Appendix B

Theorem (Theorem S1.10 in [7]) Let $L(\omega)$ be an $n \times n$ matrix polynomial with $detL(\omega) \neq 0$. Then for every $\omega_o \in \mathbb{C}$, $L(\omega)$ admits the representation

$$L(\omega) = E_{\omega_o} \begin{bmatrix} (\omega - \omega_o)^{\kappa_1} & 0 \\ & \ddots & \\ 0 & (\omega - \omega_o)^{\kappa_n} \end{bmatrix} F_{\omega_o},$$

where E_{ω_o} and F_{ω_o} are matrix polynomials invertible at ω_o , and $\kappa_1 \leq \kappa_2, \ldots \leq \kappa_n$ are nonnegative integers, which coincide (after striking off zeros) with the degrees of the elementary divisors of $L(\omega)$ corresponding to ω_o (i.e., of the form $(\omega - \omega_0)^n$).

The integers $\kappa_1 \leq \kappa_2, \ldots \leq \kappa_n$ are uniquely determined by $L(\omega)$ and ω_o ; they are called the *partial multiplicities* of $L(\omega)$ at ω_o .