
Chapter 4

Singularities of Q(ω) in the Open

Unit Disk

We will present in this chapter that there is a close connection between the singu-

larity of Q(ω) and an equation involving the Laplace transforms. Define

f ∗Ta(x)f ∗Ts(−x) = 1. (4.1)

We shall show that all the roots of (4.1) are simple in the Ek/Em/1 system.

4.1 Q(ω) and Laplace Transform Equation

In this section, our goal is to find the condition such that Q(ω) = a(ω)⊕ b(ω) has

eigenvalue 0. Since the eigenvalue of Kronecker sum of a(ω) ⊕ b(ω) is the sum of

the eigenvalues of a(ω) and b(ω) respectively, (see Theorem 4.4.5 in Chapter 4.4

of [8]) detQ(ω) = 0 if and only if there exists θ such that det (a(ω)− θI1) = 0 and

det (b(ω) + θI2) = 0.
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Lemma 4.1.1 Let ω 6= 0. we shall show

(1) det( 1
ω
a(ω)− xI1) = (1− 1

ω
f ∗Ta(x))

∏k
i=1(−λi − x),

(2) det( 1
ω
b(ω) + xI2) = (1− ωf ∗Ts(−x))

∏m
i=1(x− µi).

Proof.

(1) Let Un be the upper left n× n block of 1
ω
γ1β1 + S1 − xI1, and it gives

Uk =




1
ωp1λ1 − λ1 − x (1− p1)λ1 0 · · · 0

1
ωp2λ2 −λ2 − x (1− p2)λ2 · · · 0

...
...

. . . . . .
...

1
ωpk−1λk−1 0 0 −λk−1 − x (1− pk−1)λk−1

1
ωλk 0 0 0 −λk − x




.

It is clear that for k = 1

det(U1) =
1

ω
p1λ1 − λ1 − x

= (−λ1 − x)

(
1− p1λ1

ω(λ1 + x)

)
.

For k = n, expending along the n-th row, we obtain

det(Un) = (−λn − x)det(Un−1)− (−1)n pnλn

ω

n−1∏

i=1

(1− pi)λi, for n ≥ 2. (4.2)

Having (4.2) divided by
∏n

i=1(−λi − x), we get

sn = sn−1 − (−1)n pnλn

ω(−λn − x)

n−1∏
i=1

(1− pi)λi

(−λi − x)

= sn−1 − pnλn

ω(λn + x)

n−1∏
i=1

(1− pi)λi

(λi + x)

where

sn
4
=

det(Un)∏n
i=1(−λi − x)

.
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Thus, we have

sk = s1 −
k∑

i=2

piλi

ω(λi + x)

i−1∏
j=1

(1− pj)λj

(λj + x)

=

(
1− p1λ1

ω(λ1 + x)

)
−

k∑
i=2

piλi

ω(λi + x)

i−1∏
j=1

(1− pj)λj

(λj + x)

= 1− 1

ω

k∑
i=1

piλi

(λi + x)

i−1∏
j=1

(1− pj)λj

(λj + x)
,

and the theorem follows directly by det(Uk) = sk

∏k
i=1(−λi − x).

The proof of (2) is similar. ¤

Theorem 4.1.2 Let ω 6= 0, det(a(ω)⊕ b(ω)) = 0 if and only if ω = f ∗Ta(x) where

x satisfies (4.1).

Proof. Since

det(a(ω)⊕ b(ω)) = ωmkdet(
1

ω
a(ω)⊕ 1

ω
b(ω)) = 0

if and only if there exists x such that





det( 1
ω
a(ω)− xI1) = 0

det( 1
ω
b(ω) + xI2) = 0

. (4.3)

For x 6= −λi, µi for all i, then (4.3) holds if and only if ω = f ∗Ta(x) where x satisfies

f ∗Ta(x)f ∗Ts(−x) = 1 by Lemma 4.1.1. To show that this theorem is valid for all

values of x, for x = −λi or µi, one needs to consider S1 − εI1 and S2 + εI2 in place

of S1 and S2 with a small constant ε. Then




det( 1
ω
a(ω)− (x + ε)I1) = 0

det( 1
ω
b(ω) + (x + ε)I2) = 0

if and only if

f ∗Ta(x + ε)f ∗Ts(−x− ε) = 0.

Let ε → 0 and by continuity argument, the theorem is proved. ¤
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Thus, for every nonzero singularity of Q(ω), there exists a value x such that

ω = f ∗Ta(x) where x satisfies (4.1). Therefore, we solve equation (4.1) in place of

computing detQ(ω) = 0. When the roots x with positive real part then

|ω| = |f ∗Ta(x)| = |
∫ ∞

0

e−xsfTa(s)ds|

≤
∫ ∞

0

|e−xs|fTa(s)ds

=

∫ ∞

0

eRe{−x}sfTa(s)ds

<

∫ ∞

0

fTa(s)ds = 1.

When x has negative real part, we have

|ω| = |f ∗Ta(x)| > 1,

since |f ∗Ts(−x)| < 1 and f ∗Ta(x)f ∗Ts(−x) = 1. Here we are only interested in the root

x with positive real part, so that πn can be normalised to become of the probability

distribution. It has been proved in [10] that if ρ < 1 then (4.1) has exactly m roots

with positive real part.

4.2 A Special Case of Simple Roots

In this section, we discuss the property of multiplicity for the roots of (4.1) and

show that, in Ek/Em/1 system, the multiple roots of (4.1) only occur at x = 0.

We assume that the arrival rate λ and service rate µ are positive real numbers.

The Laplace transforms of the probability density functions of the interarrival and

service times are

f ∗Ta(x) =

(
λ

x + λ

)k

and

f ∗Ts(x) =

(
µ

x + µ

)m

.
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Theorem 4.2.1 The nonzero roots of

(
λ

x + λ

)k (
µ

µ− x

)m

= 1

are simple.

Before proving this result, we first recall the Jensen’s inequality theorem.

Theorem 4.2.2 (Jensen’s inequality) Let φ be convex over real line (a,b). Let

{xj}N
j=1 be points of (a, b) and {pj}N

j=1 satisfy pj ≥ 0 and
∑

pj > 0. Then we have

φ

(∑
pjxj∑
pj

)
≤

∑
pjφ(xj)∑

pj

.

Proof of Theorem 4.2.1:

It is sufficient to consider the function

g(x)
4
= λkµm − (x + λ)k(µ− x)m.

Since

g′(x) = (λ + x)k−1(µ− x)m−1[(m + k)x− (kµ−mλ)],

it follows that the possible multiple roots only occur at x = −λ, µ, and kµ−mλ
m+k

.

Obviously, g(−λ) 6= 0 and g(µ) 6= 0. We only need to consider kµ−mλ
m+k

and denote it

by x0.

Let

t
4
=

m

k
.

Then t is a positive real number and

g(x0) = (λµt)k −
[(

λ + µ

1 + t

)1+t

tt

]k

.

Since λ, µ, and t are real, g(x0) = 0 leads to

λµt =

(
λ + µ

1 + t

)1+t

tt.
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That is, g(x0) = 0 if and only if λ, µ, and t satisfy the equation

λ
(µ

t

)t

=

(
1 + µ

1 + t

)1+t

. (4.4)

In the following argument, we use the Jensen’s inequality to find all positive

real numbers λ, µ, and t such that (4.4) holds.

Given t > 0, let

φ(x) = e(t+1)x.

Because of

φ′(x) = (t + 1)e(t+1)x > 0

and

φ′′(x) = (t + 1)2e(t+1)x > 0,

it follows that φ(x) is convex over (−∞,∞). Let x1 = ln λ
1

t+1 , x2 = ln
(

µ
t

) 1
t+1 ,

p1 = 1
t+1

, and p2 = t
t+1

. Jensen’s inequality theorem implies

φ

(
p1x1 + p2x2

p1 + p2

)
≤ p1φ(x1) + p2φ(x2)

p1 + p2

. (4.5)

Left of (4.5) = φ

(
1

t + 1
ln λ

1
t+1 +

t

t + 1
ln

(µ

t

) 1
t+1

)

= eln λ
1

t+1 +t ln(µ
t )

1
t+1

= eln λ
1

t+1 · eln(µ
t )

t
t+1

=

[
λ

(µ

t

)t
] 1

t+1

.

Right of (4.5) =
1

t + 1
e(1+t) ln λ

1
t+1

+
t

t + 1
e(t+1) ln(µ

t )
1

t+1

=
1

t + 1
eln λ +

t

t + 1
eln(µ

t )

=
1

t + 1

[
λ + t

(µ

t

)]

=
1

t + 1
(λ + µ) .
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We obtain

λ
(µ

t

)t

≤
(

λ + µ

t + 1

)t+1

.

Since φ(x) is convex, the equality holds in (4.5) if and only if x1 = x2. Hence, it

yields

λ
(µ

t

)t

=

(
λ + µ

t + 1

)t+1

if and only if µ
t

= λ, i.e., x0 = 0. ¤
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