Chapter 4

Singularities of $\mathbf{Q}(\omega)$ in the Open Unit Disk

We will present in this chapter that there is a close connection between the singularity of $\mathbf{Q}(\omega)$ and an equation involving the Laplace transforms. Define

$$
\begin{equation*}
f_{T a}^{*}(x) f_{T s}^{*}(-x)=1 . \tag{4.1}
\end{equation*}
$$

We shall show that all the roots of (4.1) are simple in the $E_{k} / E_{m} / 1$ system.

4.1 $\mathrm{Q}(\omega)$ and Laplace Transform Equation

In this section, our goal is to find the condition such that $\mathbf{Q}(\omega)=\mathbf{a}(\omega) \oplus \mathbf{b}(\omega)$ has eigenvalue 0 . Since the eigenvalue of Kronecker sum of $\mathbf{a}(\omega) \oplus \mathbf{b}(\omega)$ is the sum of the eigenvalues of $\mathbf{a}(\omega)$ and $\mathbf{b}(\omega)$ respectively, (see Theorem 4.4.5 in Chapter 4.4 of [8]) $\operatorname{det} \mathbf{Q}(\omega)=0$ if and only if there exists θ such that $\operatorname{det}\left(\mathbf{a}(\omega)-\theta \mathbf{I}_{1}\right)=0$ and $\operatorname{det}\left(\mathbf{b}(\omega)+\theta \mathbf{I}_{2}\right)=0$.

Lemma 4.1.1 Let $\omega \neq 0$. we shall show

$$
\begin{aligned}
& \text { (1) } \quad \operatorname{det}\left(\frac{1}{\omega} \mathbf{a}(\omega)-x \mathbf{I}_{1}\right)=\left(1-\frac{1}{\omega} f_{T a}^{*}(x)\right) \prod_{i=1}^{k}\left(-\lambda_{i}-x\right), \\
& \text { (2) } \operatorname{det}\left(\frac{1}{\omega} \mathbf{b}(\omega)+x \mathbf{I}_{2}\right)=\left(1-\omega f_{T s}^{*}(-x)\right) \prod_{i=1}^{m}\left(x-\mu_{i}\right) .
\end{aligned}
$$

Proof.

(1) Let U_{n} be the upper left $n \times n$ block of $\frac{1}{\omega} \boldsymbol{\gamma}_{1} \boldsymbol{\beta}_{1}+\mathbf{S}_{1}-x \mathbf{I}_{1}$, and it gives

$$
U_{k}=\left[\begin{array}{ccccc}
\frac{1}{\omega} p_{1} \lambda_{1}-\lambda_{1}-x & \left(1-p_{1}\right) \lambda_{1} & 0 & \cdots & 0 \\
\frac{1}{\omega} p_{2} \lambda_{2} & -\lambda_{2}-x & \left(1-p_{2}\right) \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\frac{1}{\omega} p_{k-1} \lambda_{k-1} & 0 & 0 & -\lambda_{k-1}-x & \left(1-p_{k-1}\right) \lambda_{k-1} \\
\frac{1}{\omega} \lambda_{k} & 0 & 0 & 0 & -\lambda_{k}-x
\end{array}\right] .
$$

It is clear that for $k=1$

$$
\begin{aligned}
\operatorname{det}\left(U_{1}\right) & =\frac{1}{\omega} p_{1} \lambda_{1}-\lambda_{1}-x \\
& =\left(-\lambda_{1}-x\right)\left(1-\frac{p_{1} \lambda_{1}}{\omega\left(\lambda_{1}+x\right)}\right) .
\end{aligned}
$$

For $k=n$, expending along the n-th row, we obtain

$$
\begin{equation*}
\operatorname{det}\left(U_{n}\right)=\left(-\lambda_{n}-x\right) \operatorname{det}\left(U_{n-1}\right)-(-1)^{n} \frac{p_{n} \lambda_{n}}{\omega} \prod_{i=1}^{n-1}\left(1-p_{i}\right) \lambda_{i}, \quad \text { for } n \geq 2 . \tag{4.2}
\end{equation*}
$$

Having (4.2) divided by $\prod_{i=1}^{n}\left(-\lambda_{i}-x\right)$, we get

$$
\begin{aligned}
s_{n} & =s_{n-1}-(-1)^{n} \frac{p_{n} \lambda_{n}}{\omega\left(-\lambda_{n}-x\right)} \prod_{i=1}^{n-1} \frac{\left(1-p_{i}\right) \lambda_{i}}{\left(-\lambda_{i}-x\right)} \\
& =s_{n-1}-\frac{p_{n} \lambda_{n}}{\omega\left(\lambda_{n}+x\right)} \prod_{i=1}^{n-1} \frac{\left(1-p_{i}\right) \lambda_{i}}{\left(\lambda_{i}+x\right)}
\end{aligned}
$$

where

$$
s_{n} \triangleq \frac{\operatorname{det}\left(U_{n}\right)}{\prod_{i=1}^{n}\left(-\lambda_{i}-x\right)} .
$$

Thus, we have

$$
\begin{aligned}
s_{k} & =s_{1}-\sum_{i=2}^{k} \frac{p_{i} \lambda_{i}}{\omega\left(\lambda_{i}+x\right)} \prod_{j=1}^{i-1} \frac{\left(1-p_{j}\right) \lambda_{j}}{\left(\lambda_{j}+x\right)} \\
& =\left(1-\frac{p_{1} \lambda_{1}}{\omega\left(\lambda_{1}+x\right)}\right)-\sum_{i=2}^{k} \frac{p_{i} \lambda_{i}}{\omega\left(\lambda_{i}+x\right)} \prod_{j=1}^{i-1} \frac{\left(1-p_{j}\right) \lambda_{j}}{\left(\lambda_{j}+x\right)} \\
& =1-\frac{1}{\omega} \sum_{i=1}^{k} \frac{p_{i} \lambda_{i}}{\left(\lambda_{i}+x\right)} \prod_{j=1}^{i-1} \frac{\left(1-p_{j}\right) \lambda_{j}}{\left(\lambda_{j}+x\right)}
\end{aligned}
$$

and the theorem follows directly by $\operatorname{det}\left(U_{k}\right)=s_{k} \prod_{i=1}^{k}\left(-\lambda_{i}-x\right)$.
The proof of (2) is similar.

Theorem 4.1.2 Let $\omega \neq 0, \operatorname{det}(\mathbf{a}(\omega) \oplus \mathbf{b}(\omega))=0$ if and only if $\omega=f_{T a}^{*}(x)$ where x satisfies (4.1).

Proof. Since

$$
\operatorname{det}(\mathbf{a}(\omega) \oplus \mathbf{b}(\omega))=\omega^{m k} \operatorname{det}\left(\frac{1}{\omega} \mathbf{a}(\omega) \oplus \frac{1}{\omega} \mathbf{b}(\omega)\right)=0
$$

if and only if there exists x such that

$$
\left\{\begin{array}{l}
\operatorname{det}\left(\frac{1}{\omega} \mathbf{a}(\omega)-x \mathbf{I}_{1}\right)=0 \tag{4.3}\\
\operatorname{det}\left(\frac{1}{\omega} \mathbf{b}(\omega)+x \mathbf{I}_{2}\right)=0
\end{array}\right.
$$

For $x \neq-\lambda_{i}, \mu_{i}$ for all i, then (4.3) holds if and only if $\omega=f_{T a}^{*}(x)$ where x satisfies $f_{T a}^{*}(x) f_{T s}^{*}(-x)=1$ by Lemma 4.1.1. To show that this theorem is valid for all values of x, for $x=-\lambda_{i}$ or μ_{i}, one needs to consider $\mathbf{S}_{1}-\varepsilon \mathbf{I}_{1}$ and $\mathbf{S}_{2}+\varepsilon \mathbf{I}_{2}$ in place of \mathbf{S}_{1} and \mathbf{S}_{2} with a small constant ε. Then

$$
\left\{\begin{array}{l}
\operatorname{det}\left(\frac{1}{\omega} \mathbf{a}(\omega)-(x+\varepsilon) \mathbf{I}_{1}\right)=0 \\
\operatorname{det}\left(\frac{1}{\omega} \mathbf{b}(\omega)+(x+\varepsilon) \mathbf{I}_{2}\right)=0
\end{array}\right.
$$

if and only if

$$
f_{T a}^{*}(x+\varepsilon) f_{T s}^{*}(-x-\varepsilon)=0 .
$$

Let $\varepsilon \rightarrow 0$ and by continuity argument, the theorem is proved.

Thus, for every nonzero singularity of $\mathbf{Q}(\omega)$, there exists a value x such that $\omega=f_{T a}^{*}(x)$ where x satisfies (4.1). Therefore, we solve equation (4.1) in place of computing $\operatorname{det} \mathbf{Q}(\omega)=0$. When the roots x with positive real part then

$$
\begin{aligned}
|\omega|=\left|f_{T a}^{*}(x)\right| & =\left|\int_{0}^{\infty} e^{-x s} f_{T a}(s) d s\right| \\
& \leq \int_{0}^{\infty}\left|e^{-x s}\right| f_{T a}(s) d s \\
& =\int_{0}^{\infty} e^{R e\{-x\} s} f_{T a}(s) d s \\
& <\int_{0}^{\infty} f_{T a}(s) d s=1
\end{aligned}
$$

When x has negative real part, we have

$$
|\omega|=\left|f_{T a}^{*}(x)\right|>1,
$$

since $\left|f_{T s}^{*}(-x)\right|<1$ and $f_{T a}^{*}(x) f_{T s}^{*}(-x)=1$. Here we are only interested in the root x with positive real part, so that $\boldsymbol{\pi}_{n}$ can be normalised to become of the probability distribution. It has been proved in [10] that if $\rho<1$ then (4.1) has exactly m roots with positive real part.

4.2 A Special Case of Simple Roots

In this section, we discuss the property of multiplicity for the roots of (4.1) and show that, in $E_{k} / E_{m} / 1$ system, the multiple roots of (4.1) only occur at $x=0$.

We assume that the arrival rate λ and service rate μ are positive real numbers. The Laplace transforms of the probability density functions of the interarrival and service times are

$$
f_{T a}^{*}(x)=\left(\frac{\lambda}{x+\lambda}\right)^{k}
$$

and

$$
f_{T s}^{*}(x)=\left(\frac{\mu}{x+\mu}\right)^{m}
$$

Theorem 4.2.1 The nonzero roots of

$$
\left(\frac{\lambda}{x+\lambda}\right)^{k}\left(\frac{\mu}{\mu-x}\right)^{m}=1
$$

are simple.

Before proving this result, we first recall the Jensen's inequality theorem.

Theorem 4.2.2 (Jensen's inequality) Let ϕ be convex over real line (a, b). Let $\left\{x_{j}\right\}_{j=1}^{N}$ be points of (a, b) and $\left\{p_{j}\right\}_{j=1}^{N}$ satisfy $p_{j} \geq 0$ and $\sum p_{j}>0$. Then we have

$$
\phi\left(\frac{\sum p_{j} x_{j}}{\sum p_{j}}\right) \leq \frac{\sum p_{j} \phi\left(x_{j}\right)}{\sum p_{j}}
$$

Proof of Theorem 4.2.1:

It is sufficient to consider the function

$$
g(x) \triangleq \lambda^{k} \mu^{m}-(x+\lambda)^{k}(\mu-x)^{m} .
$$

Since

$$
g^{\prime}(x)=(\lambda+x)^{k-1}(\mu-x)^{m-1}[(m+k) x-(k \mu-m \lambda)],
$$

it follows that the possible multiple roots only occur at $x=-\lambda, \mu$, and $\frac{k \mu-m \lambda}{m+k}$. Obviously, $g(-\lambda) \neq 0$ and $g(\mu) \neq 0$. We only need to consider $\frac{k \mu-m \lambda}{m+k}$ and denote it by x_{0}.

Let

$$
t \triangleq \frac{m}{k}
$$

Then t is a positive real number and

$$
g\left(x_{0}\right)=\left(\lambda \mu^{t}\right)^{k}-\left[\left(\frac{\lambda+\mu}{1+t}\right)^{1+t} t^{t}\right]^{k}
$$

Since λ, μ, and t are real, $g\left(x_{0}\right)=0$ leads to

$$
\lambda \mu^{t}=\left(\frac{\lambda+\mu}{1+t}\right)^{1+t} t^{t}
$$

That is, $g\left(x_{0}\right)=0$ if and only if λ, μ, and t satisfy the equation

$$
\begin{equation*}
\lambda\left(\frac{\mu}{t}\right)^{t}=\left(\frac{1+\mu}{1+t}\right)^{1+t} \tag{4.4}
\end{equation*}
$$

In the following argument, we use the Jensen's inequality to find all positive real numbers λ, μ, and t such that (4.4) holds.

Given $t>0$, let

$$
\phi(x)=e^{(t+1) x} .
$$

Because of

$$
\phi^{\prime}(x)=(t+1) e^{(t+1) x}>0
$$

and

$$
\phi^{\prime \prime}(x)=(t+1)^{2} e^{(t+1) x}>0,
$$

it follows that $\phi(x)$ is convex over $(-\infty, \infty)$. Let $x_{1}=\ln \lambda^{\frac{1}{t+1}}, x_{2}=\ln \left(\frac{\mu}{t}\right)^{\frac{1}{t+1}}$, $p_{1}=\frac{1}{t+1}$, and $p_{2}=\frac{t}{t+1}$. Jensen's inequality theorem implies

$$
\begin{gathered}
\phi\left(\frac{p_{1} x_{1}+p_{2} x_{2}}{p_{1}+p_{2}}\right) \leq \frac{p_{1} \phi\left(x_{1}\right)+p_{2} \phi\left(x_{2}\right)}{p_{1}+p_{2}} \\
\text { Left of (4.5) }
\end{gathered}=\phi\left(\frac{1}{t+1} \ln \lambda^{\frac{1}{t+1}}+\frac{t}{t+1} \ln \left(\frac{\mu}{t}\right)^{\frac{1}{t+1}}\right) .
$$

$$
\begin{aligned}
\text { Right of (4.5) } & =\frac{1}{t+1} e^{(1+t) \ln \lambda^{\frac{1}{t+1}}}+\frac{t}{t+1} e^{(t+1) \ln \left(\frac{\mu}{t}\right)^{\frac{1}{t+1}}} \\
& =\frac{1}{t+1} e^{\ln \lambda}+\frac{t}{t+1} e^{\ln \left(\frac{\mu}{t}\right)} \\
& =\frac{1}{t+1}\left[\lambda+t\left(\frac{\mu}{t}\right)\right] \\
& =\frac{1}{t+1}(\lambda+\mu) .
\end{aligned}
$$

We obtain

$$
\lambda\left(\frac{\mu}{t}\right)^{t} \leq\left(\frac{\lambda+\mu}{t+1}\right)^{t+1}
$$

Since $\phi(x)$ is convex, the equality holds in (4.5) if and only if $x_{1}=x_{2}$. Hence, it yields

$$
\lambda\left(\frac{\mu}{t}\right)^{t}=\left(\frac{\lambda+\mu}{t+1}\right)^{t+1}
$$

if and only if $\frac{\mu}{t}=\lambda$, i.e., $x_{0}=0$.

