2 A Class of Prime Rational Functions

In this section, we will prove a new class of prime functions given by rational

functions. First, we recall the definitions about prime and pseudo-prime functions:

Definition 2.1 A meromorphic function of the form h(z) = fog(z) is said to have
f(2) and g(2) as left and right factors, respectively, provided that either f(z) is non-
bilinear and meromorphic and g(z) is non-bilinear and entire, or f(z) is rational

and g(z) is meromorphic. In particular, we say that f o g(z) is a factorization of

h(z).

Definition 2.2 A meromorphic function h(z) is said to be pseudo-prime if every
factorization h(z) = f o g(z) implies that either f(z) is rational or g(z) is a poly-

nomaal.

Definition 2.3 A meromorphic function h(z) is said to be prime if every factor-

ization h(z) = f o g(z) implies that either f(z) is bilinear or g(z) is bilinear.

Definition 2.4 A transcendental meromorphic function is a meromorphic function
other than a rational function, a transcendental entire function is an entire function

other than a polynomaial.
Now, we begin our main work with the following Proposition:
Proposition 2.5 FEvery rational function Q(z) is pseudo-prime.
Proof. If not, write Q(z) = fog(z), where f(2) and g(z) are both transcendental.
By Picard’s Theorem, we can find z; € C such that the equation g(z) = g(zp) has

infinity many number of roots. So the equation Q(z) = (Q(zp) also has infinity many

number of roots which is impossible. Hence, ((z) is pseudo-prime. 0



Proposition 2.6 The factors of a rational function Q(z) are both rational func-

tions.

Proof. Let Q(z) = fog(z). Since Q(z) is pseudo-prime, we have either f(z) is a
rational function or g(z) is a polynomial. If g(z) is a polynomial, suppose f(z) is
a transcendental meromorphic function, we can find z; € C such that the equation
Q(2) = Q(z1) has infinity many number of roots, which is impossible. Hence, f(2)

must be a rational function.

If f(2) is a rational function, suppose ¢(z) is a transcendental meromorphic
function, then we can find 2, € C such that the equation Q(z) = Q(z2) has infinity
many number of roots, which is also impossible. Hence, g(z) must be a rational

function. N

Now, we come to our main work. We are interested in the rational functions

of the form
= P 2 b2, .. . DPn
RS e s e
where aq, as, ..., a,, b1, ba, ..., b, are distinct complex numbers and p, ps, ...,
DPn, 41, G2, - - -, Gm are distinct prime integers. One may ask the following question:

Is Q(z) prime? The answer is yes. In order to prove this general result, we first
prove some special cases, so that the general case can be followed. For simplicity,
we only consider monic rational functions.

(z—a)

Theorem 2.7 If Q(z) = W, where a, b are distinct complex numbers and p,
Z —_—

q are distinct prime integers. Then Q(z) is prime.

Proof. If not, by Proposition 2.6, we may assume Q(z) = f o g(z), where f(z),

g(z) are both non-bilinear rational functions. Write

(z—c)(z— ) (2 —cp)l

O = G —de e = d




where ¢1, ¢o, ..., ¢, are distinct zeros of f(z) with multiplicity [y, s, ..., [,, respec-
tively, and dy,ds, ..., d,, are distinct poles of f(z) with multiplicity ki, ks, ..., kpn,
respectively. So

(z—a)

(z —b)e B

(9(2) = 1) (9(2) = 2)" -~ (9(2) = ca)"
(g(z) - dl)kl (g(z) — dz)kz ce (g(z) _ dm)kma

Qz) = foglz) =

(2 = a)P(g(2) — d1)™ (g(2) — d2)*= -+ (g(2) — du)"
= (2 = b)1(g(2) — c1)"(g(2) = c2)"* -~ (g(2) — ca)"™
Note that the zeros of (g(z) — d;)% and (g(z) — ¢;)" are all distinct for 1 < j < m,

1 <17 < n. Hence, we can immediately get n =m = 1. i.e.,

(2 = a)’(g(2) — di)" = (2 =b)"(g(2) — ex)".

MOI‘GOVGI‘, We may assuime

(z—a)
9(z) —c1 = W
N (z—0b)r
9(z) —di = W’
where (3(z) is a nonzero polynomial and non-vanishing at a, b. Then
=
(@) =) = g5
W (2 — b)r2h
(9(2) —di)™ = T Fh(s)

Therefore, we will get r1l; = p, roky = ¢, and [y = k. Since p, ¢ are distinct prime

integers, we have [, = k; = 1, this implies

o Zz—C
f(z> - o — d17
which contradicts to our hypothesis. Hence, Q(z) is prime. [
We immediately get:
(z —a)? -
Corollary 2.8 IfQ(z) = W, where a, b are distinct complex numbers and p,
Z —

q are relative prime integers. Then Q(z) is prime.



—a)?(z — b)1
(z—o)
bers and p, q, v are distinct prime integers. Then Q(z) is prime.

, where a, b, ¢ are distinct complex num-

Theorem 2.9 If Q(z) = (2

Proof. If not, by Proposition 2.6, we may assume Q(z) = f o g(z), where f(z),

g(z) are both non-bilinear rational functions. Write

(z—c)'(z—c)2 - (2 — )

(2 — d)1 (2 —do)2 -~ (2 — )

f(z) =

where ¢y, ¢o, ..., ¢, are distinct zeros of f(z) with multiplicity [y, s, ..., [,, respec-
tively, and dy,ds, ..., d,, are distinct poles of f(z) with multiplicity k1, ko, ..., km,
respectively. So

(= = a)(z = )7 _

(z—c)

(9(2) — 1) (g(2) — e2)2 -+ - (g(2) — c)'
(g(Z) 3 d1)k1 (g(z) — dz)kz ... (g(z) _ dm)km7

Q(z) = foglz) =

(2 = a)’(z = b)*(g(2) — d1)" (9(2) — d2)™ - -+ (9(2) — dm)*™
= (2= 0)"(g(2) = c1)*(g(2) — c2)"* - - (g(2) — ca)"™
Note that the zeros of (g(z) —d;)% and (g(z) — ¢;)" are all distinct for 1 < j < m,

1 <4 < n. Hence, we have two cases:

Case 1: n=2, m=1.

In this case,

(2 —a)"(z = b)"(g(2) — d1)™ = (= — )" (g(2) — e1)" (9(2) — 2)".

We may assume

B (z —a)™
g(Z) €1 = ﬁ(Z)
R Gl
o)== T
o (z — )
S Ol

where (3(z) is a nonzero polynomial and non-vanishing at a, b, and ¢. Then

(z — a)%th

(9(2) =) = A



e — (z = b)*2"
(g(Z) 2) ﬁ12(2>

kL (2 —¢)sh
(g(Z) dl) - ﬁkl (Z) :

Therefore, we will get s1l; = p, sols = q, s3ky = r and [y + I = ky. Clearly,

ki =r, s3 = 1. Moreover, if s; = 1, then

Z—a

g(z) —a = W

this implies ((z) is a constant function, so g(z) is linear which contradicts to
our hypothesis. Similarly, we can also get a contradiction if sy = 1. Hence,
we have s; = p, so = ¢, and l; = 1, [ = 1. Since l; + l5 = k1, we will get a

contradiction if r # 2. If r = 2, then

(2 = ay

g(Z)—Cl = 6(2)

(== byt
T %5 T
9 24 =y

this implies p = ¢, which is impossible.
Case 2: n=1, m=1.
In this case,
(2 = a)P(z = b)(g(2) — di)* = (2 = )" (g(2) — 1)

We may assume




where (3(z) is a nonzero polynomial and non-vanishing at a, b, and ¢. Then

(z —a)®li(z — b)s2hh
Bh(z)
(z — c)%sh

2)—d)k = 2
(9() — ) i

Therefore, we will get sil; = p, soly = q, s3ky = r and [; = k;. This implies

(9(2) = c1)"

l1 = k1 =1, so f(2) is bilinear, which contradicts to our hypothesis.

Hence, we conclude that Q(z) is prime. O

Similarly, we have the following result:

(z—a)
(2 =b)1(z — o)’
numbers and p, q, r are distinct prime integers. Then Q(z) is prime.

Corollary 2.10 If Q(z) = where a, b, ¢ are distinct complex

(2 —a)P(z — b)*
(z — )" (z = d)*’

numbers and p, q, r, s are distinct prime integers. Then Q(z) is prime.

Theorem 2.11 If Q(z) = where a, b, ¢, d are distinct complex

Proof. If not, by Proposition 2.6, we may assume @Q(z) = f o g(z), where f(z),

g(z) are both non-bilinear rational functions. Write

(z—c)(z — )2 (2 —cp)lm

M= e a = d = du

where ¢y, ¢o, ..., ¢, are distinct zeros of f(z) with multiplicity [y, s, ..., [,, respec-
tively, and dy,ds, ..., d,, are distinct poles of f(z) with multiplicity k1, ko, ..., km,
respectively. So

(z—a)’(z=0)7 _

C tou() = 9 =) (g(zx) =) (g(2) —en)
o _dr Q(z) = fog(z)

(g<2) - dl)k1 (g(z) - d2)k2 . (g(z> _ dm)km’

(2 = a)P(z = b)¥(g(2) — di)" (9(2) — d2)™ -+ (g(2) — d)*"
= (2= 0)'(z = d)*(9(2) — c1)"(g(2) = c2)"* -~ (g(2) — ca)"™
Note that the zeros of (g(z) — d;)* and (g(z) — ¢;)" are all distinct for 1 < j < m,

1 <i < n. Hence, we have four cases:



Case 1: n=2, m=2.

In this case,

(2—a)’(z=b)"(g(2)—d1)" (9(2) —da)™* = (2=¢)" (z=d)*(g(2) —e1)" (g(2) —c2)".

We may assume

g(z) —a1 = %
9(2) — e (zﬂ-(:))m
g(z) — dy = (25_(;)>t3
9(2) —dy = <Zﬁ—(:;)t47
where 3(2) is a nonzero polynomial and non-vanishing at a, b, ¢ and d. Then
(9(2) — 1) = %
(9(2) = cp)’2 = %
(9(z) — dp)™ = %
(9(2) = do)** = %'

By the same argument as in case 1 of Theorem 2.9, if there are two or more
t; = 1,4 = 1,2,3,4, it will imply g¢(z) is linear which contracdicts to our
hypothesis. Hence, there are at most one t; = 1, ¢« = 1,2,3,4. WLOG, we
may assume t; = 1, then ¢, = ¢, t3 = r, and {4 = s. By the same argument
as in case 1 of Theorem 2.9, it implies ¢ = r or r = s or ¢ = s which is

impossible. Therefore, we must have t; = p, to = ¢, t3 =1, and t, = s. i.e.,

N a)?
e

e (z —b)?
M=)



9(2) == "50
o) - de = 5,
h Gy by
56
R C)ﬁ_zsz ~ay

and we can get

(o = (=B (=0 —(z=d)

C —C dy — dy

Bz) =

By comparing the highest degree of z, we have max{p, ¢} = max{r, s}, which

is also impossible.
Case 2: n=1, m=2.
In this case,
(2 = a)P(z = 0)"(g(2) = di)" (9(2) — d2)** = (2 = ¢)" (2 = d)*(g(2) — e1)".

We may assume

e SRS
B (2=
g(Z) dl - 5(2)
B  (z—a)
g(Z) dy = ﬁ(Z) )

where (3(z) is a nonzero polynomial and non-vanishing at a, b, ¢ and d. Then

(9(z) =)t = (z —a)hthr(z — b)t2hr

ph(z)
N o
e ()R

Therefore, we get tlll =D, t2l1 =dq, tgk’l =, t4]€2 = s and ll = ]Cl —+ :I{Zg. This

implies [; = 1, which is impossible.



Case 3: n=2, m=1.
This case can be done as in case 2.
Case 4: n=1, m=1.

In this case,
(2 = a)P(z = b)(g(2) —di)" = (2 = ¢)"(z = d)*(g(2) — 1)

We may assume

(z—a)"(z — D)

WG = 5
(z—0c)3(z—d)"
s g FON

where ((z) is a nonzero polynomial and non-vanishing at a, b, ¢ and d. Then

(9(z) =) =

(9(z) —d)™ =

Therefore, we get tlll =P, t2l1 = (q, tgk’l =1, t4l{?1 = s and ll = k?l. This
implies [; = k1 = 1, so f(z) is bilinear, which contradicts to our hypothesis.
Hence, we conclude that Q(z) is prime. O

From these special cases, we can begin to discuss the general result. First, we

need some Lemmas:

Lemma 2.12 [2] If h(2) is prime, then h(az + b) is also prime, where a # 0 and

b are complexr numbers.

Proof. Let h(az+b) = fog(z), then we get

z—0b

h(Z)=fog< )Zfogl(Z),

10



where ¢1(z) = ¢g((z —b) /a). Since h(z) is prime, either f(z) is linear or g(z) is
linear. If f(z) is linear, then we are done. If g;(z) is linear, then it is clear that

g(z) is also linear. Hence, h (az + b) is prime. O

The following Lemma is similar to the so-called Newton’s identity[11,14].

Lemma 2.13 [11] If a polynomial Q(z) is of the form
Q(z) =1+ ar12)(1 + agz) - - (1 + ayz),

where ay, as, ..., a, are non-zero complex numbers (may not be distinct), then for

each k > 1, we have the identity

ksk = Sp_1t1 — Sp_atz + - + (—=1)F 'ty

where
sp(ay, ag, ..., an) = E Qiy Qiy -+ Qg
1< <ig<--<ip<n
and
k k k
ty, = a7 +ay + -+ a,,
for1 <k <n.

Proof. Suppose that

f(2) =10 +a2)1+a2) - (1+anz) =1+ 812+ 592° 4+ - + 5,27,

where
sk(ay,ag,...,a,) = E iy iy -+ - @y, for 1 <k <n.
i <ig <<
Let
(&) _ -
s = splar,ag, ... d;, ..., ap),

where d; denoted the term a; being deleted. It follows that

f(z) = (1+a;2) (1 + sgi)z + sg)ZQ 4+ 4 5&12%1) , for 1 <i<n.

11



Then we obtain

ai( f(Z) ):(li(l"‘Sg)Z—f—S()z R 5:)—12”_1>, for 1 <i<n.
1+CLZ‘Z

Adding these equations for 1 = 1,2,...,n, we get

ia (1+az) Zaz+2azsl z+- +;ais£f)_1z”_l

i=1

Applying the product rule of differentiation to f(z), it can be seen that the left
hand side of the last equation equals to f’(z). Hence, we get

Z @i = Z aisgi)z i R Z aisg)fﬁn*l = 51+ 28974 +ns, 2"l
i= i i=1

By comparing coefficients, we have
7 .
ks, = Zais,(ﬁl, for1 <k <mn,
i=1

(4)

0 — 1, Clearly, s = s, + azsk 1- S0,

where s

SS) =S — aisgﬁl, for 1 <k <n.

[here ore,
k k 19k _1 k ) k—1 19k_9 | -

Continuing in this way and using the fact that s(()i) = 1, we conclude that

3](;') = Sp — ASp_1 + a2sp_g + - + (=1)Fa¥, for 1 <i, k <n.

Replacing k by k£ — 1 and multiplying a;, we get

ais,(le = a; (8]671 — @;Skp—2 + G?Skfg —+ 4 ( 1)k ! k 1) for k > 1.

Adding this expression from ¢ = 1 to n to get

n n n

Z aisgll = Sp_1 Z a; — Sp_9 Z a? T (_1>k—1 af

i=1 i=1 =1 =1

3

and obtain

ks = Sp_1t1 — Sp_aty + -+ + (—1)k_1tk, for k > 1.

Now, we begin to state and prove our main result:

12



(2= b)) (2 —by)®2 - (2 — by,)tm
b1, ba, ..., by, are distinct complex numbers, pi, P2, ..., Pn, q1, G2, -, Gm QTE

, where ay, ag, ..., ap,

Theorem 2.14 IfQ(z) =

distinct prime integers. Then Q(z) is prime.

Proof. By Theorem 2.7, 2.9, 2.11 and their corollaries, we may only consider
the case when m +n > 4. If Q(z) is not prime, by Proposition 2.6, we may assume

Q(z) = fog(z), where f(z), g(z) are both non-bilinear rational functions. Write

(z—c)i(z—c)2-- (2 — )
(Z = dl)lﬁ (z — d2)k2 .o (Z . ds)ks7

f(z) =

where ¢y, ¢a, ..., ¢, are distinct zeros of f(z) with multiplicity Iy, s, ..., [, respec-

tively, and dy,ds,...,ds are distinct poles of f(z) with multiplicity ki, ks, ..., ks,

a(z)

respectively, and g(z) = m, where a(z), 3(z) are relative prime. Furthermore,
z
we assume the leader coefficient of 5(z) is 1. So

(2 = b)2 (2 —by)92 - -+ (2 — by, )m =Q(2) = foglz)

_ (9(2) - Cl)ll(g(z) — 02)l2 - (g(z) " Cr)lr
(g(z) = d1)k1 (g(z) = d2)k2 g . (g(z) 1 ds)ks7

ie.,

(2 —a)” - (2 = an)P (a(2) = d1B(2))" -+ (a(2) — dsfB(2))" B (2)
= (2 =b))" (2 = b)) (a(2) — c1B(2))" -+ (a(2) — e B(2))"

Let w = Z l; — Z k; > 0. If w <0, then we consider

i=i j=1

(2 = b)) (2 = by) ™ (a(2) — c1B(2))1 - (a(2) — &:8(2))" 5 (2)

= a2 0 (a() — B () — dE)
Therefore, we may assume that w > 0. Note that the zeros of 5(z), a(z) — d;3(2)
and a(z) — ¢;4(z) are all distinct for 1 < j <s, 1 <i <r. If w =0, we have the

identity

(2 — @) - (2 — an)Pr(alz) — diB(2) - (a(2) — dyB(2)
— (2= b)) (2 = ba) ™ (al2) — 1B - (alz) — erB())".

13



If w > 0 and [(2) is a constant, we also get the same identity since §(z) = 1.
If w > 0 and [((2) is a nonconstant polynomial, then 3*(z) is a finite product of

(z — b;)¥. We may assume that
5() = (= b o = b,

where 0 < u < m. If u = m, then, by dividing the common factors on both sides,

we get

(2 —a)P - (z —ap)P(afz) — diB(2))" - (a(2) — dsB(2))"™

= (a(2) — aaf(2))" -+ (a(2) = e B(2))"
which is impossible since (a(z) — di3(2))" -+ (a(z) — dsB(2))* is a nonconstant
polynomial. So 0 < u < m. Again, by dividing the common factors on both sides,

we get
(z = @)+ (2 — an)" (alz) — d1f3(2))" - (a(2) = dufB(2))"
= (z = b)? - (2 = bu)m (a(z) — ef(2)" - (ale) — e B(=))"

Hence, without lose of generality, we only consider the case when w = 0.

Now, if

Oé(z) - 016(2) = (z - al)Cl i (Z = av><v7

where v > 1, then

(a(2) = iB(2)" = (2 = @) o+ (2 = )",
it implies that [;(; = p1,--- ,1;(, = p,. Since p; are all distinct prime integers, we
get [; =1. If
a(z) —af(z) = (2 — a;)%,
then
(a(2) = cif(2))" = (2 — ai)"™“,
it implies that [;(; = p;, so [; = 1 or p;. If there are two or more I; = p;, say, [;, and

liy, then (;, = (;, =1 and we have

129

Oz(Z) - Ci1ﬁ(z) =z = Q4

14



and

a(z) = ¢;,8(2) = 2 — a;,,
which implies 3(z) is constant, so g(z) is linear, a contradiction. Therefore, there
are at most one /; = p;. Similarly, there are at most one k; = ¢;. In fact, there are
at most one [; = p; or k; = ¢g;. Otherwise, we will still get g(2) is linear. Hence,

by dividing the common factors on both sides, we may assume [; = k; = 1 for all
1<1<r, 1<j<s. Then
(z = a) - (2 = an)"(a(2) = d1B(2)) - - (a(z) — dsf3(2))
= (z=b)" - (2 = b)) " (a(2) — 1 5(2)) - - - ((2) = & (2)).

Therefore, we conclude that

(

a(z) —afB(z) = (z—a)P'(z—ax)?? (2 —an, )™
a(z) —2B(2) = (2= an11)"MHH (2 = any42)PM1+2 - (2 — an, )P
a(z) —cf(2) = (2= an,_,+1)"" 1" (2 = an,_y42)" 172 - (2 = an, )P

q (%)
a(z) —dif(z) = (2 —=b)%(z —by)® - (2 — by, )P0

alz) = dyB(2) = (2= bas )07 (5 = by g2) 02 (= = b, )

| a(2) —dsB(2) = (2= bagy_y 1) ™17 (2 = by y42) o1 ¥2 o (2 — by, )P,
where N, = n, My = m. Clearly, r + s > 3. Otherwise, f(z) is bilinear which
is impossible by assumption. Therefore, (x) has as least three different equations,

Without lose of generality, we consider

alz) —af(z) = (z—a)P(z—a)? - (2 — ag)P*
a(z) —f(z) = (2= @)™ (2 = apy2)™ - (2 = apad)PH
a(z) — c;;ﬁ(z) = (z — ak+l+1)p’“+l+1 (2 _ ak+l+2)Pk+l+2 . (Z . ak+l+r)pk+l+T,

where k = Ny, k+1 = Ny, k+ 1+ r = N3 for simplicity. Furthermore, we assume

Phtitr = 1Sg]§ﬁw{pi}. Since
(s —c)B(z) = (z—a)” (2= a)™ = (2 = Q)" - (2 = Qa7
(c3—2)B(2) = (2= ap)™ - (2 = ap)™™ = (2 = Q) (2 = Q)P0

15



we have

(Z — al)pl . (Z _ ak)Pk _ (Z _ akJrHl)Pkﬂﬂ . (Z — ak+l+r)pk+l+r
€3 —C1
(2 = apg)? - (2 = )PP — (2 = Qg 1)PH - (2 = Qg )PEEET

- )

C3 — Co

ie.,

(C2 = 1) (2 = Q)P40 - o (2 = Qg )PEH1T

=(ca—c3)(z—a)Pr -+ (2 — ap)P* + (c3 — 1) (2 — apy1 )PP+ -+ (2 — apy) PR
Replacing z by z + ag414r, We get

(02 — 01)(2’ + 6k+l+1)1’k+l+1 e (z + ek+l+r_1)z)k+z+r712pk+z+r

— (62 _ 03)(2 B el)Pl T (Z + ek)pk + (03 _ Cl)(Z + ekJrl)karl B (Z + ek+l>Pk+l

— (1 P (1 D) o (1 Sy (1 Sy
€k

€1 Chk+1 €l
. !
where €; = agiipr — @i, 0= 1,2,...;k+1+7and 0 = (o —c3)(ef' - ef¥), 0 =
(c3 —cr) (et - epith). Since pryigr > k+ 1, the coefficients of 1,2, ..., z*"" in the

left hand side of the last equation must be zero. Write the right hand side of the

last equation as follows:

c(l+—)---(1+— I+—)---(1+—)
€1 €1 €k (&%
M Pr
’ z
—|—0'(1+—) 1+—) 1—|——) 14—
Ck41 Ck+1 Ck+1 Chk+l

pl:—l p;-z

— o'(]_ + 512+ 3222 4+ 4+ Sk+lzk+l 4+ SZ’?_lpiZZlepi)

/ / / / / k+1 .
+0 (L4 512+ 827 4 - o+ 5k+lzk+l T+t Seann ZZi:k“pz)a

Zi:k+1pi
where s; and s, are defined as in Lemma 2.13. Then we have ¢ + o = 0 and
osj+0s;=0forall 1 <j<k+1I Let
1 1 1 1
tj:<_j+"+_j)+"'+(_j+"+_j>_p_jl'+' _|_p_;€
G €1, Gk €k €1 €k
1 2 1 131; 1
= (Gt ) (e b ) = S B
Cr+1 Cr+1 Cryl €+l Crt1 €rt1
pl:rl pl:!—l

16



for all 1 < j <k +1[, now we claim that
ot;+o't; =0
forall 1 <j<k+I.
For j =1, t; = s, and t; = s, by definition, so
oty + altll =081+ 0/3/1 =0.
For 5 = 2, by Lemma 2.13, we have

259 = s1t] — ty = 12 — 1y
25, = syt — ty = 12 — 1y,
SO
oty + o'ty = o(t? — 255) + 0 (£ — 2s5)

=oti40tE = (ot +0t)(tL +1)) — (6 + 0 )tit; =0.
Assume

ot; +ot; =0, 1<j<u-—1,
, where u =2,4,... . k+ 1. If j = u, then

o (—1)4 1 gL
= olus, — Sy_1t1 + -+ (=1)""Lsit, 4]
+o'[us, — s, yty - (1) syt ),

where we use Lemma 2.13. Note that

7 ’
0sy—jtj + 0 5,_;1;

’r 7

= (08u_j + o'lsfu_j)(tj + t;) — O'Su_jt;» =0 8,_jl;

! ! 7
= —O'Su_jtj — 0 Su—jtj

forall 1 < j <wu—1. Since os,_; + a/s;_j = 0 and ot; + O'/t;» = 0 by induction

hypothesis for all 1 < j <wu — 1, we have 0s,_; = —a/s;_j and ot; = —a/t;, ie.,

’ ’

Sufjtj =S tj

u—j
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for all 1 < j <w — 1. This implies

/ o

/7 !/ /
OSy—jtj +0 8, jt; = —0sy_jl; —0 5, jt;
!/ 7 ! ’
=—0s, jtj—o0s, ti=—(0c+o)s, ;t;=0.

for all 1 < j <wu— 1. Hence,
o(—=1)"", + o' (=1)"" ¢,
= ous, + o us, = 0.

That is,
oty + O'/t; =0.

S0, we have proved ot; + a/t; =0 for all 1 < j <k + [ by induction. From which,

we get a system of linear equations as follows:

( ’
g(&+...+&)+g(]ﬂ+...+zﬂ):0
€1 €k Cr+1 €+l
B By (B B g
& k €1 €hti
P Pk 1 P41 Pr+1
\ 1 k k+1 k+l1

Since e; # 0 for all 1 < j < k4 [, the determinant of the coefficient matrix

! !
o o o o
€1 €L 61@1 ek—J—l
o o o o
2 2 2 2
€1 €r €kt €k
!/ !/
o o o o
€1 €k €r11 €kt
1 1 1 1
1 1 1 1
kol il il ... =
_ €1 €k €k+1 €+l
k+i . . .
€i 1 1 1 1
il - .. e =
k+i—1 kt+i—1 k+i—1 k+i—1
€] = Ck+1 Ck+1
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and

Sl’—"‘

k+1-1

is a Vandermonde determinant which equals to

o o
€1 €k
o o
2 - 73
el ex
o o
k+1 k+1
€1 €,

Etl
€ri1

1 1 1
1 1 1
€k €k+1 Ck+1
1 1 1
EH—1  _ktl—1 k-1
€k €k11 €l

k1l
€kt

(3

1 1
H (— — —), we conclude that

Pl €;
1<i<j<k+l

O'kO'/l
- ey

k+1

iy %, €;
1<i<g<k+l
€;

=1

which is nonzero. Hence, we obtain p; = 0 for all 1 < j < k41, which is impossible.

Thus, we conclude that Q(z) is prime and we complete the proof.
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