3 Factorization of the Weierstrass @-Function

In this section, we will discuss the factorization of the Weierstrass p-function. First,

we recall some basic definition.

Definition 3.1 The Weierstrass p-function is a double period meromorphic func-

tion defined by
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where wy,ws € C with Im(wy/wy) > 0 and L' = {w = mw; + nws | myn €

Z,m,n not both zero.} is the set of all nonzero period of p(u).

Clearly, p(u) is an even function. Since 0 is a double pole of p(u), we can get

an expansion of of p(u) near 0 as follows:
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which are called the invariant of p(u). In fact, they can be explicitly expressed as

follows:

Proposition 3.2 [13] Let g2, g3 be the invariant of the Weierstrass p-function

with primitive periods wy and wo. Then

where h = ew2/w)mi
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We have the following well-known properties of p(u):

Proposition 3.3 [13] The Weierstrass o-function satisfies the differential equa-

tion

where go and gs are the invariant of p(u).

Proposition 3.4 [13] The Weierstrass p-function satisfies the formula

o(2u) = ~20(u) + & (g((“;) .

Proposition 3.5 [13] Any elliptic function with the same periods of ©-function

can be expressed as a rational function of p(u) and @' (u).

It is easy to see that any rational function can be factored into prime functions.

Ritt[4] proved that if a polynomial P(z) has two factorizations
P(z)=Pio---0P,(2)

and
P(z) = Q10 0Qn(2),

where P; and @); are prime functions, then m = n. However, this is not true
for rational functions. In fact, Walter Bergeiler[9] give such an example which is

constructed in terms of the Weierstrass g-function.

Now, our purpose is to give a detail study of this example because some non-

trival details are skipped by Walter Bergeiler:

Theorem 3.6 [9] There exists a rational function which has two factorizations into

prime functions, and each having a different number of factors.
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Proof. Consider the Weierstrass p-function

=+ (mop )
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with period 1 and v/8 i, where L' = {m+n-/8i | m,n € Z,m,n not both zero.} is
the set of all nonzero period of p(u). From Proposition 3.3 and taking the derivative

on both side, we have

2(p' () - 9" (u) = 12p(u)? - ¢ (u) = g2 - 9’ (u),

ie.,
1

o' (u) = 6@(@2 - 592-

Substituting the identity into Proposition 3.4, we get

_ 16p(u)* + 8g2p(u)* + 32g30(u) + g5
16(4p(u)? — gagp(u) — gs) '

p(2u)

Let
AN 162* + 8¢222 + 32932 + g5
16(423 — goz — g3)

then p(2u) = R(p(u)). Also, by Proposition 3.5, we have p(v/8 iu) = S(p(u)) and

o(8u) = T(p(u)), where S, T are both rational functions. Since p(u) is an even

function, we deduce that

i.e.,

T=RoRoR=5065.

Suppose R is prime. If S is prime, then we find a rational function 7" which has two
different number factorizations into prime functions. If S is not prime, since every
rational function can be factored into prime functions, we can factor S o S into an

even number prime functions, hence T still has the desired properties.

Now, it remains to prove that R is prime. Suppose R is not prime, since

the degree of R is 4, we may assume there exist two rational functions P and @)
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of degree 2 such that R = P o (). Without lose of generality, we also assume
P(0) = P(00) = oo, otherwise, we can consider R = Po Lo Lo, where L is a

suitable linear transformation. It follows that
1
P(z)=az+b+ —
z

for some a, b ,c € C. On the other hand, if we denote by ey, ey, es the zeros of

423 — goz — g3, we may assume without loss of generality that

Q(2) = (z—e1)(z —e2)

Then
Rz) = PoQ)
_ (z—e1)(z —e2) c(z — e3)
B z—e3 +b+(2—€1)(2—62)

a(z —e1)*(z —e2)? +b(z —e1)(z —e2)(z — e3) + (2 — e3)?
(z —e1)(z —e2)(z — e3)
azt + (b — 2a(e; + €2))2 + (a(e? + dejes + €3) — bleg + e + e3) + ¢) 22
(z —e1)(z — e2)(z — €3)
(b(eres + egez + ere3) — 2aerea(er + €3) — 2ces)z + (aeiel + bejeges + cel)
(z —e1)(z — e2)(z — e3)
162" + 8¢922 + 32932 + g3
16(42% — gaz — g3) '

Comparing the coefficients of 22, z and the constant term in the denominator, and

the coefficients of 2%, 23, 22, z and the constant term in the numerator, we have the

following system of equations:

.

€1+62+€3:0

1
e1€z + ese3 +e1€3 = ——go
] 4
€1€2€3 = 193
1
a= -
4

b—2a(e; +e2) =0

1
a(e? +4ejey +€3) — bleg + ey +e3) + ¢ = 59

1
b(eres + eses + ere3) — 2aeres(e + eg) — 2ce3 = 593
1
\ aelel + bejeges + ce3 = agg
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This implies e3 = —e; — €2, g2 = 4(e3 + €3 + e1e2), a = 1/4, b = (e1 + €3)/2,
c=(e; —e3)?/4, g3 = —dejes(er + e2) and ejes(e; + e3) = 0. That is, g3 = 0.

Let
1 7 = 19h2" )
216 3 - 1 — h2r”’

r=

by Proposition 3.2, we get g5 = f(e~V®7). On the other hand, we note that the
gs-value is zero if the primitive periods of the Weierstrass p-function are 1 and .
So we get f(e”™) = 0 if we choose w; = 1 and wy = ¢ in Proposition 3.2. Since
f(h) is decreasing, we see that g3 = f(e™V®") > f(e™) = 0. This contradiction

completes the proof of the theorem. U

Now, we will discuss about the primeness of the Weierstrass p-function. First,

we need some basic facts of Nevanlinna theory.

Definition 3.7 Given a meromorphic function f(z), define n(r, f) be the number
of zeros of f(z) in | z| < r with zeros of multiplicity p being counted p times, and

denote

N(T’,f) _ /Orn(xvl/f>_n(071/f>

1
i dx +n(0, ?) logr

27
m(r, f) = %/0 log™ ‘ f (rew) ‘ do,

where log* |  (re®) | =ma{] 1 (re”)

, 0}. Then the Nevanlinna characteristic

function is defined by
T(r, f) =m(r f)+ N(r, f).

The following Lemmas are well-known results:

Lemma 3.8 [8] Let f(z) be an entire function. Then

-_T(Ta f/)
PR

outside a set of r of finite linear measure.
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Lemma 3.9 [8] Let f(z) be a transcendental meromorphic function, and g(z) be a

transcendental entire function. Then

i L fog) _
im ————m =
r—00 T('r’ g)

From these Lemmas, we can prove the primeness and pseudo-primeness of the

Weierstrass p-function when the second invariant g, = 0.

Theorem 3.10 [15] If go = 0 in the Weierstrass p-function o(u), then ¢'(u) is

pseudo-prime, and the only possible nonelliptic right factors are cubic polynomials.

Proof. Write ¢'(u) = f o g(u), where f(z) is transcendental meromorphic and

g(z) is entire. By Proposition 3.3, ¢'(u) satisfies

ie.,

where F(z) = P(f(2))/(f'(2))°.

If F'(z) is transcendental meromorphic, by Lemma 3.8 and Lemma 3.9, we have

T(r,F T )3 T(r, ¢
rooc T(r,g)  r—se T(r,g) — r=cc T(r,g)
which is a contradiction. Hence, F'(z) is rational. Write
glu) —ay)™ - (glu) — ag)"™
Py = =) (gl e
(g(u) = by)m™ - (g(u) — by)™
where C'is a constant, aq, ..., ay, b1, ..., b are distinct complex numbers, nq, ..., ng,

my, ..., m; are nonnegative integers. Then

(g(u) = 01)™ - (g(u) = b)™(g' ()’ = Clg(u) — ar)™ -+ (g(u) — ax)"™.
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Since g(u) is entire, from Picard’s Theorem, we may assume ny = -+- = ng = my =

-+»=my =0, and g(u) has no Picard-exceptional value, i.e.,

('(u)* = Clg(u) — ar)™.

Clearly, ny < 2. since g(u) is entire, we may assume g(ug) = a; and write

00 (g |
o) = 3 T g,

J!

J=0

If ny = 1, then

) (g -\ 00 (ug )
(;?j—(w)!(“_““] ) :C<Zg i )(“_“0))'

j=1

Compare the coefficients of (u — ug)’, we get g (ug) = 0 for all j = 1,2,---, i.e.,
g(u) is constant, a contradiction. Hence, ny = 2. Then

R s -\ < 00 (ug \
(SR ) o (L)

g!

Compare the coefficients of (u — ug)’ again, we first get ¢'(ug) = ¢"(up) = 0. For

the coefficient of (u — ug)%, we get

(Fy =e(Ly

2C
" (up) =0 or o

If g" (up) = 0, we will get g¥)(ug) =0 for all j =1,2,---, i.e., g(u) is a constant, a

i.e.,

contradiction. Therefore, g”(ug) = 2C/9. Then

@) (44 5) (440 ) ’
<1+g () () ey 4 970 +>

9 3! 4!

Lg% () 9 (uo) )
:0(2—7+T<“—“0>+T<“‘“0> )

Compare the coefficients of (u — ug)? again, we get g (ug) = 0 for all j = 4,5,---.
Thus, g(u) = a;+C(u—wug)?/27, a cubic polynomial. That is, we conclude thatg(u)

is pseudo-prime. 0
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From Theorem 3.10, we can see that if g = 0, ©'(u) is pseudo-prime, but not
prime. In fact, p'(u) is prime if and only if g5 # 0. The proof is more complicated,

so we formulate the result as a theorem and one can find the proof in [15].

Theorem 3.11 [15] Let p(u) be the Weierstrass p-function, gs, g3 be the invariant
of p(u). Then ¢'(u) is prime if and only if go # 0.
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