
Appendix C

Proof of Theorem 5.3.6 :

From (5.13) and (5.14), we can easily derive
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From (5.56), (5.57) and β1(S1 − xαI1)
−3γ1 = 0, we have
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Then (5.55) follows by (C.1), (C.2), (C.3), and (C.4).
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