Chapter 4

Singularities of $\mathbf{Q}(\omega)$ in the Open Unit Disk

We will present in this chapter that there is a close connection between the singularity of $\mathbf{Q}(\omega)$ and an equation involving the Laplace transforms. Define

$$f_{Ta}^*(x)f_{Ts}^*(-x) = 1. (4.1)$$

We shall show that all the roots of (4.1) are simple in the $E_k/E_m/1$ system.

4.1 $Q(\omega)$ and Laplace Transform Equation

In this section, our goal is to find the condition such that $\mathbf{Q}(\omega) = \mathbf{a}(\omega) \oplus \mathbf{b}(\omega)$ has eigenvalue 0. Since the eigenvalue of Kronecker sum of $\mathbf{a}(\omega) \oplus \mathbf{b}(\omega)$ is the sum of the eigenvalues of $\mathbf{a}(\omega)$ and $\mathbf{b}(\omega)$ respectively, (see Theorem 4.4.5 in Chapter 4.4 of [8]) $\det \mathbf{Q}(\omega) = 0$ if and only if there exists θ such that $\det (\mathbf{a}(\omega) - \theta \mathbf{I}_1) = 0$ and $\det (\mathbf{b}(\omega) + \theta \mathbf{I}_2) = 0$. **Lemma 4.1.1** Let $\omega \neq 0$. we shall show

(1)
$$det(\frac{1}{\omega}\mathbf{a}(\omega) - x\mathbf{I}_1) = (1 - \frac{1}{\omega}f_{Ta}^*(x))\prod_{i=1}^k (-\lambda_i - x),$$

(2) $det(\frac{1}{\omega}\mathbf{b}(\omega) + x\mathbf{I}_2) = (1 - \omega f_{Ts}^*(-x))\prod_{i=1}^m (x - \mu_i).$

Proof.

(1) Let U_n be the upper left $n \times n$ block of $\frac{1}{\omega} \gamma_1 \beta_1 + \mathbf{S}_1 - x \mathbf{I}_1$, and it gives

$$U_{k} = \begin{bmatrix} \frac{1}{\omega} p_{1}\lambda_{1} - \lambda_{1} - x & (1 - p_{1})\lambda_{1} & 0 & \cdots & 0\\ \frac{1}{\omega} p_{2}\lambda_{2} & -\lambda_{2} - x & (1 - p_{2})\lambda_{2} & \cdots & 0\\ \vdots & \vdots & \ddots & \ddots & \vdots\\ \frac{1}{\omega} p_{k-1}\lambda_{k-1} & 0 & 0 & -\lambda_{k-1} - x & (1 - p_{k-1})\lambda_{k-1}\\ \frac{1}{\omega}\lambda_{k} & 0 & 0 & 0 & -\lambda_{k} - x \end{bmatrix}$$

.

It is clear that for k = 1

$$det(U_1) = \frac{1}{\omega} p_1 \lambda_1 - \lambda_1 - x$$
$$= (-\lambda_1 - x) \left(1 - \frac{p_1 \lambda_1}{\omega(\lambda_1 + x)} \right).$$

For k = n, expending along the *n*-th row, we obtain

$$det(U_n) = (-\lambda_n - x)det(U_{n-1}) - (-1)^n \frac{p_n \lambda_n}{\omega} \prod_{i=1}^{n-1} (1 - p_i)\lambda_i, \text{ for } n \ge 2.$$
(4.2)

Having (4.2) divided by $\prod_{i=1}^{n} (-\lambda_i - x)$, we get

$$s_n = s_{n-1} - (-1)^n \frac{p_n \lambda_n}{\omega(-\lambda_n - x)} \prod_{i=1}^{n-1} \frac{(1 - p_i)\lambda_i}{(-\lambda_i - x)}$$
$$= s_{n-1} - \frac{p_n \lambda_n}{\omega(\lambda_n + x)} \prod_{i=1}^{n-1} \frac{(1 - p_i)\lambda_i}{(\lambda_i + x)}$$

where

$$s_n \stackrel{\triangle}{=} \frac{\det(U_n)}{\prod_{i=1}^n (-\lambda_i - x)}.$$

Thus, we have

$$s_k = s_1 - \sum_{i=2}^k \frac{p_i \lambda_i}{\omega(\lambda_i + x)} \prod_{j=1}^{i-1} \frac{(1 - p_j)\lambda_j}{(\lambda_j + x)}$$
$$= \left(1 - \frac{p_1 \lambda_1}{\omega(\lambda_1 + x)}\right) - \sum_{i=2}^k \frac{p_i \lambda_i}{\omega(\lambda_i + x)} \prod_{j=1}^{i-1} \frac{(1 - p_j)\lambda_j}{(\lambda_j + x)}$$
$$= 1 - \frac{1}{\omega} \sum_{i=1}^k \frac{p_i \lambda_i}{(\lambda_i + x)} \prod_{j=1}^{i-1} \frac{(1 - p_j)\lambda_j}{(\lambda_j + x)},$$

and the theorem follows directly by $det(U_k) = s_k \prod_{i=1}^k (-\lambda_i - x)$. The proof of (2) is similar.

Theorem 4.1.2 Let $\omega \neq 0$, $det(\mathbf{a}(\omega) \oplus \mathbf{b}(\omega)) = 0$ if and only if $\omega = f_{Ta}^*(x)$ where x satisfies (4.1).

Proof. Since

$$det(\mathbf{a}(\omega) \oplus \mathbf{b}(\omega)) = \omega^{mk} det(\frac{1}{\omega}\mathbf{a}(\omega) \oplus \frac{1}{\omega}\mathbf{b}(\omega)) = 0$$

if and only if there exists x such that

$$\begin{cases} det(\frac{1}{\omega}\mathbf{a}(\omega) - x\mathbf{I}_1) = 0\\ det(\frac{1}{\omega}\mathbf{b}(\omega) + x\mathbf{I}_2) = 0 \end{cases}$$
(4.3)

For $x \neq -\lambda_i, \mu_i$ for all *i*, then (4.3) holds if and only if $\omega = f_{Ta}^*(x)$ where *x* satisfies $f_{Ta}^*(x)f_{Ts}^*(-x) = 1$ by Lemma 4.1.1. To show that this theorem is valid for all values of *x*, for $x = -\lambda_i$ or μ_i , one needs to consider $\mathbf{S}_1 - \varepsilon \mathbf{I}_1$ and $\mathbf{S}_2 + \varepsilon \mathbf{I}_2$ in place of \mathbf{S}_1 and \mathbf{S}_2 with a small constant ε . Then

$$\begin{cases} det(\frac{1}{\omega}\mathbf{a}(\omega) - (x+\varepsilon)\mathbf{I}_1) = 0\\ det(\frac{1}{\omega}\mathbf{b}(\omega) + (x+\varepsilon)\mathbf{I}_2) = 0 \end{cases}$$

if and only if

$$f_{Ta}^*(x+\varepsilon)f_{Ts}^*(-x-\varepsilon) = 0$$

Let $\varepsilon \to 0$ and by continuity argument, the theorem is proved.

Thus, for every *nonzero* singularity of $\mathbf{Q}(\omega)$, there exists a value x such that $\omega = f_{Ta}^*(x)$ where x satisfies (4.1). Therefore, we solve equation (4.1) in place of computing $det \mathbf{Q}(\omega) = 0$. When the roots x with positive real part then

$$\begin{aligned} |\omega| &= |f_{Ta}^*(x)| &= |\int_0^\infty e^{-xs} f_{Ta}(s) ds| \\ &\leq \int_0^\infty |e^{-xs}| f_{Ta}(s) ds \\ &= \int_0^\infty e^{Re\{-x\}s} f_{Ta}(s) ds \\ &< \int_0^\infty f_{Ta}(s) ds = 1. \end{aligned}$$

When x has negative real part, we have

$$|\omega| = |f_{Ta}^*(x)| > 1,$$

since $|f_{Ts}^*(-x)| < 1$ and $f_{Ta}^*(x)f_{Ts}^*(-x) = 1$. Here we are only interested in the root x with positive real part, so that π_n can be normalised to become of the probability distribution. It has been proved in [10] that if $\rho < 1$ then (4.1) has exactly m roots with positive real part.

4.2 A Special Case of Simple Roots

In this section, we discuss the property of multiplicity for the roots of (4.1) and show that, in $E_k/E_m/1$ system, the multiple roots of (4.1) only occur at x = 0.

We assume that the arrival rate λ and service rate μ are positive real numbers. The Laplace transforms of the probability density functions of the interarrival and service times are

$$f_{Ta}^*(x) = \left(\frac{\lambda}{x+\lambda}\right)^k$$

and

$$f_{Ts}^*(x) = \left(\frac{\mu}{x+\mu}\right)^m.$$

Theorem 4.2.1 The nonzero roots of

$$\left(\frac{\lambda}{x+\lambda}\right)^k \left(\frac{\mu}{\mu-x}\right)^m = 1$$

are simple.

Before proving this result, we first recall the Jensen's inequality theorem.

Theorem 4.2.2 (Jensen's inequality) Let ϕ be convex over real line (a,b). Let $\{x_j\}_{j=1}^N$ be points of (a,b) and $\{p_j\}_{j=1}^N$ satisfy $p_j \ge 0$ and $\sum p_j > 0$. Then we have

$$\phi\left(\frac{\sum p_j x_j}{\sum p_j}\right) \le \frac{\sum p_j \phi(x_j)}{\sum p_j}.$$

Proof of Theorem 4.2.1:

It is sufficient to consider the function

$$g(x) \stackrel{\triangle}{=} \lambda^k \mu^m - (x+\lambda)^k (\mu-x)^m.$$

Since

$$g'(x) = (\lambda + x)^{k-1}(\mu - x)^{m-1}[(m+k)x - (k\mu - m\lambda)],$$

it follows that the possible multiple roots only occur at $x = -\lambda, \mu$, and $\frac{k\mu - m\lambda}{m+k}$. Obviously, $g(-\lambda) \neq 0$ and $g(\mu) \neq 0$. We only need to consider $\frac{k\mu - m\lambda}{m+k}$ and denote it by x_0 .

Let

$$t \stackrel{\triangle}{=} \frac{m}{k}.$$

Then t is a positive real number and

$$g(x_0) = (\lambda \mu^t)^k - \left[\left(\frac{\lambda + \mu}{1 + t} \right)^{1+t} t^t \right]^k.$$

Since λ , μ , and t are real, $g(x_0) = 0$ leads to

$$\lambda \mu^t = \left(\frac{\lambda + \mu}{1 + t}\right)^{1+t} t^t.$$

That is, $g(x_0) = 0$ if and only if λ , μ , and t satisfy the equation

$$\lambda \left(\frac{\mu}{t}\right)^t = \left(\frac{1+\mu}{1+t}\right)^{1+t}.$$
(4.4)

In the following argument, we use the *Jensen's inequality* to find all positive real numbers λ , μ , and t such that (4.4) holds.

Given t > 0, let

$$\phi(x) = e^{(t+1)x}.$$

Because of

$$\phi'(x) = (t+1)e^{(t+1)x} > 0$$

and

$$\phi''(x) = (t+1)^2 e^{(t+1)x} > 0,$$

it follows that $\phi(x)$ is convex over $(-\infty, \infty)$. Let $x_1 = \ln \lambda^{\frac{1}{t+1}}$, $x_2 = \ln \left(\frac{\mu}{t}\right)^{\frac{1}{t+1}}$, $p_1 = \frac{1}{t+1}$, and $p_2 = \frac{t}{t+1}$. Jensen's inequality theorem implies

$$\phi\left(\frac{p_1x_1 + p_2x_2}{p_1 + p_2}\right) \le \frac{p_1\phi(x_1) + p_2\phi(x_2)}{p_1 + p_2}.$$
(4.5)

Left of (4.5) =
$$\phi\left(\frac{1}{t+1}\ln\lambda^{\frac{1}{t+1}} + \frac{t}{t+1}\ln\left(\frac{\mu}{t}\right)^{\frac{1}{t+1}}\right)$$

= $e^{\ln\lambda^{\frac{1}{t+1}} + t\ln\left(\frac{\mu}{t}\right)^{\frac{1}{t+1}}}$
= $e^{\ln\lambda^{\frac{1}{t+1}}} \cdot e^{\ln\left(\frac{\mu}{t}\right)^{\frac{t}{t+1}}}$
= $\left[\lambda\left(\frac{\mu}{t}\right)^{t}\right]^{\frac{1}{t+1}}$.

Right of (4.5) =
$$\frac{1}{t+1}e^{(1+t)\ln\lambda^{\frac{1}{t+1}}} + \frac{t}{t+1}e^{(t+1)\ln(\frac{\mu}{t})^{\frac{1}{t+1}}}$$

= $\frac{1}{t+1}e^{\ln\lambda} + \frac{t}{t+1}e^{\ln(\frac{\mu}{t})}$
= $\frac{1}{t+1}\left[\lambda + t\left(\frac{\mu}{t}\right)\right]$
= $\frac{1}{t+1}\left(\lambda + \mu\right).$

We obtain

$$\lambda \left(\frac{\mu}{t}\right)^t \le \left(\frac{\lambda+\mu}{t+1}\right)^{t+1}.$$

Since $\phi(x)$ is convex, the equality holds in (4.5) if and only if $x_1 = x_2$. Hence, it yields

$$\lambda \left(\frac{\mu}{t}\right)^t = \left(\frac{\lambda + \mu}{t + 1}\right)^{t}$$

if and only if $\frac{\mu}{t} = \lambda$, i.e., $x_0 = 0$.