
Chapter 3

Solution Spaces

In this chapter, we introduce the solution space that satisfies the unboundary e-

quations. We will construct a basis for the solution space and describe the general

solution form of πn by using a canonical set of left Jordan chains for the matrix

polynomial Q(ω) corresponding to ωo (See [8]). We give a brief introduction to the

left Jordan chains in section 3.1 and review some results in [6] in order to illus-

trate the solution space in section 3.2. The general solution space for the vector of

stationary probability is discussed in section 3.3.

3.1 Left Jordan Chains

Definition 3.1.1 (p.28 in [7]) The sequence of n−dimensional vectors ϕ1,

. . . , ϕ` (ϕ1 6= 0) is called a left Jordan chain of length ` for the matrix polynomial
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L(ω) corresponding to the complex number ωo if the following equalities holds:

ϕ1L(ωo) = 0,

ϕ1L
′(ωo) + ϕ2L(ωo) = 0,

1
2!
ϕ1L

′′(ω0) + ϕ2L
′(ωo) + ϕ3L(ωo) = 0,

...

1
(`−1)!

ϕ1
d`−1

dω`−1 L(ω)|ω=ωo + 1
(`−2)!

ϕ2
d`−2

dω`−2 L(ω)|ω=ωo + · · ·+ ϕ`L(ωo) = 0.

(3.1)

where d
dω

L(ω) denotes derivative with respect to each element of L(ω).

Example 3.1.2 Let

L(ω) =


 ω2 −ω

0 ω2


 .

Since detL(ω) = ω4, there exists one eigenvalue of L(ω), namely, ωo = 0. All left

Jordan chains of length not exceeding 3 can be described as follows:

1. Left Jordan chains of length 1 are ϕ1 =
[

x11 x12

]
, where x11, x12 ∈ C are

not both zero.

2. Left Jordan chains of length 2 are ϕ1 =
[

x11 0
]
, and ϕ2, where x11 6= 0

and ϕ2 is arbitrary.

3. Left Jordan chains of length 3 are ϕ1 =
[

x11 0
]
, ϕ2 =

[
x21 x11

]
, and

ϕ3, where x11 6= 0, and x21, ϕ3 are arbitrary.

¤

Note that ϕ1 is contained in the left null space of L(ωo), and the vectors in a

Jordan chain for matrix polynomial L(ω) are not necessarily linearly independent.

The example shows the structure of Jordan chains for matrix polynomial can be

quite complicated. To understand this structure better, it is useful to introduce

canonical sets.
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Proposition 3.1.3 (Proposition 1.15 in [7]) Let

{ϕi1, · · · ,ϕiκi
, i = 1, . . . , p} (3.2)

be a set of left Jordan chains for the matrix polynomial L(ω) corresponding to ωo.

Then the following conditions are equivalent.

(i) The set (3.2) is canonical.

(ii) The vectors ϕ11, . . . , ϕp1 are linearly independent and
∑p

i=1 κi = r, where r is

the multiplicity of ω0 which is a zero of detL(ω).

(iii) Let

U =




L(ωo) L′(ωo) · · · 1
(`−1)!

d`−1

dω`−1 L(ω)|ω=ωo

0 L(ωo) · · · 1
(`−2)!

d`−2

dω`−2 L(ω)|ω=ωo

...
...

. . .
...

0 0 · · · L(ωo)




and denote the left null space of U by N . The sequences of vectors

γij = (0, . . . ,0,ϕi1, . . . , ϕij), j = 1, . . . , κi, i = 1, . . . , p, (3.3)

form a basis in N , where the number of zero vectors preceding ϕi1 in γij is ` − j,

(`= max {κ1 . . . , κp }).

Note that the canonical set is not unique, but the lengths κ1, . . . , κp of left

Jordan chains in a canonical set is uniquely determined. In fact, κ1, . . . , κp are

known as nonzero partial multiplicities (see Appendix B) of L(ω) at ωo. Refers to

[7] for details.

3.2 The Structure of the Solution Space

In [6], Gail expressed the solution space for saturated probabilities of G/M/1 system

in detail. We review some of important results from [6].
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Lemma 3.2.1 Define the matrix P = I + Q
q

with

P =




B0 A0

C0 A1 A0

A2 A1
. . .

A2
. . .

. . .




. (3.4)

where q is any nonzero real number satisfying

q ≥ max
j
{−(B0)jj,−(A1)jj}.

Then the matrix P is stochastic and nonnegative. Furthermore, in a positive re-

current case, the stationary distribution π = [π0,π1, . . .], where πj is 1 ×mk row

vector, satisfies πQ = 0 equivalent to πP = π.

Proof. Since the off-diagonal elements of Q are nonnegative and its diagonal el-

ements are all negative, the elements of P are nonnegative by the definition of P.

The matrix P is stochastic (i.e., P1 = 1) follows directly from the fact Q1 = 0.

Obviously, the equations πP = π are equivalent to π(P− I) = 0, i.e., πQ = 0. ¤

Lemma 3.2.2 Let

P̃ =




A1 + C0(I −B0)
−1A0 A0

A2 A1 A0

A2 A1
. . .

A2
. . .

. . .




.

Then P̃ is nonnegative stochastic and the solutions (π0, π̃) of





π̃P̃ = π̃

π0 = π1C0(I−B0)
−1

(3.5)

are the same as the solutions π of πQ = 0 where π̃ = (π1,π2, . . .) and π = (π0, π̃).
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Proof. To prove that the matrix is nonnegative, it is sufficient to show that A1 +

C0(I − B0)
−1A0 is nonnegative. Since (I− B0)

−1 =
∑∞

j=0 Bj
0 ≥ 0 and A1, C0, A0

are nonnegative, it follows that A1 + C0(I−B0)
−1A0 ≥ 0. Note that P1 = 1, and

(A1 + C0(I−B0)
−1A0 + A0)1 = (A0 + A1)1 + C0(I−B0)

−1A01

= (1− C01) + C0(I−B0)
−1(1−B01)

= 1− C01 + C0(I−B0)
−1(I−B0)1

= 1.

Hence, P̃ is stochastic. It is easy to verify that (3.5) is equivalent to πP = π.

Therefore, the conclusion follows directly from Lemma 3.2.1. ¤

We transform the original system into π̃P̃ = π̃ where P̃ has the same form as

the transition probability matrix defined in [6]. The results in [6] are summaried as

follows. Write

P̃ =


 B D

R L




where B is mk ×mk. Replacing B, R in P̃ by I, O, we have

P̃∗ =


 I D

O L


 .

Define

L∗ 4= {y ∈ l∞ : yP̃∗ = y}.

We also define the operator τ as ” shift left mk columns ” on row vectors y ∈ l∞

by

τ (y1,y2,y3, . . . ) = (y2,y3, . . .)

for each yi is 1×mk. Then L∗ is τ -invariant (i.e., τ(L∗) ⊂ L∗). For an eigenvalue

ωo of τ : L∗ → L∗ the corresponding generalized eigenspace is

L∗(ωo) = {y ∈ L∗ : (τ − ωoI)dy = 0 for some d},
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where I is the identity operator, and from the results in linear algebra, we know L∗

is the direct sum of these generalized eigenspaces, i.e.,

L∗ =
⊕

|ωα|≤1

L∗(ωα). (3.6)

Since ‖τy‖∞ ≤ ‖y‖∞, any eigenvalues ωα must satisfy |ωα| ≤ 1. Recall that L∗(ωα)

has a basis consisting of one or more cycles of generalized eigenvectors. Suppose

{χ1,1, · · · ,χ1, κ1
, · · · , χp,1, · · · , χp, κp

} is a basis for L∗(ωo), namely,

(τ − ωoI)χi,1 = 0

(τ − ωoI)χi,j = χi,j−1, j = 2 . . . , κi.
(3.7)

For i = 1, . . . , p, we have

χi, j = zi, j e(ωo) +
1

1!
zi,j−1e

′(ωo) + · · ·+ 1

(j − 1)!
zi,1

dj−1

dωj−1
e(ω)|ω=ωo j = 1, . . . , κi,

(3.8)

where zi,j is the vector whose elements are taken from the first mk entries of χi, j,

and e(ω) is a mk ×∞ matrix defined by

e(ω) =
[
I, ωI, ω2I, · · · ] .

From (3.6) and (3.8), we visualize that the l1 solution space L = {(π1,π2, . . .)}
satisfying normalization condition (2.6) and the unboundary equations (2.5) is

L =
⊕

|ωα|<1

L∗(ωα). (3.9)

Define

A(ω) = ωI− (A0 + ωA1 + ω2A2).

Then it is clear that A(ω) equals −1
q
Q(ω) and it follows A(ω) and Q(ω) have the

same singularities.

Proposition 3.2.3 (Proposition 33 in [6]) If |ωo| < 1 is a zero of

detA(ω) = 0 of multiplicity r, then L∗(ωo) has dimension r.
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Theorem 3.2.4 (Theorem 8 in [6]) Let P̃ be a transition matrix of an irreducible

Markov chain. The system is ergodic if and only if det A(ω) = 0 has exactly mk

zeros in the open unit disk.

We conclude that if ω1, . . . , ωs, ωs+1 are the distinct singularities of Q(ω) in

the open unit disk then the l1 solution space L = {(π1,π2, . . .)} satisfying the

unboundary equations (2.5) is the direct sum of vector space L∗(ωα), for α =

1, . . . , s, s + 1, and L∗(ωα) has dimension rα which is the algebraic multiplicity of

ωα. If {χ1,1, · · · ,χ1, κ1
, · · · ,χp,1, · · · , χp, κp

} is a basis of L∗(ωα) for some |ωα| < 1,

and κ1 + . . . + κp = rα, then these vectors satisfy equations (3.8).

3.3 General Solution Forms

Let {χ1,1, · · · ,χ1, κ1
, · · · ,χp,1, · · · ,χp, κp

} be a basis of L∗(ωo) for some |ωo| < 1.

We are now able to explain that

{zi,1, · · · , zi, κi
, i = 1, . . . , p} (3.10)

is a canonical set of left Jordan chains for Q(ω) corresponding to ωo. Since

χi,j ∈ L∗(ωo) satisfies the unboundary equation (2.5), thus χi,jQ
∗ = 0, where

Q∗ =




A0

A1 A0

A2 A1
. . .

A2
. . .

. . .




.

Multiplying (3.8) on the right by Q∗, those equations become

zi,1Q(ωo) = 0,

zi,1
Q′(ωo)

1!
+ zi,2Q(ωo) = 0,

...

1
(κi−1)!

zi,1
dκi−1

dωκi−1Q(ω)|ωo + 1
(κi−2)!

zi,1
dκi−2

dωκi−2Q(ω)|ωo + · · ·+ zi,κi
Q(ωo) = 0,

(3.11)
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since

e(ω)Q∗ = A0 + ωA1 + ω2A2 = Q(ω).

That is, {zi,1, . . . , zi,κi
}, is a left Jordan chain of length κi for the matrix poly-

nomial Q(ω) corresponding to the complex number ωo, for i = 1, . . . , p. Since

z11, z21, . . . , zp1 are linearly independent, and
∑p

i=1 κi = ro, (3.10) is canonical by

Proposition 3.1.3.

Conversely, if there is a set of vectors satisfies (3.11), it is not trivial that we

can construct a basis of L∗(ωo) by these vectors since the vectors in a left Jordan

chain for a matrix polynomial are not necessarily independent and not uniquely

determined. However, we will see later that the basis of L∗(ωo) can be constructed

by an arbitrary canonical set of left Jordan chains for the matrix polynomial Q(ω)

corresponding to ωo.

Proposition 3.3.1 Let

{ϕi1, · · · ,ϕi, κi
, i = 1, . . . , p } (3.12)

be an arbitrary canonical set of left Jordan chains for Q(ω) corresponding to ωo.

Define

{δ1,1, · · · , δ1, κ1 , · · · , δp,1, · · · , δp, κp} (3.13)

as

δi, j = ϕi, j e(ωo) +
1

1!
ϕi,j−1e

′(ωo) + · · ·+ 1

κi − 1
ϕi,1

dκi−1

dωκi−1
e(ω)|ω=ωo . (3.14)

Then {δ1,1, · · · , δ1, κ1 , · · · , δp,1, · · · , δp, κp} is also a basis of L∗(ωo).

Proof. Suppose

{χ1,1, · · · ,χ1, κ1
, · · · ,χp,1, · · · ,χp, κp

} (3.15)

is a basis for L∗(ω). We claim that (3.13) and (3.15) span the same vector space.

Define the sequences of vectors

γij = (0, . . . ,0, ϕi1, . . . , ϕij), (3.16)
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and

βij = (0, . . . ,0, zi1, . . . , zij), (3.17)

for j = 1, . . . , κi, i = 1, . . . , p in the same way as (3.3). Then (3.16) and (3.17) are

both bases for N by Proposition 3.1.3. Let

Ψ1 =




γ11

...

γp,κp




and

Ψ2 =




β11

...

βp,κp


 ,

which imply



δ11

...

δp,κp


 = Ψ1 ẽ(ωo) and




χ11

...

χp,κp


 = Ψ2 ẽ(ωo)

where

ẽ(ωo) =




1
`−1

d`−1

dω`−1 e(ω)|ω=ωo

...

1
2!
e′′(ωo)

1
1!
e′(ωo)

e(ωo)




and `= max {κ1 . . . , κp}. Note that Ψ1 and Ψ2 have the same row space, N .

Therefore, the row space of Ψ1 ẽ(ωo) is the same as Ψ2 ẽ(ωo). It follows that (3.13)

is also a basis of L∗(ωo). ¤

Example 3.3.2 Suppose ω1 is a singularity of Q(ω) of multiplicity 3, and nullity

Q(ω1) = 2, {ϕ11,ϕ12, ϕ21} satisfying




ϕ11Q(ω1) = 0,

ϕ21Q(ω1) = 0,

ϕ11Q
′(ω1) + ϕ12Q(ω1) = 0,
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where {ϕ11,ϕ21} spans the left null space of Q(ω1). Then {ϕ11, ϕ12,ϕ21} is a canon-

ical set of the left Jordan chains for Q(ω) corresponding to ω1, and {δ11, δ12, δ21}
is a basis for L∗(ω1), where

δ11 = {ϕ11, ωϕ11, ω
2ϕ11, ω

3ϕ11, · · · },
δ12 = {ϕ12, ωϕ12 + ϕ11, ω

2ϕ12 + 2ωϕ11, ω
3ϕ12 + 3ω2ϕ11, · · · },

δ21 = {ϕ21, ωϕ21, ω
2ϕ21, ω

3ϕ21, · · · }.

¤

Theorem 3.3.3 Let ω1, . . . , ωs, ωs+1 be the s+1 distinct singularities of Q(ω) with

multiplicity r1, . . . , rs, rs+1 in the open unit disk. Then the probability πn can be

expressed as

πn =
s+1∑
α=1

πn(ωα) for n ≥ 1 (3.18)

where

πn(ωα) =

p(α)∑
i=1

κi(α)∑
t=1

ci, t{ωn−1
α ϕ

(α)
i,t + (n−1

1 )ωn−2
α ϕ

(α)
i,t−1 + · · ·+ (n−1

t−1 )ωn−t
α ϕ

(α)
i, 1},

and for α = 1, . . . , s + 1, {ϕ(α)
1,1 , . . . , ϕ

(α)
p(α),κα(α)} is an arbitrary canonical set of left

Jordan chains for Q(ω) corresponding to ωα.

Proof. The result is obvious by (3.9) and Proposition 3.3.1. ¤

Example 3.3.4 In example 3.3.2, we see that

π1(ω1) = c1ϕ11 + c2ϕ12 + c3ϕ21,

π2(ω1) = c1ω1ϕ11 + c2(ω1ϕ12 + ϕ11) + c3ω1ϕ21,

...

πn(ω1) = c1ω
n−1
1 ϕ11 + c2(ω

n−1
1 ϕ12 + (n− 1)ωn−2

1 ϕ11) + c3ω
n−1
1 ϕ21.

¤

In the following Proposition, we will see that the multiplicity of 0 is at least

mk −m.
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Proposition 3.3.5 nullityQ(0) = mk −m.

Proof. Since

Q(0) = A0 = γ1β1 ⊗ I2 =




Γ1 0 · · · 0

Γ2 0 · · · 0
...

...
. . .

...

Γk 0 · · · 0




where

Γi =




piλi

piλi

. . .

piλi




is a diagonal matrix of dimension m for i = 1, . . . , k, and rankQ(0) = m that

implies nullityQ(0) = mk −m. ¤

Thus, 0 is a singularity of Q(ω). Without loss of generality, we assume that

ωs+1 = 0 and ω1, . . . , ωs are the distinct nonzero singularities of Q(ω). From Propo-

sition 3.3.5, it is clear that rs+1 ≥ mk−m. Recall there are exactly mk singularities

of Q(ω) in the open unit disk which implies

s+1∑
α=1

dimL∗(ωα) =
s+1∑
α=1

rα = mk

by Theorem 3.2.4 and Proposition 3.2.3. Therefore, we obtain the following result.

Corollary 3.3.6 The sum of dimension of the generalized eigenspaces is equivalent

to the total number of nonzero singularities of Q(ω) which is at most m, i.e.,

s∑
α=1

dimL∗(ωα) =
s∑

α=1

rα ≤ m.

Since rα ≥ 1, we know s ≤ m. It is clear that if we are able to find vectors in

L∗(ωα) such that
∑s

α=1 dimL∗(ωα) = m, then it is sufficient to construct a solution

space L.
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It is easy to see that if nullityQ(ωs+1) = rs+1, then

πn(ωs+1) = 0

for n ≥ 2.

Corollary 3.3.7 If nullityQ(ωα) = rα for α = 1, . . . , s + 1, then the saturated

probabilities πn for n ≥ 2 can be expressed as the linear combination of the vectors

in the left null space of Q(ω), i.e.,

πn =
s∑

α=1

rα∑
t=1

cα,tω
n−1
α ϕ

(α)
t , for n ≥ 2 (3.19)

where ϕ
(α)
t is contained in the left null space of Q(ωα) for t = 1, . . . , rα, α = 1, . . . , s,

and cα,t is the coefficient with respect to ϕ
(α)
t .

It has been shown that solution space can be described in terms of singularities

and vectors of Q(ω). We will discuss the nonzero roots of detQ(ω) = 0 in the next

chapter.
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