3 Factorization of the Weierstrass ℘-Function

In this section, we will discuss the factorization of the Weierstrass \wp -function. First, we recall some basic definition.

Definition 3.1 The Weierstrass \wp -function is a double period meromorphic function defined by

$$\wp(u) = \frac{1}{u^2} + \sum_{\omega \in L'} \left(\frac{1}{(u-\omega)^2} - \frac{1}{\omega^2} \right)$$

where $\omega_1, \omega_2 \in \mathbb{C}$ with $Im(\omega_1/\omega_2) > 0$ and $L' = \{\omega = m\omega_1 + n\omega_2 \mid m, n \in \mathbb{Z}, m, n \text{ not both zero.}\}$ is the set of all nonzero period of $\wp(u)$.

Clearly, $\wp(u)$ is an even function. Since 0 is a double pole of $\wp(u)$, we can get an expansion of $\wp(u)$ near 0 as follows:

$$\wp(u) = \frac{1}{u^2} + c_1 u^2 + c_2 u^4 + \dots + c_n u^{2n} + \dots,$$

where $c_n = (2n+1) \sum_{\omega \in L'} \frac{1}{\omega^{2n+2}}$. In general, we denote

$$g_2 = 20c_1 = 60 \sum_{\omega \in L'} \frac{1}{\omega^4}$$

 $g_3 = 28c_2 = 140 \sum_{\omega \in L'} \frac{1}{\omega^6}$,

which are called the invariant of $\wp(u)$. In fact, they can be explicitly expressed as follows:

Proposition 3.2 [13] Let g_2 , g_3 be the invariant of the Weierstrass \wp -function with primitive periods ω_1 and ω_2 . Then

$$g_2 = \left(\frac{2\pi}{\omega_1}\right)^4 \left(\frac{1}{12} + 20\sum_{r=1}^{\infty} \frac{r^3 h^{2r}}{1 - h^{2r}}\right)$$

$$g_3 = (\frac{2\pi}{\omega_1})^6 (\frac{1}{216} - \frac{7}{3} \sum_{r=1}^{\infty} \frac{r^5 h^{2r}}{1 - h^{2r}}),$$

where $h = e^{(\omega_2/\omega_1)\pi i}$.

We have the following well-known properties of $\wp(u)$:

Proposition 3.3 [13] The Weierstrass \wp -function satisfies the differential equation

$$(\wp'(u))^2 = 4\wp(u)^3 - g_2\wp(u) - g_3,$$

where g_2 and g_3 are the invariant of $\wp(u)$.

Proposition 3.4 [13] The Weierstrass \wp -function satisfies the formula

$$\wp(2u) = -2\wp(u) + \frac{1}{4} \left(\frac{\wp''(u)}{\wp'(u)} \right)^2.$$

Proposition 3.5 [13] Any elliptic function with the same periods of \wp -function can be expressed as a rational function of $\wp(u)$ and $\wp'(u)$.

It is easy to see that any rational function can be factored into prime functions. Ritt[4] proved that if a polynomial P(z) has two factorizations

$$P(z) = P_1 \circ \cdots \circ P_n(z)$$

and

$$P(z) = Q_1 \circ \cdots \circ Q_m(z),$$

where P_i and Q_j are prime functions, then m=n. However, this is not true for rational functions. In fact, Walter Bergeiler[9] give such an example which is constructed in terms of the Weierstrass \wp -function.

Now, our purpose is to give a detail study of this example because some nontrival details are skipped by Walter Bergeiler:

Theorem 3.6 [9] There exists a rational function which has two factorizations into prime functions, and each having a different number of factors.

Proof. Consider the Weierstrass \wp -function

$$\wp(u) = \frac{1}{u^2} + \sum_{\omega \in L'} \left(\frac{1}{(u - \omega)^2} - \frac{1}{\omega^2} \right)$$

with period 1 and $\sqrt{8} i$, where $L' = \{m + n \cdot \sqrt{8} i \mid m, n \in \mathbb{Z}, m, n \text{ not both zero.}\}$ is the set of all nonzero period of p(u). From Proposition 3.3 and taking the derivative on both side, we have

$$2(\wp'(u)) \cdot \wp''(u) = 12\wp(u)^2 \cdot \wp'(u) - g_2 \cdot \wp'(u),$$

i.e.,

$$\wp''(u) = 6\wp(u)^2 - \frac{1}{2}g_2.$$

Substituting the identity into Proposition 3.4, we get

$$\wp(2u) = \frac{16\wp(u)^4 + 8g_2\wp(u)^2 + 32g_3\wp(u) + g_2^2}{16(4\wp(u)^3 - g_2\wp(u) - g_3)}.$$

Let

$$R(z) = \frac{16z^4 + 8g_2z^2 + 32g_3z + g_2^2}{16(4z^3 - g_2z - g_3)},$$

then $\wp(2u) = R(\wp(u))$. Also, by Proposition 3.5, we have $\wp(\sqrt{8}\ iu) = S(\wp(u))$ and $\wp(8u) = T(\wp(u))$, where $S,\ T$ are both rational functions. Since $\wp(u)$ is an even function, we deduce that

$$R(R(\mathcal{L}(\mathcal{L}(u)))) = \mathcal{L}(8u) = T(\mathcal{L}(u)) = \mathcal{L}(-8u) = S(S(\mathcal{L}(u))),$$

i.e.,

$$T = R \circ R \circ R = S \circ S$$
.

Suppose R is prime. If S is prime, then we find a rational function T which has two different number factorizations into prime functions. If S is not prime, since every rational function can be factored into prime functions, we can factor $S \circ S$ into an even number prime functions, hence T still has the desired properties.

Now, it remains to prove that R is prime. Suppose R is not prime, since the degree of R is 4, we may assume there exist two rational functions P and Q of degree 2 such that $R = P \circ Q$. Without lose of generality, we also assume $P(0) = P(\infty) = \infty$, otherwise, we can consider $R = P \circ L \circ L^{-1} \circ Q$, where L is a suitable linear transformation. It follows that

$$P(z) = az + b + \frac{c}{z}$$

for some $a, b, c \in \mathbb{C}$. On the other hand, if we denote by e_1, e_2, e_3 the zeros of $4z^3 - g_2z - g_3$, we may assume without loss of generality that

$$Q(z) = \frac{(z - e_1)(z - e_2)}{z - e_3}$$

Then

$$R(z) = P \circ Q(z)$$

$$= a \cdot \frac{(z - e_1)(z - e_2)}{z - e_3} + b + \frac{c(z - e_3)}{(z - e_1)(z - e_2)}$$

$$= \frac{a(z - e_1)^2(z - e_2)^2 + b(z - e_1)(z - e_2)(z - e_3) + c(z - e_3)^2}{(z - e_1)(z - e_2)(z - e_3)}$$

$$= \frac{az^4 + (b - 2a(e_1 + e_2))z^3 + (a(e_1^2 + 4e_1e_2 + e_2^2) - b(e_1 + e_2 + e_3) + c)z^2}{(z - e_1)(z - e_2)(z - e_3)}$$

$$+ \frac{(b(e_1e_2 + e_2e_3 + e_1e_3) - 2ae_1e_2(e_1 + e_2) - 2ce_3)z + (ae_1^2e_2^2 + be_1e_2e_3 + ce_3^2)}{(z - e_1)(z - e_2)(z - e_3)}$$

$$= \frac{16z^4 + 8g_2z^2 + 32g_3z + g_2^2}{16(4z^3 - g_2z - g_3)}.$$

Comparing the coefficients of z^2 , z and the constant term in the denominator, and the coefficients of z^4 , z^3 , z^2 , z and the constant term in the numerator, we have the following system of equations:

$$\begin{cases} e_1 + e_2 + e_3 = 0 \\ e_1 e_2 + e_2 e_3 + e_1 e_3 = -\frac{1}{4} g_2 \\ e_1 e_2 e_3 = \frac{1}{4} g_3 \\ a = \frac{1}{4} \\ b - 2a(e_1 + e_2) = 0 \\ a(e_1^2 + 4e_1 e_2 + e_2^2) - b(e_1 + e_2 + e_3) + c = \frac{1}{8} g_2 \\ b(e_1 e_2 + e_2 e_3 + e_1 e_3) - 2ae_1 e_2(e_1 + e_2) - 2ce_3 = \frac{1}{2} g_3 \\ ae_1^2 e_2^2 + be_1 e_2 e_3 + ce_3^2 = \frac{1}{64} g_2^2. \end{cases}$$

This implies $e_3 = -e_1 - e_2$, $g_2 = 4(e_1^2 + e_2^2 + e_1 e_2)$, a = 1/4, $b = (e_1 + e_2)/2$, $c = (e_1 - e_2)^2/4$, $g_3 = -4e_1e_2(e_1 + e_2)$ and $e_1e_2(e_1 + e_2) = 0$. That is, $g_3 = 0$.

Let

$$f(h) = 64\pi^{6} \left(\frac{1}{216} - \frac{7}{3} \sum_{r=1}^{\infty} \frac{r^{5} h^{2r}}{1 - h^{2r}}\right),$$

by Proposition 3.2, we get $g_3 = f(e^{-\sqrt{8}\pi})$. On the other hand, we note that the g_3 -value is zero if the primitive periods of the Weierstrass \wp -function are 1 and i. So we get $f(e^{-\pi}) = 0$ if we choose $\omega_1 = 1$ and $\omega_2 = i$ in Proposition 3.2. Since f(h) is decreasing, we see that $g_3 = f(e^{-\sqrt{8}\pi}) > f(e^{-\pi}) = 0$. This contradiction completes the proof of the theorem.

Now, we will discuss about the primeness of the Weierstrass \wp -function. First, we need some basic facts of Nevanlinna theory.

Definition 3.7 Given a meromorphic function f(z), define n(r, f) be the number of zeros of f(z) in $|z| \le r$ with zeros of multiplicity p being counted p times, and denote

$$N(r,f) = \int_0^r \frac{n(x,1/f) - n(0,1/f)}{x} dx + n(0,\frac{1}{f}) \log r$$

$$m(r,f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta,$$

where $\log^+ |f(re^{i\theta})| = max\{|f(re^{i\theta})|, 0\}$. Then the Nevanlinna characteristic function is defined by

$$T(r, f) = m(r, f) + N(r, f).$$

The following Lemmas are well-known results:

Lemma 3.8 [8] Let f(z) be an entire function. Then

$$\overline{\lim_{r \to \infty}} \frac{T(r, f')}{T(r, f)} \le 1$$

outside a set of r of finite linear measure.

Lemma 3.9 [8] Let f(z) be a transcendental meromorphic function, and g(z) be a transcendental entire function. Then

$$\lim_{r \to \infty} \frac{T(r, f \circ g)}{T(r, g)} = \infty.$$

From these Lemmas, we can prove the primeness and pseudo-primeness of the Weierstrass \wp -function when the second invariant $g_2 = 0$.

Theorem 3.10 [15] If $g_2 = 0$ in the Weierstrass \wp -function $\wp(u)$, then $\wp'(u)$ is pseudo-prime, and the only possible nonelliptic right factors are cubic polynomials.

Proof. Write $\wp'(u) = f \circ g(u)$, where f(z) is transcendental meromorphic and g(z) is entire. By Proposition 3.3, $\wp'(u)$ satisfies

$$(w')^3 = P(w),$$

where P(w) is a polynomial. So

$$(g'(u)f'(g(u)))^3 = P(f(g(u))),$$

i.e.,

$$(g'(u))^3 = F(g(u)),$$

where $F(z) = P(f(z))/(f'(z))^3$.

If F(z) is transcendental meromorphic, by Lemma 3.8 and Lemma 3.9, we have

$$\infty = \lim_{r \to \infty} \frac{T(r, F \circ g)}{T(r, g)} = \lim_{r \to \infty} \frac{T(r, (g'))^3}{T(r, g)} \le \lim_{r \to \infty} \frac{3T(r, g')}{T(r, g)} \le 3$$

which is a contradiction. Hence, F(z) is rational. Write

$$(g'(u))^3 = C \frac{(g(u) - a_1)^{n_1} \cdots (g(u) - a_k)^{n_k}}{(g(u) - b_1)^{m_1} \cdots (g(u) - b_l)^{m_l}},$$

where C is a constant, $a_1, \ldots, a_k, b_1, \ldots, b_l$ are distinct complex numbers, $n_1, \ldots, n_k, m_1, \ldots, m_l$ are nonnegative integers. Then

$$(g(u) - b_1)^{m_1} \cdots (g(u) - b_l)^{m_l} (g'(u))^3 = C(g(u) - a_1)^{n_1} \cdots (g(u) - a_k)^{n_k}.$$

Since g(u) is entire, from Picard's Theorem, we may assume $n_2 = \cdots = n_k = m_1 = \cdots = m_l = 0$, and g(u) has no Picard-exceptional value, i.e.,

$$(g'(u))^3 = C(g(u) - a_1)^{n_1}.$$

Clearly, $n_1 \leq 2$. since g(u) is entire, we may assume $g(u_0) = a_1$ and write

$$g(u) = \sum_{j=0}^{\infty} \frac{g^{(j)}(u_0)}{j!} (u - u_0)^j.$$

If $n_1 = 1$, then

hen
$$\left(\sum_{j=1}^{\infty} \frac{g^{(j)}(u_0)}{(j-1)!} (u-u_0)^{j-1}\right)^3 = C\left(\sum_{j=1}^{\infty} \frac{g^{(j)}(u_0)}{j!} (u-u_0)^j\right).$$

Compare the coefficients of $(u - u_0)^j$, we get $g^{(j)}(u_0) = 0$ for all $j = 1, 2, \dots$, i.e., g(u) is constant, a contradiction. Hence, $n_1 = 2$. Then

$$\left(\sum_{j=1}^{\infty} \frac{g^{(j)}(u_0)}{(j-1)!} (u-u_0)^{j-1}\right)^3 = C \left(\sum_{j=1}^{\infty} \frac{g^{(j)}(u_0)}{j!} (u-u_0)^j\right)^2.$$

Compare the coefficients of $(u - u_0)^j$ again, we first get $g'(u_0) = g''(u_0) = 0$. For the coefficient of $(u - u_0)^6$, we get

$$\left(\frac{g'''(u_0)}{2!}\right)^3 = C\left(\frac{g'''(u_0)}{3!}\right)^2,$$

i.e.,

$$g'''(u_0) = 0$$
 or $\frac{2C}{0}$.

If $g'''(u_0) = 0$, we will get $g^{(j)}(u_0) = 0$ for all $j = 1, 2, \dots, i.e., g(u)$ is a constant, a contradiction. Therefore, $g'''(u_0) = 2C/9$. Then

$$\left(\frac{1}{9} + \frac{g^{(4)}(u_0)}{3!}(u - u_0) + \frac{g^{(5)}(u_0)}{4!}(u - u_0)^2 + \cdots\right)^3
= C\left(\frac{1}{27} + \frac{g^{(4)}(u_0)}{4!}(u - u_0) + \frac{g^{(5)}(u_0)}{5!}(u - u_0)^2 + \cdots\right)^3.$$

Compare the coefficients of $(u - u_0)^j$ again, we get $g^{(j)}(u_0) = 0$ for all $j = 4, 5, \cdots$. Thus, $g(u) = a_1 + C(u - u_0)^3/27$, a cubic polynomial. That is, we conclude that $\wp(u)$ is pseudo-prime. From Theorem 3.10, we can see that if $g_2 = 0$, $\wp'(u)$ is pseudo-prime, but not prime. In fact, $\wp'(u)$ is prime if and only if $g_2 \neq 0$. The proof is more complicated, so we formulate the result as a theorem and one can find the proof in [15].

Theorem 3.11 [15] Let $\wp(u)$ be the Weierstrass \wp -function, g_2 , g_3 be the invariant of $\wp(u)$. Then $\wp'(u)$ is prime if and only if $g_2 \neq 0$.

