427 (2" P4 2) + 27, .., 2" + 27),
and the set of numbers in each row and each column of Cy. is

{1427t 24207t 2n 4 onml),

The set of absolute value between the number and its neighbor in each row

and each column of the square Bsy» is
{1+2"2+2" ..., (2" = 1)+ 2"},

and the set of absolute value between the number and its neighbor in each

row and each column of the square Csy. is

{1,2,...,2" — 1}.
|bgz) - an)| == |b§;,:) - an)| = |u2"—i—|—1 — ’l)2n_i_|_1| = 2" for 1 = ]_, 2, ceey 2" by
Lemma 6.4.3-2.

Similarly, |bgn) — cg:)| = |bgn) — cgm = |u; —v;| = 2" fori =1,2,...,2" by

Lemma 6.4.3-2 .
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It is a routine work to check that Asn+1 satisfies three properties similar to P1,
P2, and P3. Firstly, result 3 implies that the sequence {3:1}1221 simultaneously
appears in the first row and the first column of square A,.+1 which satisfies property
(2n+1) (2n+1)
ij >y,

which satisfies property P2. Thirdly, we claim that As.+:1 satisfies property P3.

P1. Secondly, result 2 implies that a ,if i+ j is even and [+ m is odd
Result 1 implies that Agn+1 is symmetric. Result 4 implies that the set of numbers
in each row and each column of the square Agni1 is [2"TY], ie., Agnt1 is a Latin
square. Results 5 and 6 imply that the set of absolute value between the number
and its neighbor in each row and each column of the square Agn+1 is [2"7! —1]. These
results verify that Agn+1 is a symmetric graceful Latin square. Hence we complete

the proof. U

Example 6.4.5 The following is a construction of symmetric graceful Latin square

of order 8 from a symmetric graceful Latin square of order 4. Let

411132
1 2138
Ay = 4 .
31241
21314

As the construction in the proof of Theorem 6.4.4, we obtain

8l1|7|2 63|54
Bl L8127 o [316]4]5]
72| 8] 1 504163
2170118 /15|36
Hence

sl1|72|6|3|5|4
1182|736 4|5
71218115463
A8:<B4C4):27184536
Ci By 613|548 1]7]|2
316451827

5041613 7|2]8]1
J15|86l2|7|1]8

Clearly, Ag is a symmetric graceful Latin square.
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Using Theorem 6.4.4, we obtain the following important result which will be

used to prove Theorem 6.4.9.

Corollary 6.4.6 Let {X;}t | be the 2"—star partition with parameter k. Then

there exists a symmetric graceful Latin square of order 2" on X; fori1=1,2,..., k.

Proof. Let X; = {z;}2, for i = 1,2, ..., k. Then {w;, x;3, ..., zi2n_1)} Is a arith-
metic sequence with the common difference -1 and {z;o, x4, ...,xi@n)} is an arith-
metic sequence with the common difference 1. We first claim that either z;; < x;9
Or Tjgn_1) > Tj(an), 1.e., either x;; < x; for odd j and even ¢, or z;; > xy for odd j
and even t. As before, z;; = (k—i+1)2" and z; = (i — 1)2" + 1.

Case 1: z;; < x;5. It is nothing to show.

Case 2: z;; > z;5. We obtain (k — 2i +2)2" > 1. This implies k — 2i +2 > 1, i.e,,
k—2i+12>0, Then

Tizron) ~ Tier) = (21 =2 4+ 1) = (1242771 = 1)
= ((k—i+1)2"=2" "+ 1) = (G —1)2"+ 142" 1 —1)
= (k=2i+1)2"+1>1>0.

Therefore zion_1) > Tj(2n).

By Theorem 6.4.4, there is a symmetric graceful Latin square of order 2" with
@) o M)
i Im

replace {1,2, ..., 2" '} with {z;1, 23, ...w;2n _1) } and replace {27 1+1,2" 142, .., 2"}

with {x;9, 4, ...xi@n)}, then we obtain a symmetric graceful Latin square of order

the property: a , if i+7 is even and [4+m is odd. In the case x;; < x;9, if we

2" on X; for i = 1,2,..., k. Similarly, when x;; > x5, there exists a symmetric

graceful Latin square of order 2" on X, for v =1,2,..., k. U
By suitable permutations of rows and columns, we shall obtain the following

result.

Corollary 6.4.7 Let z € X; for i = 1,2,....k. Then there exists a symmetric
graceful Latin square of order 2™ on X; such that z appears in the first row and the

first column.
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Example 6.4.8 Let Ag be the symmetric Latin square of order 8 obtained from Eix-
ample 6.4.5. Let {X;}_, be the 8-star partition with parameter 5. If we correspond
8,1,7,2,6,3,5, 4 to 36,5,35,6,34,7,33, 8, respectively, then there exists a symmetric

graceful Latin square of order 8 on X5 as follows:

6| 5185|684 7|33] 8
5186 635 6|34] 8|33
35| 6|36 5|33 8|84 7
6|35 5|36 8|33 7|34
341 71353 8136 5|35 6|
713/ 8133|5356 6|35
33| 8184 71385 6|36]| 5
81831 7134| 6|35| 5|36

Now we are in position to prove that 2"-caterpillars have graceful labellings
(Theorem 6.4.9 below).

For this purpose, we first provide an algorithm to yield graceful labellings of
2"—caterpillars. The main technique is to deal with 2"-caterpillars which have a

single path with length divisible by 2.
Algorithm A;: Labellings of 2" —caterpillars.

Let T be a 2"-caterpillar.

1. Assume that T € T9» has k2™ + 1 vertices.

(a) Remove all legs of the (2" + ;)% vertices of the single path to be incident
to the ((i +1)2" 4+ 1)*" vertex of the single path for i > 0,2 < j < 2",

(b) Use algorithm Aj to label the new 2"—caterpillar.
2. Assume that T' ¢ Ton has k2" + j vertices for j € {2,3,...,2"}.

(a) Remove all legs incident to the first j — 1 vertices of the single path to

the 7 vertex.

(b) Let the first j —1 vertices be uy, ug, ..., uj_1. Label uj_1,u;_o, ..., u; with

the numbers a, as, ..., a;_1,
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k2" + (i +1)/2, ifiis odd
where a; =
—i/2, otherwise.

(c¢) Apply step 1 to label the remaining 2" —caterpillar.

(d) Replace each vertex label s with

s — min{z|x is a label of some u; andz < 0}.

3. Restore each removed leg and relabel its vertices according to the following

rules: Let xgi), xéi), vy xéﬁ? be the vertex labels of the leg before restoring for

some i € [k].

(a) Using the construction of Theorem 6.4.4 and Corollary 6.4.6, we shall ob-
(1) (%)

tain a graceful Latin square L on {z;1, Z;2, ..., T;jon } such that 277, x5, ..., 2o

simultaneously appears in the first column and the first row.

(b) If a leg is removed m places for m = 1,2,....2" — 1, then we orderly
relabel vertices of this leg with the numbers in m column of L after

restoring.

Figure 6.10 is an example of labelling an 8-caterpillar in Tg. Figure 6.11 is an

example of labelling an 8-caterpillar not in Ts.

Theorem 6.4.9 Fvery 2"-caterpillar has a graceful labelling.

Proof. Let T be a 2"—caterpillar with k2™ + 1 vertices. There are two cases to
be considered.

Case 1: Assume that 7" is in Ty-. Step 1 — (a) of algorithm A, makes T be a new
T’ such that each vertex of the single path has no legs except in the 2"i + 1 vertex
for i > 0. By Lemma 6.3.11, 7" has a graceful labelling and the first vertex label
of the single path is 0. The remaining is to prove that after restoring each removed
leg, T still has a graceful labelling. There are two subcases to be considered:
Subcase 1.1: The vertex labels of the leg before being removed are 1, T;, ..., Zjon)
and the vertex labels of the last leg in the previous 2" —star are o), Tj2n—_1), ..., Tj1

for some 4, j € [k] and j > i. By our construction of algorithm A4, we have

|zin — x| = |@im — xjm| for m € [2"].
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34| 7133 836/ 5 35

33| 8|34|7 [35| 6 [36] 5

0 32 9 3110 30 11 29 12 20 21 19 22 18 23 17 24

40¢ 84 336 74 346 64 356 54é 36 w28

14 33¢ 84 346 74 356 64 364 5 13

39¢4 74344 84 334 54 36 6435 27

2934479433 8¢ 364 5¢ 350 6 14

38¢9 6 4356 5 ¢ 366 8¢ 33¢ 7 ¢34 26

3¢ 356 64364 56336 8¢ 34 7 15

37¢ 54364 64356 74344 8433 25

443665435 6¢ 34 74é 33 8 16
<—

Figure 6.10: A graceful labelling of an 8—caterpillar in Tg.

Moreover, in step 3 of algorithm Ay, the set {ey, €3, ...ean } of edge labels of a given
leg Pyn before restoring is equal to the set {e;,, €, ..., €;,, } of edge labels of the leg
after restoring, since it is constructed by Theorem 6.4.4 and Corollary 6.4.6. Note
that |z;; — x;1| is the edge label between the vertex in the single path and the first
vertex of the leg before restoring; |z, — x| is the edge label between the vertex
in the single path and the first vertex of the leg after restoring m places. By the
above facts, we obtain that the set of edge labels never changes after restoring each
removed leg. Figure 6.12 is an illustration for this case.

Subcase 1.2: The vertex labels of the leg before being removed are z;n, T;2n_1), ...,
x;1 and the vertex labels of the last leg in the previous 2" —star are 1, 9, ..., Tj(2n)
for some i,j € [k] and i > j. By our construction of algorithm A, we have
|Ti2n) — Tj2m)| = |Tim — Tjm| for m € [2"]. Moreover, in step 3 of algorithm Ay, the
set {eg, €3, ..., e9n } of edge labels of a given leg Py before restoring is equal to the
set {ei,, €y, ..., €i,, } Of edge labels of the leg after restoring, since it is constructed
by Theorem 6.4.4 and Corollary 6.4.6. Note that |z;on) — j(2n)| is the edge label
between the vertex in the the single path and the first vertex of the leg before

restoring; |%;m — Zm| is the edge label between the vertex in the the single path and
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Figure 6.11: A graceful labelling of an 8—caterpillar not in Tg.
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the first vertex of the leg after restoring m places. By the above facts, we obtain

that the set of edge labels never changes after restoring.

Case 2: Assume that 7' ¢ Ton. The step 2 of algorithm A, makes T—{u, ug, ..., uj_1}
to be a new 7" € Ty.. By case 1, T" has a graceful labelling and the first vertex
label of the single path is 0. The step 2 — (b) of algorithm A, makes the set of the
other edge labels to be {k2"+1, k2" +2, ..., k2" 4+ j — 1}; hence the set of edge labels
of T is [k2" + j — 1]. The step 2 — (d) of algorithm A4 ensures that the set of vertex
labels is {0, 1,2, ..., k2" + j — 1} and never changes the set of edge labels. That is
to say that the step 2 of algorithm A, yields a graceful labelling of 7. Hence we

complete the proof. H
X, X, X X O o
) )
el €; "
2 2
e €
3 3

I, ‘\ 7 Y
I/ “\ I/ \\\
/ \ ez” / \ €ipn

Figure 6.12: An illustration for the proof of Theorem 6.4.9.

Remark. Algorithm A, seems to suggest that decomposing any n—caterpillar to
a union of n—stars may yield a graceful labelling. Unfortunately, similar method
to algorithm A, doesn’t work for some 3—caterpillars (see Figure 6.13). Hence,
the question we raise here is to modify algorithm A, so that it works for any

n—caterpillar.

Figure 6.13: An example of remark.
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