
1 Introduction.

The Theory of Graph coloring has been developed for more than

150 years. More recently, graph coloring was applied to many op-

erations research, design of experiments and computer science. For

example, graph coloring is used in committee-scheduling problem to

model avoidance of conflicts. Similarly, in a university we want to

assign time slots for final examinations so that two courses with a

common student have different slots.

Let X = {x1, x2 . . . , xn} be a set of sources of power supply such

that the work time of any source is one quantum of time and all

sources working for any given quantum of time turn on and turn off

synchronously.

Consider the following general constraints on their common work:

(1)let C = {C1, C2 . . . , Ck}, Ci ⊆ X, i = 1, 2 . . . , k, k ≥ 1, be a

family of subsets of X such that at least two sources from every Ci

work for the same quantum of time;

(2)let D = {D1, D2 . . . , Dm}, Dj ⊆ X, j = 1, 2 . . . , m, m ≥ 1, be

a family of subsets of X such that at least two sources from every Dj

work for different quanta of time.

Call the set X with such constraints a system and denote it by

H = (X, C, D). Suppose that system H is active(”working”, ”alive”)
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during any quantum of time if at least one source is working for this

time.

We consider the following problem: how can we schedule the sys-

tem H in such a way that the time of working(which may be under-

stood also as the alive time of the whole system) is longest?

A mixed hypergraph is a triple H = (X, C, D), where X is a

vertex set and each of C, D is a list of subsets of X with at least

two elements, the C-edges and D-edges, respectively. The concep-

t of mixed hypergraph was inroduced by Vitaly Voloshin [11]. For

example, let H∗ = (X, C, D) be a mixed hypergraph where X =

{ a , b , c , d , e , f }, C = { { c , d }, { a , e , f } }, D = { { b, f }, { a , b ,

e }, { a , b , c , d , e , f} }. Then { c , d }, { a , e , f } are C-edges and{ b ,

f }, { a , b , e }, { a , b , c , d , e , f } are D-edges. For convenience, we

would use cd, aef as C-edges or D-edges instead of { c , d }, { a , e , f }.
We introduce coloring rules which is different from traditional graph

coloring. A proper k-coloring of a mixed hypergraph is a function

from the vertex set to a set of k colors so that each C-edge has t-

wo vertices with a common color and each D-edge has two vertices

with distinct colors. A strict k-coloring is a proper k-coloring us-

ing all k colors. In other words, a mixed hypergraph has a strict

k-coloring if there exists an onto function c : X −→ { 1, . . . , k } such

that each C-edge has at least two vertices assigned a common value

and each D-edge has at least two vertices assigned distinct values.
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A mixed hypergraph is strict k-colorable if it has a strict k-coloring.

For example, consider H∗ again with coloring c c(a) = 1 , c(b) =

2 , c(c) = 1 , c(d) = 1 , c(e) = 1 , c(f) = 3 . Then, H∗ is strict 3-

colorable. The feasible set of H is {k: H has a strict k-coloring}
and is denoted by S(H). The minimum number of feasible set of H

is its lower chromatic number χ(H); the maximum number is its

upper chromatic number χ(H). If χ(H) equals k, H is maximum

k-colorable. If the feasible set of H is an empty set, it is uncol-

orable. For example, H1 = (X1, C1, D1) where X1 = { 1 , 2 }, C1 =

{ 12 }, D1 = { 12 }. It is easy to check that H1 could not be colored.

A mixed hyprgraph Hl,m is called (l, m) − uniform if every C-edge

of X is a l-subset and every D-edge is a m-subset of X. We use n to

denote |X | for the mixed hypergraph H = (X, C, D). Every proper

k-coloring induces a partition of vertex set into color classes. These

partitions are defined feasible partitions. The number of feasible

partitions into k colors is denoted by rk. Then the integer vector

R(H) = (r1, r2, . . . , rn) is called the chromatic spectrum of H. A

mixed hypergraph has a gap if χ(H) < k < χ(H) and rk = 0.

The theory of mixed hypergraph is growing rapidly. It has been

used to solve problems in such areas as list-coloring of graphs[9], in-

teger programming[4, 9], scheduling and molecular biology[10], colot-

ing of block designs[1, 5, 6, 7, 8], and a variety of applied areas[10].

Other coloring problems considered from a different opinion can be

rephrased in terms of mixed hypergraph[3].
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In this paper, we talk about the gap of a special kind of mixed

hypergraph Hl,m. We define the ”k-partition” to make the theorem

proved more easily. A ”k-partition” of a mixed hypergraph H =

(X, C, D) is a partition {A1, A2, . . . , Ak} of X if H has a strict k-

coloring c with c(Ai) = i; i = 1, 2 . . . , k. We discuss about the gap of

Hl,m, because there need to be a uniform of sources and they want to

avoid special life working hours.

A mixed hypergraph H without D-edges has lower chromatic

number 1. In this case, color classed in a strict coloring can be com-

bined to form a strict coloring using fewer colors, and thus S(H) =

{1, . . . , χ(H)}. Similarly, χ(H) = n if and only if H has no C-edges.

In this case, color classes in a strict coloring can be partitioned to form

a proper coloring using more colors, and thus S(H) = {χ(H), . . . , n}.
These two results can be applied in my first two cases of mixed hy-

pergraph Hl,m where m = 0 and l = 0, respectively. Then two special

situations where l = 2 or m = 2 must be discussed independently,

which is discussed in section 3. The main ideal is showed in section

4, we would refer to a algorithm to create a pap in mixed hypergraph

Hl,m where l > 2 and m > 2.

The smallest mixed hypergraphs with gap has been found. But it

is still hard to know how could we use the best way to create a gap

in other special kinds of mixed hypergraphs. The meaning of best

way is that using minimum points or minimum edges. For example, I
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can’t promise that my way is the best. So you can do this direction,

if you are interested in my research after reading.
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2 Coloring of a specific mixed hypergraph

We now give you a example to help you understand many definitions

of mixed hypergraph.

Example 2.1 Let H = (X, C, D) be a mixed hypergraph where X =

{a, b, c, d, e, f}, C = {ace, bdf}, D = {ac, af, bd, be}.

We show the coloring situations and introduce many definitions of

mixed hypergraph.

”Strict 2-coloring on H”

Coloring on H

� �

� �

� �

f e

d c

b a(2) (2)

(1) (1)

(1) (1)

C-edge D-edge

Coloring Partition

1 2

c
d
e
f

a

b

Coloring on H

� �

� �

� �

f e

d c

b a(1) (1)

(2) (2)

(2) (2)

Coloring Partition

1 2

a

b

c
d
e
f
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Coloring on H

� �

� �

� �

f e

d c

b a(1) (2)

(2) (1)

(1) (2)

Coloring Partition

1 2

b

c

f

a

d

e

Coloring on H

� �

� �

� �

f e

d c

b a(2) (1)

(1) (2)

(2) (1)

Coloring Partition

1 2

a

d

e

b

c

f

So r2 = 4, H is 2-colorable.

”Strict 3-coloring on H”

Coloring on H

� �

� �

� �

f e

d c

b a(2) (2)

(1) (3)

(1) (3)

Coloring Partition

1 2 3

d

f

a

b

c

e
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Coloring on H

� �

� �

� �

f e

d c

b a(1) (3)

(2) (2)

(1) (3)

Coloring Partition

1 2 3

b

f

c

d

a

e

Actually, we count r3 = 48, so H is 3-colorable. We show all

coloring situations in the appendix 1.

”Strict 4-coloring on H”

Coloring on H

� �

� �

� �

f e

d c

b a(2) (3)

(1) (4)

(1) (3)

Coloring Partition

1 2 3 4

d

f
b

a

e
c

Coloring on H

� �

� �

� �

f e

d c

b a(4) (3)

(1) (2)

(1) (3)

Coloring Partition

1 2 3 4

d

f
c

a

e
b
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In fact, it is easy to figure out r4 = 96, so H is 4-colorable. We

give you all coloring ways on H in the appendix 2.

At least, it is not impossible existing a strict 5-coloring on H,

because if there is a strict 5-coloring on H, there must be 3 different

colors in {a, c, e} or {b, d, f}. Then it would contradict to C-edge ace

or C-edge bdf . It is the same reason why H is not 6-colorable.

Now we know that S(H) = {2, 3, 4}, χ(H) = 2, χ(H) = 4 ,

R(H) = (0, 4, 48, 96, 0, 0), and H is maximum 4-colorable without

gap.

Actually, it is not easy to create a gap in a mixed hypergraph.

We give a mixed hypergraph with gap. Let H∗ = (X, C, D) with X =

{a, b, c, d, e, f}, C = {acd, aef, bcd, bef, def, cdf}, D = {ab, ad, af, bc,

be, cf, de} has a gap. We would give a proof in section 3.

Later we begin to discuss the existence of gap in Hl,m where l ≥ 2

and m ≥ 2.
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3 The situation of gap in special case

Definition 3.1 If there is no D-edge in D in a mixed hypergraph, we

denote it H = (X, C, φ). And if there is no C-edge in C in a mixed

hypergraph, we denote it H = (X, φ, D).

Later we will discuss the gap of these two kinds of special mixed

hypergraph.

Theorem 3.2 H = (X, C, φ) has no gap.

Proof . If H is maximum m-colorable, let c be a coloring on H.

T = {t1, t2, . . . , tm} is a partition of H and setting c(ti) = i com-

pletes a strict m-coloring.

� � � � �

t1 t2 t3 tm

1 2 3 m

1 1 1

� � �

color

We can find that if all vertices in ti have the same color (i ∈ [ m ]),

and this coloring c can accord with all C-edges. Set c(ti) = 1 (i =

2 ∼ m) step by step, then the feasible set of H is {1, 2, 3, . . . , m} .

H = (X, C, φ) has no gap. ❑
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In like manner, a mixed hypergraph only without C-edges doesn’t

has a pap, either.

Theorem 3.3 H = (X, φ, D) has no gap.

Proof . If χ(H) equal m,there is a coloring c on H. Set T =

{t1, t2, . . . , tm} is a partition of H and setting c(ti) = i completes

a strict m-coloring.

� � � � � �

� � �� � � � � � � � ��

1 2 3 m

1 2 3 m

t1 t2 t3 tm

tm+1 tm+2 tm+3 tn

m + 1 m + 2 m + 3 n

We can see that if we pick out some vertex in t1 and let the single

vertex be tm+1 and c′(tm+1) = m + 1. It is a new partition and a new

coloring c′, which still accords with all D-edges. We can do the same

thing step by step until |t1| = 1. Then we can do this kind of job

( from t1 to tm )to make a new partition {t′1, t
′
2, t

′
3 . . . , t

′
n} and |t′i| = 1

for i = 1 ∼ m. Then we know S(H) = {m, m+1, m+2, . . . , n}, then

H = (X, φ, D) has no gap. ❑

We would introduce a construction contracting to keep S(H) of

the mixed hypergraph the same in a special case, thought eliminating

points and edges.
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Construction 3.4 (Contracting)

H = (X, C, D) is a mixed hypergraph( |C | = s, |D | = t ). If there

is a Ci = {xk, xl} for some i in C, then we can get H1 = (X1, C
1, D1),

where

1. X1 = (X\{xk, xl}) ∪ { y }, y is a new vertex.

2. xk ∈ Ci or xl ∈ Ci, Ci ∈ C and i = 1 ∼ s, then C1
i =

(Ci\{xk, xl} ∪ { y } otherwise C1
i = Ci

3. xk ∈ Di or xl ∈ Di, Di ∈ D and i = 1 ∼ t, then D1
i =

(Di\{xk, xl} ∪ { y } otherwise D1
i = Di

Theorem 3.5 Let H be a mixed hypergraph with feasible set S. If the

size of each C-edge in H is 2, then the mixed hypergraph H1 obtained

from H via construction3.4 has feasible set S.

Proof . We can assume that C1 = {x1, x2} , |X | = n.Now c is a

proper coloring of H if and only if c1 is a proper coloring of H1 by

setting c(x1) = c(x2) = c1(y) and c(xj) = c1(xj)(j = 3 ∼ n), then the

number of colors used is the same. ❑

Lemma 3.6 A mixed hypergraph H = (X, C, D) has no gap if the

size of all C-edges is 2.

Proof . We prove the statement by induction on |C |.
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Basic step: |C | = 0. H = (X, φ, D) has no gap by theorem 3.3.

Induction step: We suppose that the claim holds for |C | < n. If

H has n C-edges, then the mixed hypergraph H1 is obtained from

H via construction 3.4. By the induction hypothesis, H1 has no gap.

And S(H) = S(H1) by Theorem 3.5, so H has no gap. Then A mixed

hypergraph H = (X, C, D) has no gap if the size of all C-edges is 2.

❑

But if the size of each D-edge in H is 2, it has a pap. We can give

an example that this kind of H has a pap.

Example 3.7 The feasible set of H∗ = (X, C, D) where X = {a, b, c,

d, e, f}, C = {acd,aef, bcd,bef, def, cdf}, and D = {ab, ad, af, bc, be,

cf, de} is {2, 4}.

Proof . Each partition of H∗ with 2-coloring and 4-coloring is u-

nique, and they are showed below.

1 2

a
c
e

b
d
f

The partition of H∗ with 2 − coloring :
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1 2 3 4

e

f

c

d
ab

The partition of H∗ with 4 − coloring :

Then we show why H∗ is not 3-colorable. The partition of H∗

with 3-coloring has three kind of sets {4, 1, 1}, {3, 2, 1} and {2, 2, 2}.
First we start from a graph G with vertex set {a, b, c, d, e, f} and edge

set D = {ab, ad, af, bc, be, cf, de}.

G

� �

� �

� �

f e

d c

b a

Then we can get the complement of graph G.
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G

� �

� �

� �

f e

d c

b a

Because there is no K4 clique in G, the partition of H with 3

coloring must be not the kind of set {4, 1, 1}. There are two K3

cliques in G, so there are six situations discussed in the partition of

set{3, 2, 1}.

Situation in G

� �

� �

� �

f e

d c

b a

Corresponding Partition
1 2 3

a
c
e

b

d
f

This kind of partition contradict C-edge, bef

Situation in G

� �

� �

� �

f e

d c

b a

Corresponding Partition
1 2 3

a
c
e

b

f
d

This kind of partition contradict C-edge, def
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Situation in G

� �

� �

� �

f e

d c

b a

Corresponding Partition
1 2 3

a
c
e

d

f
b

This kind of partition contradict D-edge, bef

Situation in G

� �

� �

� �

f e

d c

b a

Corresponding Partition
1 2 3

b
d
f

a

c
e

This kind of partition contradict C-edge, aef

Situation in G

� �

� �

� �

f e

d c

b a

Corresponding Partition
1 2 3

b
d
f

a

e
c

This kind of partition contradict C-edge, acd
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Situation in G

� �

� �

� �

f e

d c

b a

Corresponding Partition
1 2 3

b
d
f

c

e
a

This kind of partition contradict C-edge, aef

So the partition of H with 3 coloring must be not the kind of

set{3, 2, 1}. Now there are two kind of perfect matching in G, so

there are two situations discussed in the partition of set{2, 2, 2}.

Situation in G

� �

� �

� �

f e

d c

b a

Corresponding Partition
1 2 3

b

d

a

c

e

f

This kind of partition contradict C-edge, cdf

Situation in G

� �

� �

� �

f e

d c

b a

Corresponding Partition
1 2 3

a

e

b

f

c

d

This kind of partition contradict C-edge, def
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So the partition of H with 3 coloring must be not the kind of

set {2, 2, 2}. We can conclude that H∗ is not a 3-colorable mixed

hypergraph.

❑

We later can use this example to construct (k, 2)-uniform mixed

hypergraph with gap.
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4 Algorithm of gap in (l, m)-uniform mixed hy-

pergraph

Definition 4.1 Mixed hypergraph H is called (l, m)-uniform and de-

noted Hl,m if every C-edge is a l-subset of X, and every D-edge is a

m-subset of X.

Theorem 4.2 If H is (2,k)-uniform, then H has no gap.

Proof . This can be proved by Lemma 3.6 ❑

Construction 4.3 We make a mixed hypergraph H∈Hk, 2(k ≥ 3)

with vertex set {a, b, c, d, e, f, 1, . . . , k − 3}. Let T be the set of the

form (i, j) for i, j ∈ {1, 2, . . . , k − 3}. Let U be the set of the form

{ (i, a), (i, b), (i, c), (i, d), (i, e), (i, f) }. C = { (1, . . . , k−3, acd), (1, . . . ,

k−3, aef), (1, . . . , k−3, bcd), (1, . . . , k−3, bef), (1, . . . , k−3, def), (1, . . .

, k − 3, cdf) }, D = { ab, ad, af, bc, be, cf, de } ∪ T ∪ U .

Lemma 4.4 The feasible set of the (k,2)-unifoerm mixed hypergraph

H in Construction 4.3 is {k − 1, k + 1}, then H has a pap.

Proof . We can easily see that each partition of Hk,2 with (k − 1)-

coloring and (k + 1)-coloring is unique, and they are showed below.
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1 2

a
c
e

b
d
f

The partition of H∗ with (k − 1) − coloring :

� � � � �

3 4 5 k − 1

1 2 3 k − 3

1 2 3 4

e

f

c

d
ab

The partition of H∗ with (k + 1) − coloring :

� � � � �

3 4 5 k + 1

1 k − 3

❑

Definition 4.5 We define a mixed hypergraph H2t with vertex set

{a1, . . . , at, b1, . . . , bt}.

Construction 4.6 Let H2t = (X, C, D) be a (n, 2p)-uniform mixed

hypergraph where n ≥ 3, p ≥ 2, t = (2n − 3)(p − 1) + 1.

1. C = {aibial1al2 . . . aln−2
}∪{aibibl1bl2 . . . bln−2

}, where i, l1, l2, . . . , ln−2

∈ {1, 2, . . . , t} are pairwise distinct.

2. D = {aj1aj2 . . . ajp
bj1bj2 . . . bjp

} where j1, j2, . . . , jp ∈ {1, 2, . . . , t}
are pairwise distinct.
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Theorem 4.7 The feasible set of the mixed hypergraph H2t in con-

struction 4.6 is {2, . . . , 2n − 4, 2n − 2, . . . , t}.

Proof . Let c be an arbitrary coloring of H2t. There are two cases

of coloring c.

case 1. If c(ai) 	= c(bi) for some i, without loss of generality, we can

let i = 1.This kind of C-edges (a1b1al1 . . . aln−2
), l1, . . . , ln−2 ∈

{2, 3, . . . , t} , forces the coloring of the points {a1, . . . , at, b1}
to use at most n − 1 colors. Because if there are more than

n colors in {a1, . . . , at, b1}, it will contradict one of C-edges,

(a1b1al1 . . . aln−2
) where l1, . . . , ln−2 ∈ {2, 3, . . . , t}. Other kind

of C-edges (a1b1bl1 . . . bln−2
) where l1, . . . , ln−2 ∈ {2, 3, . . . , t},

forces the coloring of the points {b1, . . . , bt, a1} to use at most

n − 1 colors. The reason is the same. When c(ai) 	= c(bi) for

some i, H2t has at most 2n−4 colors. Then we give a coloring

c to complete a strict (2n − 4)-coloring.

set c(ai) = 1, i ∈ [ t − (n − 3) ] c(b1) = 2, i ∈ [ t − (n − 3) ]

c(at−(n−3)+1) = 3 c(bt−(n−3)+1) = 4

c(at−(n−3)+2) = 5 c(bt−(n−3)+2) = 6

...
...

c(at) = 2n − 5 c(bt) = 2n − 4

This is a strict (2n−4)-coloring of H2t. Then we do a job that

c(aj) = 1, j = {t−n+4, t−n+5, . . . , t} step by step and that
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c(bj) = 2, j = {t − n + 4, t − n + 5, . . . , t} step by step. We

can easily know that H2t has a feasible set {2, 3, . . . , 2n − 4}
when c(ai) 	= c(bi) for some i.

case 2. If c(ai) = c(bi) for i ∈ {1, 2, . . . , t}, all D-edges force that H2t

has at least 2n − 2 colors by pigeonhole principle. Then we

give a coloring c to complete a strict (2n − 2)-coloring.

set


c(a1) = 1 c(b1) = 1

... ...

c(ap−1) = 1 c(bp−1) = 1




c(ap) = 2 c(bp) = 2

... ...

c(a2(p−1)) = 2 c(b2(p−1)) = 2

... ...


c(a(2n−4)(p−1)+1) = 2n − 3 c(b(2n−4)(p−1)+1) = 2n − 3

... ...

c(a(2n−3)(p−1)) = 2n − 3 c(b(2n−3)(p−1)) = 2n − 3

c(a(2n−3)(p−1)+1) = 2n − 2 c(b(2n−3)(p−1)+1) = 2n − 2

note : t = (2n − 3)(p − 1) + 1
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This is a strict (2n−2)-coloring of H2t. We can recolor

H2t step by step to form the following coloring.

set c(a1) = 1 c(b1) = 1

c(a2) = 2 c(b2) = 2

c(a3) = 3 c(b3) = 3

... ...

c(at) = t c(bt) = t

note : t = (2n − 3)(p − 1) + 1

We can easily know that H2t has a feasible set {2n −
2 , . . . , (2n− 3)(p− 1) + 1} when c(ai) = c(bi) for all

i.

Then the feasible set of mixed hypergraph H2t in construction4.6 is

{2, . . . , 2n − 4, 2n − 2, . . . , t}. ❑

Construction 4.8 Let H2t = (X, C, D) be a (n, 2p−1)-uniform mixed

hypergraph where n ≥ 3, p ≥ 2, t = (2n − 3)(p − 1) + 1.

1. C = {aibial1al2 . . . aln−2
} ⋃ {aibibl1bl2 . . . bln−2

} where i, l1, l2, . . . , ln−2

∈ {1, 2, . . . , t} are pairwise distinct.

2. D = {aj1aj2 . . . ajp
bj1bj2 . . . bjp−1

} where j1, j2, . . . , jp ∈ {1, 2, . . . , t}
are pairwise distinct.

23



Theorem 4.9 The feasible set of the mixed hypergraph H2t in con-

struction 4.8 is {2, . . . , 2n − 4, 2n − 2, . . . , t}.

Proof . Let c be an arbitrary coloring of H2t. There are two cases

of coloring c.

case 1. If c(ai) 	= c(bi) for some i, without loss of generality, we can

let i = 1.This kind of C-edges (a1b1al1 . . . aln−2
), l1, . . . , ln−2 ∈

{2, 3, . . . , t} , forces the coloring of the points {a1, . . . , at, b1}
to use at most n − 1 colors. Because if there are more than

n colors in {a1, . . . , at, b1}, it will contradict one of C-edges,

(a1b1al1 . . . aln−2
) where l1, . . . , ln−2 ∈ {2, 3, . . . , t}. Other kind

of C-edges (a1b1bl1 . . . bln−2
) where l1, . . . , ln−2 ∈ {2, 3, . . . , t},

forces the coloring of the points {b1, . . . , bt, a1} to use at most

n − 1 colors. The reason is the same. When c(ai) 	= c(bi) for

some i, H2t has at most 2n−4 colors. Then we give a coloring

c to complete a strict (2n − 4)-coloring.

set c(ai) = 1, i ∈ [ t − (n − 3) ] c(b1) = 2, i ∈ [ t − (n − 3) ]

c(at−(n−3)+1) = 3 c(bt−(n−3)+1) = 4

c(at−(n−3)+2) = 5 c(bt−(n−3)+2) = 6

...
...

c(at) = 2n − 5 c(bt) = 2n − 4

This is a strict (2n−4)-coloring of H2t. Then we do a job that

c(aj) = 1, j = {t−n+4, t−n+5, . . . , t} step by step and that
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c(bj) = 2, j = {t − n + 4, t − n + 5, . . . , t} step by step. We

can easily know that H2t has a feasible set {2, 3, . . . , 2n − 4}
when c(ai) 	= c(bi) for some i.

case 2. If c(ai) = c(bi) for i ∈ {1, 2, . . . , t}, all D-edges force that H2t

has at least 2n − 2 colors by pigeonhole principle. Then we

give a coloring c to complete a strict (2n − 2)-coloring.

set


c(a1) = 1 c(b1) = 1

... ...

c(ap−1) = 1 c(bp−1) = 1




c(ap) = 2 c(bp) = 2

... ...

c(a2(p−1)) = 2 c(b2(p−1)) = 2

... ...


c(a(2n−4)(p−1)+1) = 2n − 3 c(b(2n−4)(p−1)+1) = 2n − 3

... ...

c(a(2n−3)(p−1)) = 2n − 3 c(b(2n−3)(p−1)) = 2n − 3

c(a(2n−3)(p−1)+1) = 2n − 2 c(b(2n−3)(p−1)+1) = 2n − 2

note : t = (2n − 3)(p − 1) + 1
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This is a strict (2n−2)-coloring of H2t. We can recolor

H2t step by step to form the following coloring.

set c(a1) = 1 c(b1) = 1

c(a2) = 2 c(b2) = 2

c(a3) = 3 c(b3) = 3

... ...

c(at) = t c(bt) = t

note : t = (2n − 3)(p − 1) + 1

We can easily know that H2t has a feasible set {2n −
2 , . . . , (2n− 3)(p− 1) + 1} when c(ai) = c(bi) for all

i.

Then the feasible set of mixed hypergraph H2t in construction4.6 is

{2, . . . , 2n − 4, 2n − 2, . . . , t}. ❑

We can control the length of gap.

Corollary 4.10 The feasible set of mixed hypergraph H2t in construc-

tion 4.6 and construction 4.8 is {2, . . . , 2n − 4, 2n + s − 3, . . . , t}, if

t = (2n − 4 + s)(p − 1) + 1 and s ≥ 1.

Proof . Let c be an arbitrary coloring of H2t. There are two cases

of coloring c.
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case.1 If c(ai) 	= c(bi) for some i, H2t has a feasible set {2, . . . , 2n−4}
by the proof in theorem 4.7 and theorem 4.9.

case.2 If c(ai) = c(bi) for i ∈ {1, 2, . . . , t}, the pigeonhole principle

forces that H2t has at least (2n − 4 + s) + 1 colors.

So it is possible to control the size of gap in mixed hypergraph

H2t. ❑

Theorem 4.11 For each integer l ≥ 3, m ≥ 2, there exists a (l, m)-

uniform mixed hypergraph H = (X, C, D) whose feasible set contains

a gap.

Proof . This can be proved by theorem 4.7 and theorem 4.9. ❑

Example 4.12 Now we can construct a (4, 3)-uniform mixed hyper-

graph with gap.

We can use Construct 4.8.Then n = 4 and p = 2 imply t = 6.

Now we start this work with H2· 6 where

1. X = {a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}
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2. C = { (a1b1a2a3), (a1b1a2a4), (a1b1a2a5), (a1b1a2a6), (a1b1a3a4),

(a1b1a3a5), (a1b1a3a6), (a1b1a4a5), (a1b1a4a6), (a1b1a5a6),

(a1b1b2b3) , (a1b1b2b4) , (a1b1b2b5) , (a1b1b2b6) , (a1b1b3b4),

(a1b1b3b5) , (a1b1b3b6) , (a1b1b4b5) , (a1b1b4b6) , (a1b1b5b6),

(a2b2a1a3), (a2b2a1a4), (a2b2a1a5), (a2b2a1a6), (a2b2a3a4),

(a2b2a3a5), (a2b2a3a6), (a2b2a4a5), (a2b2a4a6), (a2b2a5a6),

(a2b2b1b3) , (a2b2b1b4) , (a2b2b1b5) , (a2b2b1b6) , (a2b2b3b4),

(a2b2b3b5) , (a2b2b3b6) , (a2b2b4b5) , (a2b2b4b6) , (a2b2b5b6),

(a3b3a2a1), (a3b3a2a4), (a3b3a2a5), (a3b3a2a6), (a3b3a1a4),

(a3b3a1a5), (a3b3a1a6), (a3b3a4a5), (a3b3a4a6), (a3b3a5a6),

(a3b3b2b1) , (a3b3b2b4) , (a3b3b2b5) , (a3b3b2b6) , (a3b3b1b4),

(a3b3b1b5) , (a3b3b1b6) , (a3b3b4b5) , (a3b3b4b6) , (a3b3b5b6),

(a4b4a2a3), (a4b4a2a1), (a4b4a2a5), (a4b4a2a6), (a4b4a3a1),

(a4b4a3a5), (a4b4a3a6), (a4b4a1a5), (a4b4a1a6), (a4b4a5a6),

(a4b4b2b3) , (a4b4b2b1) , (a4b4b2b5) , (a4b4b2b6) , (a4b4b3b1),

(a4b4b3b5) , (a4b4b3b6) , (a4b4b1b5) , (a4b4b1b6) , (a4b4b5b6),

(a5b5a2a3), (a5b5a2a4), (a5b5a2a1), (a5b5a2a6), (a5b5a3a4),

(a5b5a3a1), (a5b5a3a6), (a5b5a4a1), (a5b5a4a6), (a5b5a1a6),

(a5b5b2b3) , (a5b5b2b4) , (a5b5b2b1) , (a5b5b2b6) , (a5b5b3b4),

(a5b5b3b1) , (a5b5b3b6) , (a5b5b4b1) , (a5b5b4b6) , (a5b5b1b6),

(a6b6a2a3), (a6b6a2a4), (a6b6a2a5), (a6b6a2a1), (a6b6a3a4),

(a6b6a3a5), (a6b6a3a1), (a6b6a4a5), (a6b6a4a1), (a6b6a5a1),

(a6b6b2b3) , (a6b6b2b4) , (a6b6b2b5) , (a6b6b2b1) , (a6b6b3b4),

(a6b6b3b5) , (a6b6b3b1) , (a6b6b4b5) , (a6b6b4b1) , (a6b6b5b1) }
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3. D = { (a1b1a2), (a1b1a3), (a1b1a4), (a1b1a5), (a1b1a6), (a2b2a1),

(a2b2a3), (a2b2a4), (a2b2a5), (a2b2a6), (a3b3a2), (a3b3a1),

(a3b3a4), (a3b3a5), (a3b3a6), (a4b4a2), (a4b4a3), (a4b4a1),

(a4b4a5), (a4b4a6), (a5b5a2), (a5b5a3), (a5b5a4), (a5b5a1),

(a5b5a6), (a6b6a2), (a6b6a3), (a6b6a4), (a6b6a5), (a6b6a1) }

Now we give every coloring situations below.

� � � � � �

� � � � � �

color

color

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

1 1 1 1 1 3

2 2 2 2 2 4

4 − coloring c(ai) 	= c(bi), for i ∈ {1, 2, . . . , 6}

� � � � � �

� � � � � �

color

color

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

1 1 1 1 1 1

2 2 2 2 2 4

3 − coloring c(ai) 	= c(bi), for i ∈ {1, 2, . . . , 6}

� � � � � �

� � � � � �

color

color

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

1 1 1 1 1 1

2 2 2 2 2 2

2 − coloring c(ai) 	= c(bi), for i ∈ {1, 2, . . . , 6}
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� � � � � �

� � � � � �

color

color

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

1 2 3 4 5 6

1 2 3 4 5 6

6 − coloring c(ai) = c(bi), for i ∈ {1, 2, . . . , 6}

Then the feasible of this kind of (l, m)-uniform mixed hypergraph

H2· 6 is {2, 3, 4, 6}. In other words, it has a pap.

We are not sure this is the best way to create a gap in Hl,m. We

are always look for the best possible in turns of number of vertices

and number of C, D-edges.
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5 Appendix 1

Strict 3-coloringColoring on H
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There are 16 ways to color mixed hypergraph H when set {b, d, f}
be colored 1 and 2,and there are three kind of coloring situations,

(1,2), (1,3) , (2,3),in set {b, d, f}. So r3 = 16 × 3 = 48.
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6 Appendix 2

Strict 4-coloringColoring on H
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There are 16 ways coloring H when the set{b, d, f} is colored

(1, 2) and the set {a, c, e} is colored (3, 4). Then there still exists 5

other coloring situations : (1, 2)− (3, 4), (1, 3)− (2, 4), (2, 3)− (1, 4),
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(2, 3)− (1, 4), (2, 4)− (1, 3), (3, 4)− (1, 2) colored in set {b, d, f} and

set {a, c, e}, respectively. So r4 = 96.
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