Appendix B

Theorem(Theorem S1.10 in [7]) Let $L(\omega)$ be an $n \times n$ matrix polynomial with $\operatorname{det} L(\omega) \neq 0$. Then for every $\omega_{o} \in \mathbb{C}, L(\omega)$ admits the representation

$$
L(\omega)=E_{\omega_{o}}\left[\begin{array}{ccc}
\left(\omega-\omega_{o}\right)^{\kappa_{1}} & & 0 \\
& \ddots & \\
0 & & \left(\omega-\omega_{o}\right)^{\kappa_{n}}
\end{array}\right] F_{\omega_{o}}
$$

where $E_{\omega_{o}}$ and $F_{\omega_{o}}$ are matrix polynomials invertible at ω_{o}, and $\kappa_{1} \leq \kappa_{2}, \ldots \leq \kappa_{n}$ are nonnegative integers, which coincide (after striking off zeros) with the degrees of the elementary divisors of $L(\omega)$ corresponding to ω_{o} (i.e., of the form $\left(\omega-\omega_{0}\right)^{n}$).

The integers $\kappa_{1} \leq \kappa_{2}, \ldots \leq \kappa_{n}$ are uniquely determined by $L(\omega)$ and ω_{o}; they are called the partial multiplicities of $L(\omega)$ at ω_{o}.

