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Chapter 5 

Testing on Discrete and Continuous Fuzzy Numbers 

5.1. Fuzzy Data with Soft Computing 

5.1.1. Membership Function 

In the traditional statistical approach, we assume that each expert provides the 

exact estimate of the desired quantity x , so, after polling the experts, we get, for 

each possible value ix  of  this quantity, the probability )( ixp  that a randomly 

chosen expert selected this value as his/her estimate. 

 

In the fuzzy case, we take into consideration that an expert often cannot provide 

a definite estimates.  The simplest case is when an expert has in mind several 

possible values of the estimated quantity. In this case, instead of asking each expert 

for a definite estimate, we can ask each experts which of v  values they consider 

possible and which not. As a result, for each value ix , we can count the total number 

)( ixN  of experts who consider this value possible. 

 

Similar to the statistical approach, we do not want to ask all N  experts, so we 

would like to get a representative sample of Nn <<  experts, and ask only these n  

experts.  In doing this, we hope that for each ix  the portion nxnx ii /)()( =μ  of 

experts in this sample who consider ix  to be a possible estimate is approximately the 

same as the portion NxN i /)(  corresponding to all N  experts.  Therefore, we 

must consider the ratios nxnx ii /)()( =μ . 

 

Similarly to probabilities, these numbers belong to the interval [0, 1].  However, 
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we can no longer call these values as probabilities, because they do not necessarily 

add up to 1.  For example, if every expert considers all the values possible, then 

1)( =ixμ  for all i , so the sum of these values is no longer equal to 0.  The values 

)( ixμ  are called degrees of possibility, and the function μ  which maps each value 

ix  into the corresponding degree )( ixμ  is called a membership function, or a fuzzy 

set. 

 

In considering the question related with fuzzy property, we consider the 

information itself has the uncertainty and fuzzy property.  Hence, let’s firstly give an 

easy and precise explanation about fuzzy numbers. 

 

Definition 5.1.1.  Fuzzy Number 

 Let U  denote a universal set, n
iiA 1}{ =  be a subset of discussion factors on U , 

and )( iAΛ  be a level set of iA  for ni  , ,2 ,1 L= .  The fuzzy number of a 

statement or a term X  over U  is defined as: 

 ∑
=

=
n

i
AiU XIXX

i
1

)()()( μμ  (2.1) 

where n
iii XX 1}1)(0),({ =≤≤ μμ  are set of membership functions for corresponding 

factor in n
iiA 1}{ = , and 1)( =xI A , if Ax ∈ ; 0)( =xI A , if Ax ∉ .  If the domain of 

the universal set is continuous, then the fuzzy number can be written as  

∫ ⊆
=

AA AiU
i i

XIXX
 

)()()( μμ . 

 

In the research of social science, the sampling survey is always used to evaluate 

and understand public opinion on certain issues.  The traditional survey forces 

people to choose one answer from the survey, but it ignores the uncertainty of human 

thinking.  For instance, when people need to choose the answer from a survey which 



 42

lists five choices, including "very satisfactory," "satisfactory," "normal," 

"unsatisfactory," and "very unsatisfactory," the traditional survey method become 

quite impractical. 

 

The advantages of evaluation with fuzzy number are listed as follows: 

(i) Evaluation process becomes robust and consistent by reducing the degree 

of subjectivity of the evaluator. 

(ii) Self-potentiality is highlighted by indicating individual distinctions. 

(iii) Provide the evaluators with an encouraging, stimulating, self-reliant guide 

that emphasizes on individual characteristics.  While the drawback is that 

the calculating process will be more complex than the conventional one.  

 

 

5.2. Fuzzy Mean 

In the traditional statistical approach, we start with a collection of real numbers, 

i.e., in more precise term, we used number-valued statistics.  In an interval situation, 

we start with a collection of intervals instead of a collection of numbers.  So, if we 

use statistical methods to process this collection, it is natural to call these statistical 

methods interval-valued. 

 

 Let us see what statistical characteristics we can naturally extract from this 

collection. In traditional statistical techniques, each expert presents a single number, 

and from this collection, we can extract the probabilities )( ixp  and cumulative 

probabilities ( )ixF .  In the interval case, each expert presents two numbers −x  

and +x .  So instead of a single collection of numbers, we have two collections: a 

collection of the lower endpoints −x , and the collection of upper endpoints +x .  It 

is therefore natural to apply the standard statistical procedure to each of these 

collections. 
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Definition 5.2.1.  Fuzzy Mean (Data with Interval Values) 

Let U  be the universe set, and } , ,2 ,1 , , ], ,[{ niRbabaFS iiiii L=∈=  be a 

sequence of random fuzzy sample on U . Then the fuzzy expected value is defined as 

]1 ,1[
11

∑∑
==

=
n

i
i

n

i
i b

n
a

n
FX . 

 

Fuzzy techniques were developed to describe and analyze the situation when an 

expert is not sure about the value of the estimated quantity x , and may consider 

several different values to be possible. 

 

We start with the set } , ,{ 1 vxxX L=  of all possible values of x .  In principle, 

the values which an expert considers possible can form an arbitrary subset of this set.  

Usually, however, not all subsets occur.  Typically, if an expert believes that two 

values xx ′′<′  are possible, than all intermediate values x  (i.e., values for which 

xxx ′′<<′ ) are possible as well.  In such a situation, to describe the set of all the 

values x  which an expert considers possible, it is sufficient to describe the smallest 

−x  and the largest +x  of these values; then all the values between −x  and +x  

are possible as well.  In other words, in such situation, the set of all values ix  

which an expert considers possible forms an interval }{] ,[ +−+− ≤≤= xxxxx . 

 

Therefore, all we have to collect from the experts are these intervals, i.e., to be 

more precise, their endpoints.  As a result, we have a collection of intervals. 

 

Definition 5.2.2.  Fuzzy Mean for Unbounded Sample 

Let U  be the universe set, and } , ,2 ,1 , ), ,[{ niRaaFS iii L=∈∞=  be a 
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sequence of random fuzzy sample on U .  Then the fuzzy expected value is defined as  

) ,[ 21 ∞
+++

=
n

aaaFX nL  

If ] ,( 11 bX −∞= , …, ] ,( nn bX −∞= , then the fuzzy expected value is defined as  

] ,( 21
n

bbbFX n+++
−∞=

L . 

 

Example 5.2.3. 

In a survey with the starting salary for the new undergraduate students’ salary, 

we find the following 5 data as follows: 

[1000, 2000], [2000, 2500], [3000, 4000], [1500, 2000], [1000, 1500] 

Then according to the definition 3.2.1, the fuzzy mean becomes: 

 FX  = [
5

15.1321 ++++ , 
5

5.1245.22 ++++ ]＝[1.7, 2.4]  (unit is thousand)  

 

 

Definition 5.2.4.  Defuzzyfication for Discrete Fuzzy Data 

Let D  be a fuzzy sample on universe domain U  with ordered linguistic 

variable } , ,2 ,1 :{ kiLi L= .  iiD mL =)(μ  is the membership with respect to iL , 

∑
=

n

i
iD L

1
)(μ =1.  We say ∑

=
=

k

i
iif LmD

1
 is the defuzzyfication value for discrete fuzzy 

data D . 

 

Definition 5.2.5.  Defuzzyfication for Interval Fuzzy Data 

Let C  be a fuzzy sample on universe domain U  with support on ] ,[ ba .  The 

membership of )()( xfxC =μ , 1)(0 ≤≤ xf  if ] ,[ bax ∈ , is a convex function.  

Then  
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is called the defuzzyfication value for interval fuzzy data. 

 

 

5.3. Some Properties and Soft Computing of Fuzzy Data 

 

Soft computing is the most important tool on arithmetic manipulation of fuzzy 

numbers. After soft computing, we introduce some properties of fuzzy number 

including “fuzzy equal”, “fuzzy belongs”, “fuzzy index equal”, as well as “fuzzy 

distance”.  We also give detailed discussion on “fuzzy distance” which includes four 

types. From theorem 5.3.1. to theorem 5.3.7., we give more detailed discussions on 

properties of distance. 

 

 

5.3.1. Fuzzy Equal and Fuzzy Belongs for Fuzzy Data 

 We give the definition of the fuzzy equal for discrete data as the beginning of this 
section. 
 

Definition 5.3.1.  Fuzzy Equal for Discrete Data 

Let U  be a universe domain and } , , ,{ 21 kLLLL L=  be sequence of rank 

ordering of linguistic variables on U .  }2 ,1 ,{
2

2

1

1 =+++= i
L
m

L
m

L
mX

k

ikii
i L , 

1
1

=∑
=

k

j
ijm  are two random samples from U .  If jj mm 21 =  for kj  , ,2 ,1 L= .  

Then we say that 1X  fuzzy equals to 2X , denoted by 21 XX F≈ . 

 

Definition 5.3.2.  Fuzzy Index Equal for Discrete Data 

Let U  be a universe domain, } , , ,{ 21 kLLLL L=  be sequence of rank 
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ordering of linguistic variables on U , and }2 ,1 ,...{
2

2

1

1 =+++= i
L
m

L
m

L
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k

ikii
i , 

1
1

=∑
=

k

j
ijm  are two random samples from U .  Then the center of fuzzy number for 

discrete type is ∑
=

=
k

j
jiji LmCX

1
.  If 21 CXCX = , we say that 1X  fuzzy index 

equals to 2X , denoted by 21 XX I≈ . 

 

Definition 5.3.3.  Fuzzy Equal for Interval Data 

Let A , B  be two fuzzy data with membership functions )()( xfxA =μ  and 

)()( ygyB =μ  where 1)(0 ≤≤ xf  if x ] ,[ ba∈  and 1)(0 ≤≤ yg  if ] ,[ dcy ∈ .  If 

A , B  have the same support and f , g  are all convex functions then we say A  

is fuzzy equal to B , written as BA F= , or briefly written as ] ,[ baA F= . 

 

For left unbounded or right unbounded, the definitions are similar. 

 

Definition 5.3.4.  Fuzzy Belongs for Interval Data 

Let A , B  be two fuzzy data with membership functions )()( xfxA =μ  and 

)()( ygyB =μ  where 1)(0 ≤≤ xf  if x ] ,[ ba∈  and 1)(0 ≤≤ yg  if ] ,[ dcy ∈ .  If 

the support of A  is contained in the support B  and f , g  are all convex 

functions, then we say A  is fuzzy belongs to B , written as BA F∈ , or briefly 

written. ] ,[ dcA F∈ . 

 

 In order to set up an appropriate testing hypothesis on the fuzzy data, it is 

necessary to give definitions about measurement of distance of fuzzy set.  In the 

following, we set up firstly, the definition of fuzzy distance with fuzzy interval data.  

The definition is different from the traditional interval operations.  Our consideration 
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is concentrated on the statistical point of view. 

 

Definition 5.3.5.  Distance of Fuzzy Interval Set 

Let A , B  be two fuzzy data with membership functions )()( xfxA =μ  and 

)()( ygyB =μ  where 1)(0 ≤≤ xf  if x ] ,[ ba∈  and 1)(0 ≤≤ yg  if ] ,[ dcy ∈ .  We 

give four definitions of distance: 

} , |:inf{|) ,(1 ByAxyxBAd ∈∈−=  

} , |:sup{|) ,(2 ByAxyxBAd ∈∈−=  

} ,inf{) ,( 213 εε=BAd  

} ,sup{) ,( 214 εε=BAd  

where ]} ,[] ,[ :inf{1 εεεε +−⊂= badc  and ]} ,[] ,[ :inf{2 εεεε +−⊂= dcba . 

 

Example 5.3.6.  Fuzzy Distance 

Let A , B  be two fuzzy data with support [1, 3], [2, 5].  Then it is easy to 

calculate ) ,(1 BAd  and ) ,(2 BAd  as follows: 

0]}5 ,2[ ],3 ,1[ |:inf{|) ,(1 =∈∈−= yxyxBAd  

4]}5 ,2[ ],3 ,1[ |:sup{|) ,(2 =∈∈−= yxyxBAd  

To calculate ) ,(3 BAd  and ) ,(4 BAd , we should calculate 1ε  and 2ε  first as 

follows: 

2]}3 ,1[]5 ,2[ :inf{1 =+−⊂= εεεε  

1]}5 ,2[]3 ,1[ :inf{2 =+−⊂= εεεε  

By Definition 5.3.5, the other two distant are as follows: 

1}1 ,2inf{) ,(3 ==BAd  

 2}1 ,2sup{) ,(4 ==BAd .  

 

5.3.2. Some Properties about Fuzzy Data 

Theorem 5.3.1.  Let A , B  be two fuzzy data with membership functions 
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)()( xfxA =μ  and )()( ygyB =μ  where 1)(0 ≤≤ xf  if ] ,[ bax ∈  and 

1)(0 ≤≤ yg  if ] ,[ dcy ∈ , the fuzzy equals implies fuzzy belongs. 

Proof:  Gives ] ,[ baA F= , since ] ,[] ,[ baba =  implies ] ,[] ,[ baba ⊆ .  Hence we 

conclude that ] ,[ baA F∈ .  

 

Theorem 5.3.2.  For any fuzzy set C  with support ] ,[ nm  and has no intersection 

with the support of A  and B . 

 (i)  If mb < , md <  and ) ,() ,( 11 CBdCAd = , ) ,() ,( 22 CBdCAd = , then 

BA F= . 

 (ii)  If na > , nc >  and ) ,() ,( 11 CBdCAd = , ) ,() ,( 22 CBdCAd = , then 

BA F= . 

Proof:  (i) By definition ) ,() ,( 21 CBdCAd =  give that  

} , |:inf{|} , |:inf{| CzByzyCzAxzx ∈∈−=∈∈−  

This imply that dmbm −=− , i.e. db = .  Similarly, by definition ) ,(2 CAd =  

) ,(2 CBd  give that  

} , |:sup{|} , |:sup{| CzByzyCzAxzx ∈∈−=∈∈−  

This imply that cnan −=− , i.e. ca = .  Therefore BA F= . 

(ii) By using the similarly argument as part (i), it is easily to conduct the proof.  

 

 

Theorem 5.3.3.  For any fuzzy set C  with support ] ,[ nm  and has no intersection 

with the support of A  and B .  If BA F∈ , then ) ,() ,( 11 CBdCAd ≥  and 

) ,() ,( 22 CBdCAd ≤ . 

Proof:  We will only prove the case md < , the proofs of other cases are similar.  

The fuzzy belongs BA F∈  imply that  

ca ≥  and db ≤  

Let m  subtract by b  and d ; and let n  subtract by a  and c  yield that 

dmbm −≥−  and cnan −≤−  
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Hence we have  

 ) ,() ,( 11 CBdCAd ≥  and ) ,() ,( 22 CBdCAd ≤ .  

 

We note that the inverse direction of theorem 3.3.3 is not true. For example, choose 

]3 ,1[] ,[ =ba , ]18 ,15[] ,[ =dc , ]10 ,8[] ,[ =nm  then  

) ,() ,( 11 CBdCAd ≥  and ) ,() ,( 22 CBdCAd ≤  but BA F∉  

 

Theorem 5.3.4.  Suppose that φ=∩ ] ,[] ,[ dcba  and abcd −≥− .  Then  

⎩
⎨
⎧

>−
<−= dadb

cbacBAd   if
  if) ,(3 . 

Proof:  We will only consider the case cb < , the proof of case da >  is similar.  

To obtain the fuzzy distance 3d , we firstly calculate 1ε  and 2ε  as follows: 

bdbadc −=+−⊂= ]} ,[] ,[ :inf{1 εεεε  

and 

acdcba −=+−⊂= ]} ,[] ,[ :inf{2 εεεε  

By comparing these two values, we have 

0)()(21 ≥−−−=− abcdεε  

Therefore 

 acBAd −== } ,inf{) ,( 213 εε   

 

Theorem 5.3.5.  Suppose that φ≠∩ ] ,[] ,[ dcba , ] ,[] ,[ dcba ⊄ , and abcd −≥− , 

then 

⎩
⎨
⎧

>−
<−= dbdb

caacBAd   if
  if) ,(3 . 

Proof:  Since  

abcd −≥−  

we have 

acbd −≥−  
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The other parts of proof are similar to that of Theorem 3.3.4.  

 

Theorem 5.3.6.  If ] ,[] ,[ dcba ⊂  then 0) ,(3 =BAd . 

Proof:  First, we calculate 1ε  and 2ε  as follows: 

0]} ,[] ,[ :inf{1 >+−⊂= εεεε badc  

and 

0]} ,[] ,[ :inf{2 =+−⊂= εεεε dcba  

Therefore 0) ,(3 =BAd .  

 

Theorem 5.3.7.  Give a fuzzy set C  with support ] ,[ nm . 

(i)  If cdnm −≥−  and BA F∈  then ) ,() ,( 33 CBdBAd ≤ . 

(ii)  If cdnm −≥−  and BA F=  then ) ,() ,( 33 CBdBAd = . 

Proof:  (i)  The fuzzy belongs BA F∈  imply that ca ≥  and db ≤ .  Let 

consider the following cases: 

 Case 1:  If md <  then ) ,() ,( 33 CBdcmamCAd =−≤−= . 

 Case 2:  If nc >  then ) ,() ,( 33 CBdndnbCAd =−≤−= . 

 Case 3:  If mc < , ma < , and md ≥  then 

) ,() ,( 33 CBdcmamCAd =−≤−= . 

 Case 4:  If mc <  and ma ≥  then ) ,(0) ,( 33 CBdcmCAd =−<= . 

 Case 5:  If mc ≥  and nd ≤  then ) ,(0) ,( 33 CBdCAd == . 

 Case 6:  If nc ≤ , nb > , and nd >  then ) ,() ,( 33 CBdndnbCAd =−≤−= . 

 Case 7:  If nc ≤ , nb ≤ , and nd >  then ) ,(0) ,( 33 CBdndCAd =−<= . 

After considering all possible cases, we completed the proof of (i).  Similarly, by 

considering all the possible cases, the proof of part (ii) can be easily obtained.  
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5.4. Testing Hypothesis with Fuzzy Data 

 

It is a new research topic about the hypothesis testing of fuzzy mean with 

interval values.  First of all, we will give a definition about the defuzzification. Then 

under the fuzzy significant level δ , we make a one side or two side testing.  The 

side of these methods are a little different from traditional significant level α .  In 

order to get the robust properties, we will set up the rejection area level δF , 

according to the fuzzy population. 

 

 

5.4.1. Testing Hypothesis for Fuzzy Equal 

Let U  be the universal set (a discussion domain), } , , ,{ 21 kLLLL L=  a set of 

k-linguistic variables on U , and },,,{ 21 mAAAA L=  and },,,{ 21 nBBBB L=  be 

two sets drawn from categorical populations with numbers on U .  For each sample 

in },{ jj BA , assign a linguistic variable jL  and a normalized membership ijm  

where 1
1

=∑
=

k

j
ijm , and let ∑

∈
=

BAi
ijij LnFn

 ,
, kj  , ,2 ,1 L=  be the total memberships 

in the cell ) ,( ji .  The following statements are process for testing hypothesis 

 

Testing hypothesis of fuzzy equal for discrete fuzzy mean 

Consider a K-cell multinomial vector }...,,,{ 21 knnnm =  with nn
k

i
i =∑

=1
.  

The Pearson chi-squared test ( ∑∑
−

=
i j

e
en

ij

ijij
2)(2χ ) is a well known statistical test 

for investigating the significance of the differences between observed data arranged in 

K  classes and the theoretically expected frequencies in the K  classes.  It is clear 

that the large discrepancies between the observed data and expected cell counts will 
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result in larger values of 2χ . 

 

However, a somewhat ambiguous question is whether (quantitative) discrete data 

can be considered categorical and use the traditional 2χ -test.  For example, suppose 

a child is asked the following question:  “How much do you love your sister?”  If 

the responses is a fuzzy number (say, 70% of the time), it is certainly inappropriate to 

use the traditional 2χ -test for the analysis.  We will present a 2χ -test for fuzzy 

data as follows: 

 

Procedures for Testing Hypothesis of Fuzzy Equal for Discrete Fuzzy Mean 

1. Hypothesis:  Two populations have the same distribution ratio. 

2. Statistics:  ∑ ∑
∈ =

−
=

BAi

c

j ij

ijij

e
eFn

, 1

2
2 )]([

χ . 

 (In order to perform the chi-square test for fuzzy data, we transfer the decimal 

fractions of ijFn in each cell of fuzzy category into the integer ][ ijFn by 

counting 5.0  or higher fractions as 1 and discard the rest.) 

3. Decision rule:  Under significance level α , if )1(22 −> kαχχ , then we reject 

null hypothesis. 

 

 

Testing Hypothesis of Fuzzy Index Equal for Discrete Fuzzy Mean 

Let FX  be the fuzzy sample mean, fX  be the defuzzyfication of FX .  

Under the fuzzy significant level δF , and the corresponding critical value δF , we 

want to test  

 FXFH =μ  :0  

 FXFH ≠μ  :1  
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where μF  is the fuzzy mean of the underlying population.  Let μ  be the 

defuzzyfication value of μF , then the above hypothesis becomes 00   : μμ =H .  

The test procedure is listed as follows: 

1. Hypothesis: 

  00   : μμ FFH =  

  01   : μμ FFH ≠  

2. Statistics:  Find the fuzzy mean FX  from a random sample iSi  ,{  

} ..., ,2 ,1 n= . 

3. Decision rule:  Under the fuzzy significant level δF , if δμ >− || 0fX , then 

reject 0H ; otherwise do not reject 0H . 

 

Note that the left side test 

 00   : μμ FFH =  

 01   : μμ FFH >  

Under the fuzzy significant level δF , the rejection region is replaced by 

δμ >− fX0 .  The right side test can be conducted by a similarly way. 

 

Testing Hypothesis with Continuous Fuzzy Mean 

1.  Hypothesis: 

 ] ,[  :0 baFH F=μ  

 ] ,[   :1 baFH F≠μ  

2. Statistics:  Find the fuzzy mean ] ,[ ul xxFX =  from a random sample iSi  ,{  

} ..., ,2 ,1 n= . 

3. Decision rule:  Under the significant level δF , calculate the value k  such 

that )( abk −= δ , if kaxl >−  or kbxu >−  then reject 0H ; otherwise do 
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not reject 0H . 

 

 

5.4.2. Testing Hypothesis for Fuzzy Belongs 

 

 The testing hypothesis for fuzzy belong can be performed in three ways, namely, 

fuzzy belong with bounded sample, fuzzy belong with bounded below sample, fuzzy 

belong with above sample.  We will list three procedures as follows. 

 

Testing of Fuzzy Belongs with Bounded Sample 

1. Hypothesis: 

 ] ,[  :0 baFH F∈μ  

 ] ,[   :1 baFH F∉μ  

2. Statistics:  Find the fuzzy mean ] ,[ ul xxFX =  from a random sample iSi  ,{  

} ..., ,2 ,1 n= . 

3. Decision rule:  Under the significant level δF , calculate the value k  such 

that )( abk −= δ , if kaxl −<  or kbxu +>  then reject 0H ; otherwise do 

not reject 0H . 

 

 

Testing of Fuzzy Belongs with Unbounded Below Sample 

1. Hypothesis: 

 ] ,(  :0 bFH F −∞∈μ  

 ] ,(   :1 bFH F −∞∉μ  

2. Statistics:  Find the fuzzy mean ] ,( uxFX −∞=  from a random sample iSi  ,{  
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} ..., ,2 ,1 n= . 

3. Decision rule:  Under the significant level δF , calculate the value k  such 

that rk δ=  where r is a constant, if kbxu +>  then reject 0H ; otherwise do 

not reject 0H . 

 

 

Testing of Fuzzy Belongs to with Bounded Above Sample  

1. Hypothesis: 

 ) ,[  :0 ∞∈ aFH Fμ  

 ) ,[   :1 ∞∉ aFH Fμ  

2. Statistics:  Find the fuzzy mean ) ,[ ∞= lxFX  from a random sample iSi  ,{  

} ..., ,2 ,1 n= . 

3. Decision rule:  Under the significant level δF , calculate the value k  such 

that rk δ=  where r is a constant, if kaxl −>  then reject 0H ; otherwise do 

not reject 0H . 

 

 

5.5. Empirical Studies 

 

Example 5.5.1.  

 How do Chinese and English-speaking children's conditional reasoning and 

expressions develop over time? Is language different, such as English versus Chinese, 

related to children's understanding of conditionals? Among the testing stimuli, six 

conditional questions with different degrees of hypotheticality were asked based on a 

picture book to the two groups of children in their native language respectively.  The 

questions are listed in the table 3.1. 
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Table 5.1:  Types of Conditional Questions and Examples 

Conditional Questions Examples 

1. Future open conditionals If you ask your Mom whether she loves you, 

what will she say?  

2. Present open conditionals If somebody bites you, does it hurt?  

3. Past open conditionals There are lions in the zoo. If I have been to 

the zoo, would I see the lions?  

4. Imaginative conditionals Which animal would you like to be if you 

were the piglet? Why would you want to be 

a       ? 

5. Present counterfactuals The mother pig is afraid after the piglet 

becomes a lion because the lion might bite her 

with its sharp teeth. What if the lion didn't 

have sharp teeth? 

6. Past counterfactuals The piglet was a lion before.  But he 

changed back to be a piglet again at the end. 

What if the piglet had not changed back to 

himself, what would the mommy pig have 

done then?  

 

The test for fuzzy equals are shown in the table 3.2. 

 

Table 5.2:  A comparison of the traditional and fuzzy statistical analysis 6 

conditional questions in table 5.1 
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Note:  a Conditional response, b Indeterminate response, c Non-conditional response, 
d More than two cells numbers are ≤ 1, Chi-Square test is invalid.  In order to 

perform the Chi-square test for fuzzy data, we transfer the decimal fractions in each 

cell of fuzzy category into the integer by counting 5 and higher fractions as 1 and 

discard the rest. 

 

 

 

From Table 5.2 we find that there was no difference between these two groups. The 

fuzzy testing hypothesis of fuzzy equal for discrete fuzzy data, uses more 

differentiated categories and tends to reflect a more truthful picture of the data. 

 

Example 5.5.2.  

A farmer wants to adapt a new cooking style of fried chicken from traditional 

0H : Language difference does not affect 

children's understanding of conditionals. i.e. 

EFC FFH μμ =:0  

 

 

Con.a

 

 

Ind.b

 

Non. 

Conc 

 

Chi-Square 

Testd 

Chinese 29.8 21.2 5  

1. Future open conditionals English 16.8 4.4 0.8 

2χ = 3.71, 
p = 0.16 

Accept 0H  
Chinese 20.6 22.4 12.6  

2. Present open conditionals English 14.2 5.6 2.2 

2χ = 4.68, 
p = 0.096 
Reject 0H  

Chinese 22.8 23.2 10  

3. Past open conditionals English 11.4 8 2.6 

2χ = 0.55, 
p = 0.76 
Accept 0H  

Chinese 42.2 12.4 1.4  

4. Imaginative conditionals English 17 4.8 0.2 

2χ  = 0.41 d 

Chinese 25 9.2 1.8  

5. Present counterfactuals English 14.4 6 1.6 

2χ  = 0.34, 
p = 0.84 
Accept 0H  

Chinese 25.6 22.4 8  

6. Past counterfactuals English 10.8 5.2 6 

2χ =2.76, 
p = 0.25  
Accept 0H  
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techniques.  He invites 5 experts to join the evaluating experiment.  After they 

tested the new fry chicken, they are asked to give a fuzzy grading with: very 

unsatisfactory (V. U.) = 1, unsatisfactory (U.) = 2, no difference (N. D.) = 3, 

satisfactory (S.) = 4, very satisfactory (V. S.) = 5.  Table 5.3 shows the result of the 5 

experts’ evaluation. 

 

Table 5.3:  Evaluation Result for 5 Experts 

 

Expert 

V. U.  

Grade = 1 

U.  

Grade = 2 

N. D. 

Grade = 3 

S.  

Grade = 4 

V. S. 

Grade = 5 

A 0 0 0 0.7 0.3 

B 0 0 0 0 1.0 

C 0 0.4 0.6 0 0 

D 0 0 0 0.8 0.2 

E 0.1 0.9 0 0 0 

 

Let’s set up the hypothesis testing for fuzzy index equal:  

 3F  :0 =μH  

 3F  :1 ≠μH  

Under the significant level 1.0=δ , since 4.2=fX  then we have 

1.06.04.230 >=−=− fXμ  

Therefore we reject H 0 .  The manager conclude that fuzzy index fX  is less than 3, 

the manager will not apply this new cooking style. 

 

 

Example 5.5.3. 

A company administrator wants to control the time of turning on air-condition 
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base on the energy saving reason.  He feels that that the temperature over 28℃ will 

be hot and is the time to turn on.  However, he wants to know how the other staff 

feels. So, he asks for five staffs at random to investigate and then gets five data as 

follows: 

[27, ∞ ), [26, ∞ ), [29, ∞ ), [24, ∞ ), [26, ∞ ) 

He need to do the following test 

 ) ,28[  :0 ∞=μH  

 ) ,28[   :1 ∞≠μH  

After simple computation, we have FX = [26.4, ∞ ).  Under the significant level 

2.0=δ , since 28 − 26.4 > 0.2, we reject 0H  and suggest that turn on the air 

condition when the temperature is between 26℃and 28℃. 

 

 

Example 5.5.4. 

The human resource department announced that 20 to 26 years old people 

request their salary between 20 thousands and 40 thousands with deviation 5 

thousands.  The manger asks the statistical department to check it up.  Suppose they 

find 10 young man between 20 and 26 years old, survey their request salary, the 

sample data are as follows: 

[3, 4], 1.8, [2, 3], [4, 6], [1.5, 2] [3, 4], 2, [2, 3], [3, 5], [2.5, 4] 

where the unit is ten thousands.  To test 

 ]4 ,2[  :0 FFH ∈μ  

 ]4 ,2[   :1 FFH ∉μ  

Here, w should treat 1.8 as [1.8, 1.8].  After simple computation, we get 

 FX  = [
10

453242638.14,
10

5.232235.1428.13 ++++++++++++++++++ ] 
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 = [2.38, 3.48] 

Under the significant level 5.0=δ , since 2.38 ＞ 2 − 0.5 and 3.48 ＜ 4 + 0.5 and 

2.38 ＜ 2 + 0.5 but 3.48 ＜ 4 − 0.5, we do not accept what human resource 

department saying.  We accept 0H , i.e. FX F∈ [2, 4]. 

 

 

Example5.5.5. 

 Suppose a salesman wonders how the living standard will influence the sales of 

volumn for two communities X  and Y .  They want to find out which has higher 

income level to make the sales strategy.  He chooses 100 families at random from 

each community and gets data.  He wants to test 

 0H :  Two communities have same income level  

 1H :  Two communities have different income level 

 After simple computation, we get ]5.5 ,3.4[=FX  and ].77 ,7.6[=FY  (in 10 

thousands).  Under the significant level 1=δF , δFX = 4.9, δFY = 7.2.  Since 7.2 

− 4.9 ＞ 1, we conclude that community Y  has higher income level than that of 

community X . 


