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Chapter 3. Testing on Interval Data (I) 

 

 In this chapter, we will present the character of interval data, and then define the 

fuzzy mean and fuzzy variance for interval data.  The testing hypothesis procedure 

for interval data will be provided with the illustrative examples. 

It is well known (see Arnold(1991)) that the )1( α−  confidence interval for 

population mean μ  is );( 2/,12/,1 n
StX

n
StX nn αα −− +− , for niXi ,...,1=  be 

independent, with iX ～ ),( 2σμN . We try to do the testing hypothesis with bounded 

closed intervals.  

Also, it is well known that the optimal test for population mean is t-test (see 

Lemann(1959)), optimal test for population variance is 2χ -test and so on. That is 

why we try to apply these methods to define the extended confidence intervals. 

 

3.1. Fuzzy Mean and Fuzzy Variance 

3.1.1. Definitions and properties 

 

 We describe every interval by two values, named midpoint and radius.  For 

example, an interval data ]5 ,3[  will be denoted as )1 ;4(  where the first element is 

the center of the interval and the second is the radius of the interval, which are 

calculated as follows: 

2/)53(4 +=   and  2/)35(1 −=  

The representation is essential dealing an interval data as a single point. 

 

Definition 3.1.1.  Fuzzy Sample Mean 
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Let ) ;( , ), ;( ), ;( 2211 nn rxrxrx L  be n  sample interval data, then the sample 

mean IX  is defined as  

) ;( 11
n

rr
n

xx nn ++++ LL . 

 

By Moore’s definition (1979), given ],[ 21 aaA = , ],[ 21 bbB =  two intervals then 

 

],[ 2211 babaBA ++=+  

],[ 1221 babaBA −−=−  

)],,,max(),,,,[min( 2212211122122111 babababababababaBA =×  

]1,1[1

12 aaA
=   

for A  be an interval not containing 0 and ] ,[] ,[ mbmabam = , for m＞0 and 

 

.1
B

A
B
A

×=  

Moreover, Moore defines the absolute value of an interval A  by 

),max( 21 aaA =  

and 

A ＜ B  if and only if 2a ＜ 1b  

and the distance between A  and B  is 

).,max(),( 2211 babaBAd −−=  

However, if φ≠∩ BA  then we are not able to compare A  and B . Therefore this 

method is not so useful for other situations. 

Furthermore, for example, given n sample data 3, 3, …, 3 we can easily compute the 

sample variance is, and we have 0. On the other hand, if n sample data are  

]100,1[...21 ==== nIII , 
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then by the above definition we have  

jiforIId ji ≠= 0),( . 

In this chapter we use similar but not same conception to define sample variance. 

 

After the above discussion, we define fuzzy sample variance as follows: 

 

Definition 3.1.2.  Fuzzy Sample Variance 

Let ) ;( , ), ;( ), ;( 2211 nn rxrxrx L  be n  sample interval data, then sample 

variance 2
IS  is defined as  
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and the sample standard deviation is defined as 
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Theorem 3.1.1.  Let ) ;(] ,[ iiii rxba = , ni  , ,2 ,1 L=  be n interval samples, where 

2
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i
bax +

= , 
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i

abr −
= .  Then the sample mean have the following property:  
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Proof:  Using simple algebra operation, we have 
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This completes the proof.  

 

 

3.2. Interval’s Extended Confidence Interval 

 

 Usually, under normal assumption we use t-test for testing mean and F-test for 

testing two populations’ variance.  Since we do not know population variance, the 

α−1  confidence interval for population mean μ  is ) ,( eXeX +−  where 

n
Ste n 2/ ,1 α−= .  Further more, the α−1  confidence interval for two populations ,  

mean ,1μ  2μ  is  

) ,( 2121 eXXeXX +−−−  

where 

2

2
2

1

2
1

2/ , n
S

n
Ste K += α  

and )1 ,1min( 21 −−= nnK .  The α−1  confidence interval for two populations ,  

variance is  

)  ,( 2/  ,1  ,12/1  ,1  ,1 2121 αα −−−−− nnnn FF  

where 2
2

2
1 SSF = .  For vague data, such as interval data, there is no α−1  
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confidence interval just like classical statistics.  We try to extend the concept of 

traditional confidence interval to interval data. 

 

 

3.3. Testing Hypotheses about Mean and Variance with Interval Data 

3.3.1. Extended Concept 

 

In testing, we suppose population is normally distributed otherwise 

nonparametric method should be used in classical statistics.  In this chapter, we 

extend traditional testing method to test data in interval form.   

 

Given n sample data );(...,),;( 11 nn rcrc , these data will firstly be tested to see 

what distribution they fit separately. That is we need to realize what distribution these 

two sets of crisp data nccc ...,,, 21 and nrrr ...,,, 21 belong to. In this literature we 

assume they all fit normal for simplicity. At this condition, we say the population is 

fuzzy normally distributed. 

 

Until now, there is no standard way to test interval data.  We propose extended 

classical testing method to do this work.  The idea is we treat intervals as points and 

test with the help of traditional way.  This method also has what we call fuzzy 

extended Iα−1  confidence interval to make decisions whether to accept or reject 

null hypothesis. 

 

For testing mean of population of fuzzy interval data, we set up the following 

process: 
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1. Null Hypothesis: 
0

:0 IIH μμ =  

                  
0

:1 IIH μμ ≠    where ],[
0

khI =μ  

2. Testing Statistics: IX  

3.Under the significant level Iα , we use extended Iα−1 confidence interval 

) ,( IIII eXeX +−  

where 
n

S
te I
nI 2/ ,1 α−= . 

If  [h, k] ⊂ ) ,( IIII eXeX +−  then we accept 
0II μμ = . 

. 

 

Note that ) ,( IIII eXeX +−  is an interval calculated by the above method. 

We also allow the interval to be closed.  This wouldn’t affect final result. 

 

Remark 3.3.1:  We show how the testing rules being manipulated. For example, 

] ,[ baX I = , ] ,[ dceI =  then the extended  Iα−1  confidence interval is ) ,( nm  

where dam −= , dbn += .  If ) ,(] ,[ nmkh ⊂  we accept null hypothesis 

] ,[ khI =μ . 

 

Next, for testing two populations , mean, we first review classical method: 

Usually, we do not know about two populations’ variance 2
1σ , 2

2σ  then we accept 

null hypothesis 21 μμ =  if eXX <− || 21 , where 
2

2
2

1

2
1

2/, n
S

n
Ste K += α and 

}1 ,1min{ 21 −−= nnK .  That is, if eXXeX +<<− 212 , then we accept the null 

hypothesis 21 μμ = . 
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For testing two population’s mean we set up the following process: 

 

1. Null Hypothesis: 
21

:0 IIH μμ =  

                 
21

:1 IIH μμ ≠     

2. Testing Statistics: 
21

, II XX  

3. Under the significant level Iα , we use extended Iα−1 confidence interval 

),(
22 IIII eXeX +−  

where 
2

2

1

2

2/,
21

n

S

n

S
te II
KI += α  and 

2IX , 2
1IS , 2

2IS  are all intervals calculated 

from definition 4.1.1 and 4.1.2. 

If ),(
221 IIIII eXeXX +−⊂  then we accept 

21 II μμ = . 

 

Similarly, let us observe α−1  confidence interval  

),( 2/ ,1 ,12/1 ,1 ,1 2121 αα −−−−− nnnn FF  

of two populations’ variance 2
1σ , 2

2σ  where 2
2

2
1 SSF = .  We accept null 

hypothesis 2
2

2
1 σσ =  if  

2/ ,1 ,1
2
2

2
12/1 ,1 ,1

2
2 2121 αα −−−−− << nnnn FSSFS  

For testing two population’s variance we set up the following process: 

1. Null Hypothesis: 22
0 21

: IIH σσ =  

                  22
1 21

: IIH σσ ≠  

2. Testing Statistics: 22
21

, II SS  calculated from definition 3.2.2. 

3. Under the significant level Iα , we use extended Iα−1 confidence interval 
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) ,( 2/ ,1 ,1
2

2/1 ,1 ,1
2

212212 αα −−−−− nnInnI FSFS . 

If ) ,( 2/ ,1 ,1
2

2/1 ,1 ,1
22

2122121 αα −−−−−⊂ nnInnII FSFSS  then we accept 22
21 II σσ = . 

 

The above rules are all concentrate on testing whether equal relation about mean 

and variance holds or not.  If equal relation does not hold then we compare them.  

Another situation we should avoid is that do not let interval length of 
2IX  ( 2

2IS ) 

larger than 
1IX  ( 2

1IS ). 

 

For example, let ]6 ,4[
1
=IX , ]6 ,1[

2
=IX , ]1 ,1[=Ie  then 

)7 ,0(),(
22

=+− IIII eXeX .  We must conclude that the two populations’ mean 

are equal.  As a matter of fact, this conclusion is not reasonable.  This is one of 

differences between classical statistics and fuzzy statistics. 

 

3.4. Illustration Examples 

 

Example 3.4.1.  T-type car’s owner pronounces that the cars’ oil consumption is ten 

to twelve miles per liter.  Some consumer’s magazine intends to investigate their car 

about quality.  Since most consumers come from lower income family, the magazine 

aims at oil consumption and stability of quality.  It is clear that a car will consume 

more oil at city than at highway.  So the investigator chooses ten persons who drive 

T-type car randomly.  Next step, he keeps six resembling drivers in driving habit and 

abandons the other data.  He gets six data  

[10, 12],  [10.5, 11],  [13, 14],  [9, 10],  [15, 16],  [8.5, 9] 
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which show miles per liter.  After computation, we get sample variance which is 

equal to (7.8; 0.3).  Interval variation is 0.3 and median variation is 7.8, although 

interval lengths are roughly equal but median variation is high, we conclude that the 

quality is not stable.  Next, for testing population’s mean, we first compute sample 

mean and get [10.9, 12] and then take 05.0=Iα  to get ]8.6 ,3.0[=Ie .  Since the 

extended Iα−1  confidence interval is  

)8.18 ,1.4(),( =+− IIII eXeX  

and )8.18 ,1.4(]12 ,10[ ⊂ , we accept the null hypothesis ]12 ,10[=Iμ . 

 

Example 3.4.2.  There are two communities X and Y, we would like to compare their 

income level to determine a sale strategy.  We randomly choose five data from 

community X and community Y.  The data are listed as follows: 

 X:  [3, 4], 4, [3.5, 5], [3.8, 4.2], 4.2   (ten thousands) 

 Y:  [2, 10], 6, 2, [3, 8], [4, 7]         (ten thousands). 

After simple calculation, we get 

)3.0 ;4(=IX , ).61 ;3.5(=IY  

We set 1.0=Iα  then the extended Iα−1  confidence interval is  

 

).27 ,8.0(),( =+− IIII eXeX  

Since ).27 ,8.0(]9.6 ,7.3[).61 ;3.5( ⊂= , we conclude that the two communities’ 

income level are equal.  Next we compute X’s and Y’s sample variances, then we 

have 

)4.0 ;4.0(2 =
XIS ,  ).33 ;9.2(2 =

YI
S  

Taking the significance level 1.0=Iα  then the extended Iα−1  confidence 

interval is  
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)1.5 ,0() ,( 05.0 ,4 ,4
2

95.0 ,4 ,4
2 =FSFS

XX II  

Since )1.5 ,0(2 ⊄
YI

S , we conclude that the two communities’ variances are not equal. 

Clearly, 22
YX II SS < , we find community Y’s variance is larger than X’s.  This 

situation shows that people live in community Y has unstable income but live in 

community X is stable.  Therefore, we suggest selling middle price goods in 

community X and selling low price on most kinds of goods but high price on few 

kinds of goods. 

 

Example 3.4.3.  A radio factory wants to purchase special type tube to manufacture 

high definition stereo preamplifier.  Only X and Y two brands fit for this type. Since 

it is big money purchase, the manager compares their quality in the following way.  

At first, in one year he collects 10 tubes from each brand randomly per month.  So 

he gets 120 tubes each brand.  Next, he tests all 240 tubes for using life.  At last, 

after computing these data he gets  

)1.0 ;54.2(=IX ,  ).090 ;53.2(=IY  

and 

)24.0 ;3.0(2 =
XIS , ).2350 ;3.0(2 =

YI
S  

where the unit is ten thousand hours.  Since IX  is almost equal to IY  and 2
XIS  

is almost equal to 2
YI

S .  We conclude that the two brands’ qualities are almost on 

the same level.  So, the manager decides to buy cheaper one. 


