Chapter 4

Singularities of Q(w) in the Open
Unit Disk

We will present in this chapter that there is a close connection between the singu-

larity of Q(w) and an equation involving the Laplace transforms. Define

Jra() frs(=7) = 1. (4.1)

We shall show that all the roots of (4.1) are simple in the Ejy/FE,,/1 system.

4.1 Q(w) and Laplace Transform Equation

In this section, our goal is to find the condition such that Q(w) = a(w) @ b(w) has
eigenvalue 0. Since the eigenvalue of Kronecker sum of a(w) @ b(w) is the sum of
the eigenvalues of a(w) and b(w) respectively, (see Theorem 4.4.5 in Chapter 4.4
of [8]) det Q(w) = 0 if and only if there exists 6 such that det (a(w) — 6I;) = 0 and
det (b(w) + 61) = 0.
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Lemma 4.1.1 Let w # 0. we shall show

(1) det(la(w) —aLy) = (1 — 2 fr, () [T (=N — 2),
(2) det(1b(w) +aly) = (1 —wfp,(—2) [T (@ — ).

Proof.

(1) Let U, be the upper left n x n block of %7161 +S; — 214, and it gives

Ipphi—A—z (1-p)\ 0 0
%pg)\g —)\2 — X (1 — pg))\g s 0
U, = . )
L1 1 0 0 A1 =2 (1= pr—1) A1
I Lk 0 0 0 —Ap — @

It is clear that for k =1

1
d@t(Ul) = ;pl)\l — )\1 — X

= (=\ —2) (1—w(§i—ﬁx))'

For k = n, expending along the n-th row, we obtain

n—1

A

det(Un) = (=An — 2)det(Un 1) — (=1)" == [ (1 = pi)i, for n > 2.

w

Having (4.2) divided by [T, (—=X\; — ), we get

n—1
n n— _1 "
° sno1 = )w(—/\n—x) (A — o)
pn>\n = i

where
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Thus, we have

. P - pidi i (1 —pj)N
a (1_ W(/\1+l’)> _ZW(/\HF?U)]H (Aj + )

and the theorem follows directly by det(Uy) = si [[1_y (=N — 7).
The proof of (2) is similar. O

Theorem 4.1.2 Let w # 0, det(a(w) ® b(w)) = 0 if and only if w = f7,(x) where
x satisfies (4.1).

Proof. Since

det(a(w) @ b(w)) = wmkdet(ia(w) & éb(w)) ~0

if and only if there exists z such that

det(Za(w) — zT,) (4.3)

~0
det(Lb(w) + 21,) =0

For x # —\;, u; for all 4, then (4.3) holds if and only if w = f7,,(2) where z satisfies
fra(@) frs(—x) = 1 by Lemma 4.1.1. To show that this theorem is valid for all
values of z, for x = —\; or pu;, one needs to consider S; — €I; and Sy + €I, in place

of S; and S, with a small constant . Then

det(fa(w) — (z +e)Ly)
det(Eb(w) + (z + ¢)I,)

0
0

if and only if
J1a(® + &) f1 (-2 —€) = 0.

Let ¢ — 0 and by continuity argument, the theorem is proved. 0
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Thus, for every nonzero singularity of Q(w), there exists a value x such that
w = fr,(x) where x satisfies (4.1). Therefore, we solve equation (4.1) in place of

computing detQ(w) = 0. When the roots x with positive real part then

Wl = fal@)] = | / € fra(s)ds|
/ 7| fra(s)ds
0

= / eRe{’x}sza(s)ds

0

< /000 fra(s)ds = 1.

IN

When = has negative real part, we have

jwl = 1f7a(2)] > 1,

since |fr,(—x)| < 1 and f7,(z)f5,(—2) = 1. Here we are only interested in the root
x with positive real part, so that 7r,, can be normalised to become of the probability
distribution. It has been proved in [10] that if p < 1 then (4.1) has exactly m roots

with positive real part.

4.2 A Special Case of Simple Roots

In this section, we discuss the property of multiplicity for the roots of (4.1) and
show that, in Ej/FE,,/1 system, the multiple roots of (4.1) only occur at x = 0.

We assume that the arrival rate A and service rate p are positive real numbers.

The Laplace transforms of the probability density functions of the interarrival and

= (25)

= ()

service times are

and
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Theorem 4.2.1 The nonzero roots of

() () -

are simple.

Before proving this result, we first recall the Jensen’s inequality theorem.

Theorem 4.2.2 (Jensen’s inequality) Let ¢ be convexr over real line (a,b). Let

{12, be points of (a,b) and {p;}}_, satisfy p; >0 and Y- p; > 0. Then we have

()< B

Proof of Theorem 4.2.1:

It is sufficient to consider the function

g(@) & Np™ = (z + N — 2™

Since
g'(x) = (A +2) " (p—2)" 7 [(m + k)a — (kp — mN)],
. . . ku—mA
it follows that the possible multiple roots only occur at x = —\, u, and /’I:’LT
Obviously, g(—A) # 0 and g(u) # 0. We only need to consider k‘;ﬂ 1";/\ and denote it
by Zo.
Let
A M
t=—.
k

Then t is a positive real number and

g(z0) = (') =

k
A 1+ttt
1+t

Since A, i, and t are real, g(zo) = 0 leads to
A 1+t
it = (—+ M) t.
14+¢
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That is, g(x¢) = 0 if and only if A, u, and ¢ satisfy the equation
. 1 1+t
(4 = (ﬂ> . (4.4)
t 1+1

In the following argument, we use the Jensen’s inequality to find all positive

real numbers A, p, and ¢ such that (4.4) holds.

Given t > 0, let
Qb([)’}) _ e(t—l—l)m.

Because of

¢/($) _ (t-'- 1)e(t+1)x >0

and

¢"(z) = (t+1)%+D >0,

1

t+1
Y

it follows that gb(x) is convex over (—oo0,00). Let x; = In AT, 3y = In (

+I=

D1 =3 +1’ and py = —=. Jensen’s inequality theorem implies

é <p1x1 +p2I2> < p1d(w1) +p2¢(I2)'

(4.5)
p1+ D2 p1+ D2

1 /I/t-‘l—l
Left of (4.5) = o ——InA™T + —1In ()
eft of (4.5) ¢<t+1 A++t+1 ! )

1n,\tT1+t In(&) T

L
_ 1n,\j e t+1
L
- b ] )
1 - t T
R,lght of (45) _ H_l (1+t) AT + H_le(t—&-l)ln(%) T+1
1 In A 13 ln(&)
= —_— —_— t
R
1 p
o)
t+1 [ + t
1
= —— (A
t+1( + )
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We obtain .
t
\ (H) < (A
t t+1

Since ¢(z) is convex, the equality holds in (4.5) if and only if x; = x9. Hence, it

t+1
()= ()

if and only if £ = A, i.e., o = 0. O

yields
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