3 Factorization of the Weierstrass \wp-Function

In this section, we will discuss the factorization of the Weierstrass \wp-function. First, we recall some basic definition.

Definition 3.1 The Weierstrass \wp-function is a double period meromorphic function defined by

$$
\wp(u)=\frac{1}{u^{2}}+\sum_{\omega \in L^{\prime}}\left(\frac{1}{(u-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

where $\omega_{1}, \omega_{2} \in \mathbb{C}$ with $\operatorname{Im}\left(\omega_{1} / \omega_{2}\right)>0$ and $L^{\prime}=\left\{\omega=m \omega_{1}+n \omega_{2} \mid m, n \in\right.$ \mathbb{Z}, m, n not both zero. $\}$ is the set of all nonzero period of $\wp(u)$.

Clearly, $\wp(u)$ is an even function. Since 0 is a double pole of $\wp(u)$, we can get an expansion of of $\wp(u)$ near 0 as follows:

$$
\wp(u)=\frac{1}{u^{2}}+c_{1} u^{2}+c_{2} u^{4}+\cdots+c_{n} u^{2 n}+\cdots,
$$

where $c_{n}=(2 n+1) \sum_{\omega \in L^{\prime}} \frac{1}{\omega^{2 n+2}}$. In general, we denote

$$
\begin{aligned}
& g_{2}=20 c_{1}=60 \sum_{\omega \in L^{\prime}} \frac{1}{\omega^{4}} \\
& g_{3}=28 c_{2}=140 \sum_{\omega \in L^{\prime}} \frac{1}{\omega^{6}},
\end{aligned}
$$

which are called the invariant of $\wp(u)$. In fact, they can be explicitly expressed as follows:

Proposition 3.2 [13] Let g_{2}, g_{3} be the invariant of the Weierstrass \wp-function with primitive periods ω_{1} and ω_{2}. Then

$$
\begin{array}{r}
g_{2}=\left(\frac{2 \pi}{\omega_{1}}\right)^{4}\left(\frac{1}{12}+20 \sum_{r=1}^{\infty} \frac{r^{3} h^{2 r}}{1-h^{2 r}}\right) \\
g_{3}=\left(\frac{2 \pi}{\omega_{1}}\right)^{6}\left(\frac{1}{216}-\frac{7}{3} \sum_{r=1}^{\infty} \frac{r^{5} h^{2 r}}{1-h^{2 r}}\right),
\end{array}
$$

where $h=e^{\left(\omega_{2} / \omega_{1}\right) \pi i}$.

We have the following well-known properties of $\wp(\mathrm{u})$:

Proposition 3.3 [13] The Weierstrass \wp-function satisfies the differential equation

$$
\left(\wp^{\prime}(u)\right)^{2}=4 \wp(u)^{3}-g_{2} \wp(u)-g_{3},
$$

where g_{2} and g_{3} are the invariant of $\wp(u)$.

Proposition 3.4 [13] The Weierstrass \wp-function satisfies the formula

$$
\wp(2 u)=-2 \wp(u)+\frac{1}{4}\left(\frac{\wp^{\prime \prime}(u)}{\wp^{\prime}(u)}\right)^{2} .
$$

Proposition 3.5 [13] Any elliptic function with the same periods of \wp-function can be expressed as a rational function of $\wp(u)$ and $\wp^{\prime}(u)$.

It is easy to see that any rational function can be factored into prime functions. Ritt[4] proved that if a polynomial $P(z)$ has two factorizations

$$
P(z)=P_{1} \circ \cdots \circ P_{n}(z)
$$

and

$$
P(z)=Q_{1} \circ \cdots \circ Q_{m}(z),
$$

where P_{i} and Q_{j} are prime functions, then $m=n$. However, this is not true for rational functions. In fact, Walter Bergeiler[9] give such an example which is constructed in terms of the Weierstrass \wp-function.

Now, our purpose is to give a detail study of this example because some nontrival details are skipped by Walter Bergeiler:

Theorem 3.6 [9] There exists a rational function which has two factorizations into prime functions, and each having a different number of factors.

Proof. Consider the Weierstrass \wp-function

$$
\wp(u)=\frac{1}{u^{2}}+\sum_{\omega \in L^{\prime}}\left(\frac{1}{(u-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

with period 1 and $\sqrt{8} i$, where $L^{\prime}=\{m+n \cdot \sqrt{8} i \mid m, n \in \mathbb{Z}, m, n$ not both zero. $\}$ is the set of all nonzero period of $p(u)$. From Proposition 3.3 and taking the derivative on both side, we have

$$
2\left(\wp^{\prime}(u)\right) \cdot \wp^{\prime \prime}(u)=12 \wp(u)^{2} \cdot \wp^{\prime}(u)-g_{2} \cdot \wp^{\prime}(u),
$$

i.e.,

$$
\wp^{\prime \prime}(u)=6 \wp(u)^{2}-\frac{1}{2} g_{2} .
$$

Substituting the identity into Proposition 3.4, we get

$$
\wp(2 u)=\frac{16 \wp(u)^{4}+8 g_{2} \wp(u)^{2}+32 g_{3} \wp(u)+g_{2}^{2}}{16\left(4 \wp(u)^{3}-g_{2} \wp(u)-g_{3}\right)}
$$

Let

$$
R(z)=\frac{16 z^{4}+8 g_{2} z^{2}+32 g_{3} z+g_{2}^{2}}{16\left(4 z^{3}-g_{2} z-g_{3}\right)}
$$

then $\wp(2 u)=R(\wp(u))$. Also, by Proposition 3.5, we have $\wp(\sqrt{8} i u)=S(\wp(u))$ and $\wp(8 u)=T(\wp(u))$, where S, T are both rational functions. Since $\wp(u)$ is an even function, we deduce that

$$
R(R(R(\wp(u))))=\wp(8 u)=T(\wp(u))=\wp(-8 u)=S(S(\wp(u))),
$$

i.e.,

$$
T=R \circ R \circ R=S \circ S
$$

Suppose R is prime. If S is prime, then we find a rational function T which has two different number factorizations into prime functions. If S is not prime, since every rational function can be factored into prime functions, we can factor $S \circ S$ into an even number prime functions, hence T still has the desired properties.

Now, it remains to prove that R is prime. Suppose R is not prime, since the degree of R is 4 , we may assume there exist two rational functions P and Q
of degree 2 such that $R=P \circ Q$. Without lose of generality, we also assume $P(0)=P(\infty)=\infty$, otherwise, we can consider $R=P \circ L \circ L^{-1} \circ Q$, where L is a suitable linear transformation. It follows that

$$
P(z)=a z+b+\frac{c}{z}
$$

for some $a, b, c \in \mathbb{C}$. On the other hand, if we denote by e_{1}, e_{2}, e_{3} the zeros of $4 z^{3}-g_{2} z-g_{3}$, we may assume without loss of generality that

$$
Q(z)=\frac{\left(z-e_{1}\right)\left(z-e_{2}\right)}{z-e_{3}}
$$

Then

$$
\begin{aligned}
R(z) & =P \circ Q(z) \\
& =a \cdot \frac{\left(z-e_{1}\right)\left(z-e_{2}\right)}{z-e_{3}}+b+\frac{c\left(z-e_{3}\right)}{\left(z-e_{1}\right)\left(z-e_{2}\right)} \\
& =\frac{a\left(z-e_{1}\right)^{2}\left(z-e_{2}\right)^{2}+b\left(z-e_{1}\right)\left(z-e_{2}\right)\left(z-e_{3}\right)+c\left(z-e_{3}\right)^{2}}{\left(z-e_{1}\right)\left(z-e_{2}\right)\left(z-e_{3}\right)} \\
& =\frac{a z^{4}+\left(b-2 a\left(e_{1}+e_{2}\right)\right) z^{3}+\left(a\left(e_{1}^{2}+4 e_{1} e_{2}+e_{2}^{2}\right)-b\left(e_{1}+e_{2}+e_{3}\right)+c\right) z^{2}}{\left(z-e_{1}\right)\left(z-e_{2}\right)\left(z-e_{3}\right)} \\
& +\frac{\left(b\left(e_{1} e_{2}+e_{2} e_{3}+e_{1} e_{3}\right)-2 a e_{1} e_{2}\left(e_{1}+e_{2}\right)-2 c e_{3}\right) z+\left(a e_{1}^{2} e_{2}^{2}+b e_{1} e_{2} e_{3}+c e_{3}^{2}\right)}{\left(z-e_{1}\right)\left(z-e_{2}\right)\left(z-e_{3}\right)} \\
& =\frac{16 z^{4}+8 g_{2} z^{2}+32 g_{3} z+g_{2}^{2}}{16\left(4 z^{3}-g_{2} z-g_{3}\right)} .
\end{aligned}
$$

Comparing the coefficients of z^{2}, z and the constant term in the denominator, and the coefficients of z^{4}, z^{3}, z^{2}, z and the constant term in the numerator, we have the following system of equations:

$$
\left\{\begin{array}{l}
e_{1}+e_{2}+e_{3}=0 \\
e_{1} e_{2}+e_{2} e_{3}+e_{1} e_{3}=-\frac{1}{4} g_{2} \\
e_{1} e_{2} e_{3}=\frac{1}{4} g_{3} \\
a=\frac{1}{4} \\
b-2 a\left(e_{1}+e_{2}\right)=0 \\
a\left(e_{1}^{2}+4 e_{1} e_{2}+e_{2}^{2}\right)-b\left(e_{1}+e_{2}+e_{3}\right)+c=\frac{1}{8} g_{2} \\
b\left(e_{1} e_{2}+e_{2} e_{3}+e_{1} e_{3}\right)-2 a e_{1} e_{2}\left(e_{1}+e_{2}\right)-2 c e_{3}=\frac{1}{2} g_{3} \\
a e_{1}^{2} e_{2}^{2}+b e_{1} e_{2} e_{3}+c e_{3}^{2}=\frac{1}{64} g_{2}^{2} .
\end{array}\right.
$$

This implies $e_{3}=-e_{1}-e_{2}, g_{2}=4\left(e_{1}^{2}+e_{2}^{2}+e_{1} e_{2}\right), a=1 / 4, b=\left(e_{1}+e_{2}\right) / 2$, $c=\left(e_{1}-e_{2}\right)^{2} / 4, g_{3}=-4 e_{1} e_{2}\left(e_{1}+e_{2}\right)$ and $e_{1} e_{2}\left(e_{1}+e_{2}\right)=0$. That is, $g_{3}=0$.

Let

$$
f(h)=64 \pi^{6}\left(\frac{1}{216}-\frac{7}{3} \sum_{r=1}^{\infty} \frac{r^{5} h^{2 r}}{1-h^{2 r}}\right),
$$

by Proposition 3.2, we get $g_{3}=f\left(e^{-\sqrt{8} \pi}\right)$. On the other hand, we note that the g_{3}-value is zero if the primitive periods of the Weierstrass \wp-function are 1 and i. So we get $f\left(e^{-\pi}\right)=0$ if we choose $\omega_{1}=1$ and $\omega_{2}=i$ in Proposition 3.2. Since $f(h)$ is decreasing, we see that $g_{3}=f\left(e^{-\sqrt{8} \pi}\right)>f\left(e^{-\pi}\right)=0$. This contradiction completes the proof of the theorem.

Now, we will discuss about the primeness of the Weierstrass \wp-function. First, we need some basic facts of Nevanlinna theory.

Definition 3.7 Given a meromorphic function $f(z)$, define $n(r, f)$ be the number of zeros of $f(z)$ in $|z| \leq r$ with zeros of multiplicity p being counted p times, and denote

$$
\begin{aligned}
& N(r, f)=\int_{0}^{r} \frac{n(x, 1 / f)-n(0,1 / f)}{x} d x+n\left(0, \frac{1}{f}\right) \log r \\
& m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

where $\log ^{+}\left|f\left(r e^{i \theta}\right)\right|=\max \left\{\left|f\left(r e^{i \theta}\right)\right|, 0\right\}$. Then the Nevanlinna characteristic function is defined by

$$
T(r, f)=m(r, f)+N(r, f) .
$$

The following Lemmas are well-known results:

Lemma 3.8 [8] Let $f(z)$ be an entire function. Then

$$
\varlimsup_{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)} \leq 1
$$

outside a set of r of finite linear measure.

Lemma 3.9 [8] Let $f(z)$ be a transcendental meromorphic function, and $g(z)$ be a transcendental entire function. Then

$$
\lim _{r \rightarrow \infty} \frac{T(r, f \circ g)}{T(r, g)}=\infty
$$

From these Lemmas, we can prove the primeness and pseudo-primeness of the Weierstrass \wp-function when the second invariant $g_{2}=0$.

Theorem 3.10 [15] If $g_{2}=0$ in the Weierstrass $\wp-$-function $\wp(u)$, then $\wp^{\prime}(u)$ is pseudo-prime, and the only possible nonelliptic right factors are cubic polynomials.

Proof. Write $\wp^{\prime}(u)=f \circ g(u)$, where $f(z)$ is transcendental meromorphic and $g(z)$ is entire. By Proposition 3.3, $\wp^{\prime}(u)$ satisfies

$$
\left(w^{\prime}\right)^{3}=P(w),
$$

where $P(w)$ is a polynomial. So

$$
\left(g^{\prime}(u) f^{\prime}(g(u))\right)^{3}=P(f(g(u)))
$$

i.e.,

$$
\left(g^{\prime}(u)\right)^{3}=F(g(u)),
$$

where $F(z)=P(f(z)) /\left(f^{\prime}(z)\right)^{3}$.
If $F(z)$ is transcendental meromorphic, by Lemma 3.8 and Lemma 3.9, we have

$$
\infty=\lim _{r \rightarrow \infty} \frac{T(r, F \circ g)}{T(r, g)}=\lim _{r \rightarrow \infty} \frac{T\left(r,\left(g^{\prime}\right)\right)^{3}}{T(r, g)} \leq \lim _{r \rightarrow \infty} \frac{3 T\left(r, g^{\prime}\right)}{T(r, g)} \leq 3
$$

which is a contradiction. Hence, $F(z)$ is rational. Write

$$
\left(g^{\prime}(u)\right)^{3}=C \frac{\left(g(u)-a_{1}\right)^{n_{1}} \cdots\left(g(u)-a_{k}\right)^{n_{k}}}{\left(g(u)-b_{1}\right)^{m_{1}} \cdots\left(g(u)-b_{l}\right)^{m_{l}}},
$$

where C is a constant, $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l}$ are distinct complex numbers, n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{l} are nonnegative integers. Then

$$
\left(g(u)-b_{1}\right)^{m_{1}} \cdots\left(g(u)-b_{l}\right)^{m_{l}}\left(g^{\prime}(u)\right)^{3}=C\left(g(u)-a_{1}\right)^{n_{1}} \cdots\left(g(u)-a_{k}\right)^{n_{k}}
$$

Since $g(u)$ is entire, from Picard's Theorem, we may assume $n_{2}=\cdots=n_{k}=m_{1}=$ $\cdots=m_{l}=0$, and $g(u)$ has no Picard-exceptional value, i.e.,

$$
\left(g^{\prime}(u)\right)^{3}=C\left(g(u)-a_{1}\right)^{n_{1}} .
$$

Clearly, $n_{1} \leq 2$. since $g(u)$ is entire, we may assume $g\left(u_{0}\right)=a_{1}$ and write

$$
g(u)=\sum_{j=0}^{\infty} \frac{g^{(j)}\left(u_{0}\right)}{j!}\left(u-u_{0}\right)^{j} .
$$

If $n_{1}=1$, then

$$
\left(\sum_{j=1}^{\infty} \frac{g^{(j)}\left(u_{0}\right)}{(j-1)!}\left(u-u_{0}\right)^{j-1}\right)^{3}=C\left(\sum_{j=1}^{\infty} \frac{g^{(j)}\left(u_{0}\right)}{j!}\left(u-u_{0}\right)^{j}\right) .
$$

Compare the coefficients of $\left(u-u_{0}\right)^{j}$, we get $g^{(j)}\left(u_{0}\right)=0$ for all $j=1,2, \cdots$, i.e., $g(u)$ is constant, a contradiction. Hence, $n_{1}=2$. Then

$$
\left(\sum_{j=1}^{\infty} \frac{g^{(j)}\left(u_{0}\right)}{(j-1)!}\left(u-u_{0}\right)^{j-1}\right)^{3}=C\left(\sum_{j=1}^{\infty} \frac{g^{(j)}\left(u_{0}\right)}{j!}\left(u-u_{0}\right)^{j}\right)^{2} .
$$

Compare the coefficients of $\left(u-u_{0}\right)^{j}$ again, we first get $g^{\prime}\left(u_{0}\right)=g^{\prime \prime}\left(u_{0}\right)=0$. For the coefficient of $\left(u-u_{0}\right)^{6}$, we get

$$
\left(\frac{g^{\prime \prime \prime}\left(u_{0}\right)}{2!}\right)^{3}=C\left(\frac{g^{\prime \prime \prime}\left(u_{0}\right)}{3!}\right)^{2}
$$

i.e.,

$$
g^{\prime \prime \prime}\left(u_{0}\right)=0 \text { or } \frac{2 C}{9} .
$$

If $g^{\prime \prime \prime}\left(u_{0}\right)=0$, we will get $g^{(j)}\left(u_{0}\right)=0$ for all $j=1,2, \cdots$, i.e., $g(u)$ is a constant, a contradiction. Therefore, $g^{\prime \prime \prime}\left(u_{0}\right)=2 C / 9$. Then

$$
\begin{aligned}
& \left(\frac{1}{9}+\frac{g^{(4)}\left(u_{0}\right)}{3!}\left(u-u_{0}\right)+\frac{g^{(5)}\left(u_{0}\right)}{4!}\left(u-u_{0}\right)^{2}+\cdots\right)^{3} \\
& =C\left(\frac{1}{27}+\frac{g^{(4)}\left(u_{0}\right)}{4!}\left(u-u_{0}\right)+\frac{g^{(5)}\left(u_{0}\right)}{5!}\left(u-u_{0}\right)^{2}+\cdots\right)^{2}
\end{aligned}
$$

Compare the coefficients of $\left(u-u_{0}\right)^{j}$ again, we get $g^{(j)}\left(u_{0}\right)=0$ for all $j=4,5, \cdots$. Thus, $g(u)=a_{1}+C\left(u-u_{0}\right)^{3} / 27$, a cubic polynomial. That is, we conclude that $\wp(u)$ is pseudo-prime.

From Theorem 3.10, we can see that if $g_{2}=0, \wp^{\prime}(u)$ is pseudo-prime, but not prime. In fact, $\wp^{\prime}(u)$ is prime if and only if $g_{2} \neq 0$. The proof is more complicated, so we formulate the result as a theorem and one can find the proof in [15].

Theorem 3.11 [15] Let $\wp(u)$ be the Weierstrass \wp-function, g_{2}, g_{3} be the invariant of $\wp(u)$. Then $\wp^{\prime}(u)$ is prime if and only if $g_{2} \neq 0$.

