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Chapter 1

On J,,—Hadamard Matrices

An h x h matrix H € My, ({#1}) is an Hadamard matriz if HH" = hl;,, where
I}, is the unit h x h matrix. It is well known that h = 2 or h = 4¢, for some ¢t € N.
An important problem is to construct other Hadamard matrices from a given one.
As it is clear, one gets equivalent Hadamard matrices from the given one by either
permuting rows or columns and by multiplying any row or column by -1; for general
properties and results on Hadamard matrices, we refer to [26] and [59]. A recent
construction by Marrero [46] allows us to yield three other Hadamard matrices from
a given one. The construction goes as follows: Let H be any 2t x 2t Hadamard

matrix. By using the above row and column operations, it is easily seen, that H
can be transformed into the following form:

(0%0) ()= )

where ® is the Kronecker product, J € My, ({1}) and A, B € My, (2—9) ({£1}).

The main result of such construction asserts that we get three Hadamard ma-
J J A
trices by changing A into —A or B into —B. More precisely, ,
J —-J —B
J J —-A J J A
, and are all Hadamard matrices.
J —-J B J —J —-B
The aim of this chapter is to generalize the above construction by replacing

1 1
the Hadamard matrix with a larger size Hadamard matrix M of order



m and by replacing J with a suitably smaller size. The advantage is that it yields

another Hadamard matrix of the form:

H~|MeJ ,

where Ay, Ay, -+ Ay € My (mit—m) ({£1}). Such Hadamard matrix will be called a
Jm-Hadamard matriz (Definition 1.1.1); Marrero’s Hadamard matrix is an example
of a Jo-Hadamard matrix. Note that m is not the order of H but of M; also note
that trivially every Hadamard matrix of order m is a .J,,—Hadamard matrix with
t=1.

In this chapter, we stress that for m = 4, the .J,, construction of an Hadamard
matrix H is not always possible (Examples 1.2.1 and 1.2.2), whereas any Hadamard
matrix is equivalent to a Jo-Hadamard matrix. However, a large class of Hadamard
matrices allows us to create J,,-Hadamard matrices, namely the class of Sylvester-

Hadamard matrices (Theorem 1.1.2).

As a final result, we consider the Kronecker product of an Hadamard matrix of
order k£ and a J,,-Hadamard matrix; surprisingly, we obtain an Hadamard matrix

equivalent to a Jy,,-Hadamard matrix (Theorem 1.1.5).

1.1 J,-Hadamard Matrices

In order to create other Hadamard matrices from a given one, the first step is to

tranform it into a special form as follows:

Definition 1.1.1 Let M be an Hadamard matriz of order m. If H is an mt x mt

Hadamard matriz of the form:

M®.J ,




then H s called a J,,-Hadamard matriz, where J € My, ({1}), A1, Ag,..., Ay €
My (mt—m) ({£1}) and ® is the Kronecker product.

Here we again emphasize that m is not the order of H but of M and it is not
related to the size ¢t of J. The following is the generalization of Marrero’s main

result on Jo-Hadamard matrices [46], p. 284, Proposition:

Theorem 1.1.2 Let H be a J,,-Hadamard matriz defined as in Definition 1.1.1.
Then

By
A By
H=|\MaJ|
B,
s also an Hadamard matrix, where B; = A; or B, = —A; fori=1,2,...,m.
M,
Ms .
Proof. Let M = ‘ , where M, are the row vectors of M for i =
M,
1,2,...,m. Since M is an Hadamard matrix, then
0, ifk #1,
MMT = . 7 (1.1.1)
m, ifk =1

Because H is a J,,-Hadamard matrix, then, by multilinearity of the Kronecker

product, we may write it as follows:

Ay Mi®J | A
Ao Me®J | Ay
H=|MeoJ| =~ |= . |
An Mp®J | An
where every two rows in M; ® J are equal for : =1,2,...,m. In fact,
M,
MioJ=| """
M,
txm
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Rewrite H and H in the row vectors form (./\;ll |Az) and (./\;l1 |Bl) Te-

mitxXmt mitxXmt

A1 Bl

. - . Ay By
spectively, where M,;, A; and B; are the i*" rows of M ® J, ' and .

An B,

respectively, for i = 1,2,...,mt. Note that M, may be equal to Mj even if 7 # j.
The reason is that M, and Mj may be the rows of some M, ® J. Since H is an

. . 0. ifi i
Hadamard matrix, then (M;|A;) (M; | Aj)T = IRt ie.,
mt, ifi=j;
o 0, ifi#j,
MMT + AAT = _ %‘7, (1.1.2)
mt, ifi=j.
. . . . - T T Oa le ?A j?
We claim that H is also an Hadamard matrix; i.e., M;M; +B,8; = .
mt, ifi=j.

For i = j, no matter A; = B; or A; = —B;, it is true that
MM + BB = MME + AAT = i,
For i # j, there are two cases.

Case 1: If M, and Mj are the rows of some M ® J, then M, = Mj = M.

Simultaneously, B; and B; are the rows of Bj. But this time, we get the case:
Bi=A;and B; = Aj or B, = —A; and B; = —A;.

Thus, BiB] = A;AT, in any situation. This implies
MM + BB = MiMj + AA7 =0, by (1.1.2).

Case 2: If M, and Mj are the rows of My ® J and M,; ® J, respectively for k # [.
In this case, M; = M, and Mj = M,. Simultaneously, B; and B; are the rows of
By, and By, respectively. Hence M,MJT = MyM] =0, by (1.1.1). Together with
MiMJT—FAiAJT =0, for 7 # j, we have Ai.A;F = 0. Now, there are four possibilities:

Bi = Az and B]’ = Aj; Bz = Az and B]’ = —Aj;

Bi =—A; and B = A;; B; = —A; and B; = —A;.
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Hence BiB] = +A;,A] = 0. This implies M;M] + B,B] = 0 for i # j. This
completes the proof of the theorem. O

From Theorem 1.1.2, we might create other 2" — 1 Hadamard matrices. More
precisely, there are only other 2™ ! — 1 Hadamard matrices up to equivalence since
By
B,
we may multiply —1 to a given matrix ‘ to get an equivalent J,,-Hadamard

B,
matrix.

The next question is whether there exists a J,,,-Hadamard matrix for m = 4t.
The following theorem and corollary tell us how to produce a J,,-Hadamard matrix
by use of Sylvester’s approach. To this end, let H be a given Hadamard matrix,

the Sylvester-Hadamard matrix induced by H is an Hadamard matrix of the form

(v )

Note that the above Sylvester-Hadamard matrix induced by H is actually equivalent
to a J,,-Hadamard matrix (whose proof of this important fact is similar to that of

the following theorem):

H H 1 1
~|H® H® .
H —-H 1 —1
Theorem 1.1.3 If H is a J,,-Hadamard matriz, then the Sylvester-Hadamard ma-

triz induced by H is equivalent to a J,,-Hadamard matrizx.

Proof. Because H is a J,,-Hadamard matrix, then, by multilinearity of the Kro-

necker product, we may write it as follows:

Ay Mi®J Ay

A, Mo® J As
H=|Mer|? [=| 7 cl

A M, J | A,

12



where M; are the row vectors of M fori=1,2,...,m.

After suitably permuting rows, the Sylvester-Hadamard matrix is equivalent to

Mi@J | A4 MieJ A A MiJ A
Mi@J | Ay -Mi®J A M, ® A MieJ A
Mo®J | Ay Me®J A My ® J Ay My®J Ay
Mo®J | Ay —Mo®J Ay | = ' Ay —Mo®J Ay |,
Mp®J | An Mp®J A, M © ] Apw Mp®J Ay
MpJ | Ay M, @J A, Ay Mo J A,

A J
where J = ( ; ) This is a J,-Hadamard matrix and we complete the proof. [

As indicated above, Sylvester’s approach allows us to yield the following

Corollary 1.1.4 If there is an Hadamard matriz of order m, then we may get a
Sylvester-Hadamard matrixz equivalent to a J,,-Hadamard matriz. This construction
allows us also to yield an Hadamard matrixz which is at the same time equivalent

to a Jyot-Hadamard matriz for aoll t € N. In particular, if we choose the initial
1 1
1 -1
the same time equivalent to a Jot-Hadamard matriz for all t € N.

Hadamard matrix H = ( ) , then there is an Hadamard matriz which is at

Proof. Use the same approach as in the proof of Theorem 1.1.3. tl

As it is well known, the Kronecker product of two Hadamard matrices K of
order k£ and H of order A is also an Hadamard matrix of order kh. As it is expected,

we have the following result for J,,,-Hadamard matrices.

Theorem 1.1.5 If K is an Hadamard matriz of order k and H is a J,,-Hadamard
matriz, then the Kronecker product of K and H is equivalent to a Jy,,-Hadamard

matrix.
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Proof. Let K; be the i row vector of K for i = 1,2,...,k and H be of the form

Ay Ki®(MeJ|A)
A Ky ® (M®.J|A
(M®J|A), where A=| ~° | Then K@H=| ( ‘ [4)
Am K ® (M ®J|A)

After suitably permuting columns,

Kiog(M®J) | Ki® A

Ko@(M®J) | Ko® A

K@H~ =((KeMme |KeA).

Ki@(M®J) | KA

Since K ® M is an Hadamard matrix of order km, then K ® H is equivalent to a

Jrm-Hadamard matrix and the proof is completed. U

1.2 Counterexamples

A normalized Hadamard matriz is an Hadamard matrix with the first row and the
first column having entries all 1. In the following two examples, we make use the
following fact about normalized Hadamard matrices (see [59], Theorem 10.9, p.429):
If H is a normalized Hadamard matrix of order n > 2, then n = 4m for some m.
Moreover, each row (column) except the first has exactly 2m 1s and 2m -1s, and
for any two rows (columns) other than the first, there are exactly m positions in

which both rows (columns) have 1s.
Example 1.2.1 FEvery Hadamard matriz of order 12 is not a Jy-Hadamard matriz.

Proof. Without loss of generality, we may assume that H be a normalized 12 x 12

A

: : : Ay

Hadamard matrix. If H is a Jy-Hadamard matrix, then H = | M ® J p ,
3

Ay

where M is an Hadamard matrix of order 4, J € M3, ({1}) and A; € Ms,s({£1})
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for7 =1, 2, 3, 4. Since every Hadamard matrix of order 4 is easily known to be equiv-

1 -1 1 | A

11 1 1
alent to ! 11 _11 _1 , hence H must be equivalent to the .Js;-Hadamard
1 -1 -1 1
matrix of the form:
1 1 1 1
1 1 1 1 | A
1 1 1 1
1 1 -1 -1
J J J J A 1 1 -1 -1 | A,
ﬁ:JJ—J—JA2:11—1—1
J —-J J —=J A 1 -1 1 -1
J —-J —-J J A 1 -1 1 -1 | A;
1
1
1
1

However, H is not an Hadamard matrix, since there are at least four 1s at the
same positions between the second row and the third row contradicting to the fact
mentioned above: There are exactly % 1s at the same positions in both rows except
the first. Thus H is not a J;-Hadamard matrix. 0

Example 1.2.2 Every Hadamard matriz of order 20 is not a Jy-Hadamard matrix.

Proof. We assume that H be a normalized J,-Hadamard matrix with the form
as in Example 1.2.1 with J € M, ({1}) and A; € Msy16({£1}) for i = 1,2, 3,4.
We will use the same argument as above to derive a contradiction by counting the
number of 1s at the second, the third, the fourth and the fifth row. As before,
we know that there are exactly ten 1s at each row and % 1s at the same position
between any two different rows except the first row. By arranging the 1s as forward

as possible, so H, with the first five rows written down, is of the following form:
( J J J A )
H = . . . . .
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U Sy
e
e
U Sy

Considering the last ten columns, to fill in the ten 1s in the third row, we need five
positions in last ten columns. With the same argument, to fill in the ten 1s in the
fourth row, we need at least four positions in the last ten columns differ from the
positions already taken in the third row. Finally, in the fifth row, we need at least
three positions in the last ten columns differ from the positions already taken in the
third and the fourth rows. This means that we need in total at least 5+4+43=12
positions to fill in the 1s in the last ten columns which is impossible. Therefore we
conclude that every Hadamard matrix of order 20 is not a .Jy;-Hadamard matrix.
H

By the same way as above, all Hadamard matrices of order 24 and 40 are not

Js-Hadamard matrices, and so on. This fact leads to the following questions:

Remarks.

1. As also mentioned in [46], it is well known that every Hadamard matrix is
equivalent to a Jys-Hadamard matrix. Given any Hadamard matrix, is it

equivalent to a .J,,-Hadamard matrix for some m > 47

2. The above Examples 1.2.1 and 1.2.2 show that any Hadamard matrices of
order 12 and 20 are not J,-Hadamard matrix. These examples seem to provide
counterexamples to Question 1, if the following is true: A Jg-Hadamard matrix

is equivalent to a J,-Hadamard matrix.
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