Chapter 5

A Method of Constructing

Solution Spaces

It was observed in Theorem 3.3.3 that the vectors used in the expression of the
saturated probability are described by canonical sets of the left Jordan chains for
Q(w). In addition to this, from the preceding chapter, we see that the singularities
of Q(w) has a close connection to the roots of (4.1). In this chapter, we want to
find those vectors used in the expression of saturated probabilities. If we are able
to find some vectors such that > " dimL(w,) is equal to m, then by Corollary
3.3.6 these vectors are sufficient to construct the solution space for the saturated

probabilities.

5.1 Cases of Simple roots

If the m roots, xy,29,...,xy, of (4.1) with positive real part are distinct and

fra(i) # fr.(x;) for each i # j, then according to Theorem 4.1.2, we set w, =
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fr(za) for a =1,...,m. Given zq, define u{® and v*) as follows (See Wang [10]),

uga) = a13,(S1 —z1i) 7, (5.1)
Vga) = a2,32(82+$a12)_1 (52)
where aq, as are constants such that u§“)1 = v§“)1 = 1. Simply, set
@ =B, = fas

We will show that u{” @v{® forms the left null space of Q(w,) for a =1, ..., m.

Lemma 5.1.1 Ifu; #0,v; #0, and us, ® vy +u; ® vo = 0, then us = cuy and

vo = —cVvy for some constant c.
Proof. Suppose u; = (w1, w2, - - ., u) and v; = (v;1,Vig, - - ., Vi) for ¢ = 1,2, and
U @ vi = —u; @ Vg,
ie.,
(U21V1, U22V1, - - - ,Uszl) = —(U11V2, U12V2, . - . 7U1kV2)-
Without loss of generality, assume u; = (uq1,...,u15,0,...,0) where uyy,...,uy;

are not zeros, we have

. TU2
Vo = Vi,
U1
. TUx
Vo = Vi,
U12
Uy
Vo = Vi,
Uyj
U2 j+1 = U2 j42 = ... = Uk = 0,
and set
c A U2 U22 U2
U1 U2 U1
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Hence, we obtain

uy =cu; and vy = —cvi. (5.3)

0

Theorem 5.1.2 Let w # 0 and ¢ = u®v # 0. Then Q(w) = 0 if and only if
u is the left eigenvector of a(w) corresponding to eigenvalue rw and v is the left
eigenvector of b(w) corresponding to eigenvalue —xw, where x is the root of (4.1)
and w = fr.(x).

Proof. Suppose (u® v)Q(w) = 0 or ua(w) ® v+ u® vb(w) = 0. Then there
exists ¢ such that

ua(w) = cu

and
vb(w) = —cv,
ie.,
u(a(w) —cly) =0,
and

v(b(w) +cly) = 0.

From Theorem 4.1.2, we see det(a(w) — cIy) = det(b(w) + cIy) = 0 if and only if

¢ = zw where w = f7 (x) and x satisfies (4.1). Hence, the theorem holds true. O

Theorem 5.1.3 uﬁ‘“) and v\*) are the left eigenvectors of a(wa) and b(wy) corre-

sponding to the eigenvalues r,w, and —xyw, respectively.

Proof. It is easy to verify

wl (waS1 + 718, — Zawah)
= a18,(S1 — zai) " H{wa(S1 — zoT1) + 7161}
= ar{waBy + B1(S1 — za1) 1181}
= a1(WaB1 — W)
=0

30



and

Vga) (WaS2 + WZ'YQ/GQ + xawaI?)
= CL2,32<SQ -+ IaIg)il{wa(SQ -+ $a12) + wi’72,62}
= ax{waBy + wWiB5(S2 + zaly) ' vyB,}
1
J— J— 2 R
= az(WaBy — W, o Bs)

= 0.
UJ

From Theorems 5.1.2 and 5.1.3, we conclude that u'® @ v{*) is in the left null

space of Q(w,) for & = 1,...,m. From Theorem 3.3.3, we know that (Lpga),wacpga),

w2p'™ ) is contained in £*(wa) where @' = u{” @ v{*) for o = 1,...,m, and

it follows that """ | dimL*(w,) = m.

Suppose Wi = f;“a(xl) = f}a('rZ) == f}a(xd>‘ Then

(cpga)a wlcpga)v wfcpga)7 i )

is contained in £*(w;) where u{® and v{*) are defined in (5.1) and (5.2) for o =
1,...,d. It follows that dimL*(w;) > d by the fact ugl) ® v§1>, e ,ugd) ® ng) are
linearly independent. It is because u{® (resp. v§“’) is the eigenvector of a(wy) (resp.
b(wy)) corresponding to x,wy (resp. —zowi) for a =1,...,d. As a result, we have

dimL*(wy) = d from Corollary 3.3.6.

In this section, we conclude that if the m roots of (4.1) are distinct, the satu-

rated probabilities for n > 2 can be expressed as:
T, = Z cawg_luga) ® Vla). (5.4)
a=1

Equality (5.4) is verified by comparing with the results in [4] and [10].
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5.2 Cases of Multiple Roots

In this section, we discuss the situation when multiple roots occur in (4.1). Denote
the multiplicities of x, by £, for a = 1,...,s, s < m. Note that > > _ ¢, = m
when p < 1. We consider the following equations to find the vectors used in the

expression of the saturated probabilities.

' Q(w,) = 0,
' Q (wa) + 95 Q(w,) = 0,
Lo Q" (wa) + 057 Q (wa) + £57Qwa) = 0, (5.5)

(6% Lo —1 (0%
e i Q) ume + - + 1 Qlwa) = 0.

In the next section, we give several examples to explain how to find the vectors

used in the expression of the saturated probability when multiple roots occur.

5.3 Examples of /, <4

We will describe those vectors taken in the expression of the saturated probabilities
as the linear combination of product-forms if the multiplicity of z, is not exceeding

4fora=1,...,5 s <m.
If x, is the root of (4.1) then we have
(i ©vi”)Q(wa) = 0,
where u!®, v{*) are defined in (5.1), (5.2) and

u(la)a(wa) = xawauga), (5.6)

vib(w,) = —zawav . (5.7)
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Multiplying (5.1), (5.2) by (S1 —zoI1), (S2 + z,I2) respectively, it is easy to derive

vi'mnB, = (5.8)
uVal(we) = @ +zaui”, (5.9)
V§O‘)b’(wa) = —ayf3y — x4V () (5.10)
If x, is a roots of (4.1) with multiplicity 2, then
d * *
O ial) i ~2) ~ Dms, =0
or
Sy —z.1;)72 Sy + x,Ip) 7!
B1(S1 1) 718:(S2 2)" 2 (5.11)

—B1(S1 — 2:11) 711 Ba(S2 + 2.12) Py, = 0.
Equation (5.11) can be divided into two cases.

Case 1: 3,(S; — z,1;) %y, = 0.
Case 2: 3,(S; — z,I;1) v, #0.
In case 1, obviously, if 3;(S1 — x,I1) 2y, = 0, then B5(Ss + z,I2) 27, = 0 follows

from (5.11). If B,(S1 — xali) 2y, # 0, it is easy to verify 8,(S + 2aT5) 2y, # 0
by (5.11).

Theorem 5.3.1 If z, is a root of (4.1) with multiplicity 2, and
/61(81 - xa11)7271 = 0, then

(1l ©vi? —ul® @ vi”)Q(ws) = 0 (5.12)

where
ul® = wiau@(sl — .07, (5.13)
vi® = iVga)(Sg + 2,I5) 7, (5.14)

«
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(a) (a)

and u(()a) ® Vla) — uga) ® v(()a), u,  ® v, are linearly independent.
Proof. Since
« 1 « —
u(() ) (a(wa) — TawoIi) = —ug )(Sl —x.Ih) 1(wa81 + 7181 — TawaIi)
1 _
— w—alﬁl(sl — $a11) Z(Cdasl + ’71,61 — xawall)
1 _ _
= w—@151<sl — 1) 2’71,31 +a18,(S1 — z.11) !
= 0+ aB3,(S1 —zIy)”!
— uga)’
we obtain
(ug” @ vi?) (a(ws) D b(wa)) = uf’a(wa) @ vi¥ + uf” @ (~z0wavi”)
— u(()a) (a(wa) — TawaIi) ® v§“)
@ @i,
Similarly,
v (b(wa) + Tawals) = ViV,
and

()

(u§a) ® vy

Thus, (5.12) holds. To show

u(()a) KV

are linearly independent, it is sufficient to claim that u

) (a(we) © b(wa)) = uf” @ vi?
ga) B uga) Q Véa), ugoz) Q Vla)

() is independent of

and v is independent of vi*. If
clu(()a) + 02u§°‘) =0,
then
(c;u™ + cul®)y, = 0.
Since
1

uga)'h =

w_al/Bl(Sl - 1170511)72'71 = 07
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and
uga)'Yl —a1Wq 7é 0,

() ()

it follows ¢y = ¢; = 0. Therefore, uy” is independent of u;”. ()

Similarly, vy is

independent of vi®. O

Theorem 5.3.2 If x, is a root of (4.1) with multiplicity 2 and
B(S1 — zai) "2y, £ 0, then there ezists uS and vi*) such that

'VQ (wa) + p5Q(wa) = 0,

where

o = ult) v

(Pga) _ uga) ® Vga) . ( ) ® V(a)_
Proof

0 = (W @vi)Q(wa) + (W) ® v —ul™ @ vi)Q(wa)

= (0 @v{) (@ (wa) B P (wa)) + (1S @ v —ul® © viV) (a(w.)®

= u%a(we) Vi 0y @ ViU (wa) + upMaw) @ viY 4 ufe
vib(wa) - u§“> (wo) © v — ui® © v b(wn).
Inserting (5.6)~ (5.10) into the equations, it becomes
(018, + zau) @ V(¥ +ul” @ (—a:8, — zavi”) + ufVa(ws) @ Vi
+ul” @ (—zawavi®) — (a:awaug Neovi) —ul® @ vi?b(w,) =0
or
{5 (alwo) = Towals) + @B} © Vi + up® @ (V37 (~b(wa) — zawals)
—azB,} = 0.

Then there exists b; € R such that

uga) (a<wa) - xawaIl) + CL1,61 = b1u§a), (515)

Véa)(_b(wa) - xawaIQ) - a2/62 = —b1V§a), (516)
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ie.,
uga) (wasl + 71/81 xawaIl) - blul - al/@b

VI~ (WaS2 + w2Bs) — Tawals} = —byivi™ + asB,.

Considering (5.17), we let

cuau2 (81 —x,1)) = b1u1
(@) ’

Uy 71 =~
and get
(@) _ D1 (o) = — 1o
uy = —u; (S —z.1h) and b = o —.
Wq u; (Sl —l'aIl) 1’71
On the other hand, let
wav2 (Sg + x.1p) = blv1
wavé )’72 = —Qg
n (5.18), and we get
(@) _ b1 -1 —a2
vy = —V1 (So + x,15) and b =
We u}aVI (SQ + IaIg)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

Note that 8,(S; — z.I1) 2y, # 0, thus, ul”(S; — z.I) 1y, # 0 and vi*(S, +

z,12) 194 # 0. The proof will be completed if

—A1Wqy —Q2

uga)(Sl — xall)—l'yl cuav1 (Sg + z,I5) "1, .

In fact,
— Wy  Bi(S1—z0h) Ty
uga)(Sl — zoIy)7 ! ~ Bu(Si - wad) Py
_ Bo(Sa + zola) "'y
 Ba(Sa + xals) 2y,
—ay

wavl (Sg—i—a:aIg) s '

Equalities (5.22) and (5.24) follow by the fact w,a1 = a2, wo = By (a1 —

(5.1), and (5.2); (5.23) follows directly by (5.11).
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Remark 5.3.3
(1) In the proof of Theorem 5.3.2, we write u§“> and Véa) as follows,

[0 b [0 —
ul® = Lul(s; — 2,07,

«

(634 b (04 —
v ) = LSy + 2,15) 7Y,

«

where

—A1Wy —Q2

b = or .
ug )(Sl —x. 1)y, ( wavg )(Sg + $aIg)172)

(2) From (5.15), (5.16) and (5.20) we can easily derive

ugo‘)a(wa) = blugo‘) — a8 + xawauéa),

Vga)b(wa) = blvga) — a3y — xawavé‘l),

and

«@ —Qa2
Vé )'7252 = Fﬁz

07

(3) From (5.25), (5.26), and (5.530), it is easy to verify

(0% b (0% (0%
ug )a'(wa) = —1ug ) —i—xau; ),
o b le% o 2a
Vb (w,) = w—lvg )z — w—2ﬁ2.

Theorem 5.3.4 If z, is a root of (4.1) with multiplicity 3 and
B, (S1 — zaly) 2y, # 0, then there exists ul” and v such that

1 « « «
5 Q (wa) + 037 Q (wa) + 2 Q(wa) = 0,

where

=0y @V, — U-ga) ® V;a)v

e = ui” o vi? —u o v +ul” @ vy,
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(5.26)

(5.27)

(5.28)
(5.29)

(5.30)

(5.31)

(5.32)

(5.33)



Proof. Inserting (5.6)~(5.8) and (5.28)~(5.30) into (5.33), it becomes
(uéa)a(wa) — xawauéa) — bluga)) ® Vga) + uga)

5_2/62 - blvéa)) =0.

® (xawavéa) + Véa)b(wa)—l—

Then there exists scalar by such that

uVa(w,) — zawaul™ — biul® = byu'l®, (5.34)
Tawa v + vib(w,) + 262 — byvi® = —byvl®, (5.35)
Wa
ie.,
™ (WaS1 + 718, — Tawaly) = brul® + byul®, (5.36)
[e% (63 e Q
Vé (waSs + WiyoBy + Tawals) = —byv® 4 by — w—2[32 (5.37)

Consider (5.36), and let

wauéa)(sl —x1y) = bluéa) + bguga)

uga)'yl =0
We obtain
uga) = i(bQUga) —+ bll,Iéa))(Sl — Z’aIl)_l,
—blu;a)(sl—wall)_171 (538)
by = —3 1
w7 (S1—xal) 17,
On the other hand, we let
(@) (@) ()
WaVa (Se + z,Is) = byvy ' — byv
3 ( 2 2) 1Va 2V1 (539)

2, (@) __ —a3
Wa V3 Y2 = War

in (5.37), and obtain
9 = (b v e

Z%+b1v;a)(82+xa12)*1'72 (540)

by =
2 V§a>(82+$a12)7172

The proof will be completed if

—blu(za)(Sl — ZEaIl)il’)’l o :j_(% + blvga)(s2 + xa:[Q)_lPYQ (5 41)
ul®(S) — z.L) 1y, viV(S + zaLy) Ty,
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Since z,, is a root of (4.1) with multiplicity 3, it implies

0 = L{fiu@)fis(—2) = Yoz,
= 2B8,(S1 — zaI1) 'Y, 85(S2 + 2al2) P,
—26,(S1 — 2a11) ?7185(S2 + wala) 2,
+261(S1 — zaI1) ?7185(S2 + wal2) 1y,

Dividing (5.42) by 28, (S1 — 2.11) " 2185(S2 + z4I2) "2v,, we obtain

By(Satzale) 1y,  Bi(Si—wali)*Y,
62(S2+xa12)_272 ,Bl(slfffall)_wyl
|- BiSi—aad) ™y, By(Sataaln)*y,

B, (Si—za11)"27, B,(So+zala)—27Y,’

It is equivalent to

By(S2 + 2,15) 72,
By(S2 + 550412)_2’7’2'

B1(S1 — zo11) %y,
B1(S1 — za11) 72y,

Therefore, we have

b1 :1—b1

—51Uga)<sl —zo1h) 7ty =02 B1(S1 —z.d1) Py,

uga)(sl - xall)_171 —Wa /81(81 - wa11)72’71

Wa

=i bF Bs(S2 + wala) P,y
Wa Wa 162(82 + xa12>_272
%+ bivi(Ss + zalo) Ty,

Vi(Ss + 2,15) 1y,

_ ~h <1 ) By(S2 + zal2) v,
1/32<SZ + 2al2) 727,

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

Equalities (5.45) and (5.47) follow by (5.25), (5.26) and (5.27) ; (5.46) follows

directly from (5.44).

Remark 5.3.5
1) In the proof of Theorem 5.5.4, we write u' and v as follows,
3 3

o 1 p o _
ug ) — —(bgug ) 4+ blué ))(Sl — x,11) L

«

o 1 a Q@ -
Vi) = (bt 4 byv) (8 + walo)

«
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where

—bluga)(Sl — l‘aIl)_l’yl ( z_é + blvéa)<82 + xaI2)_172>
by = or .

w(S) — z,11) "1, Vi Sy + 2,15) "1y,

(2) From (5.56), (5.37) and (5.39) we can easily derive

uMa(w,) = bul™ +bul® + zaweul?, (5.50)
vib(we) = —bevi® + bvi — zawavi® — ﬁ2, (5.51)
and
—a2
V3 'y,8, = 3 — B, (5.52)

(07

(8) From (5.48), (5.49), and (5.52), it is easy to verify

. by (@ b X
uVa(w,) = w—ng )+ w_l ul® + zoul, (5.53)
o (07
« _b o b o o 20/

Theorem 5.3.6 If z, is a root of (4.1) with multiplicity 3,
B1(S1 — z.11) 2y, =0, and B1(S1 — z,11) 3y, = 0, then there exists u® ) and V(f‘l)

such that
(Y @ vl —ul” @ v + ul @ v')Q(wa) = 0 (5.55)
where
0@ = L@~ an) (5.56)
V) = i (S 4 ) (5.57)
and

{u” o vi” uf” o vi” —u” @ vi” Y @ vi¥ — ¥ @ v+ @ v}

s a linear independent set.
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Theorem 5.3.7 If z, is a root of (4.1) with multiplicity 3,
/61(81 - 13011)72'71 = 07 and /31(81 - xa11)73’71 7£ O? then

@7 Q(wa) = 0,
Qogolé)Q(wo) - 07
O3 Q (wa) + 5 Q(wa) = 0,

where

) = 0 v ) ol

o) = (LS ) ) g v

o = o vf? ol o ) v

(a)

The proofs of Theorem 5.3.6 and Theorem 5.3.7 are given in Appendix C and
Appendix D respectively.

Theorem 5.3.8 If z, is a root of (4.1) with multiplicity 4 and
B,(S1 — zaly) 2y, # 0, then there exists ul” and v such that

1 d? 1
51?1 T QU)o + 57057 Q" (wa) + 057 Q (wa) + 21V Qwa) =0, (5.58)

where

A = vl

) = vl )

o = u B — ol & v 4 uf

o) = o @ v — ol @ v +uf) @ v — ul®) @ v,

) @ vi®,

The proof of Theorem 5.3.8 is given in the Appendix E.

Because we use a similar approach in the process of proving Theorems 5.3.2,
5.3.4, and 5.3.8, we summary it in the following four steps. For a = 1,...,m, it

proceeds with,
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step 1. given «, write
i—1

el =3 (-1 @ vit);
t=0

step 2. use the equation

a i—1 a 1—2
(i_ll) 1 dci,z 1Q( )|w =Wa ( )ILPQ dci)z QQ( )’w =Wa
—i—goéa)Q(wa) =0
and Lemma 5.1.1 to obtain two equations (5.3);
(@)

step 3. separate each of the equations in (5.3) into two parts to obtain u;

v,

and

(e.g. (5.19) and (5.20) in €, =2; (E.3) and (5.39) in £, = 3.)
step 4. use the equation
to verify step 3 ;

step 5. replace ¢ by ¢ + 1 and repeat step 1 ~ step 4 until : = /,,.

From Theorems 5.3.2, 5.3.4, and 5.3.8, when the multiplicity of z, does not
exceed 4 for « = 1,...,5, s < m, we can construct m vectors in the left Jordan
chains for Q(w). Therefore, the saturated probability for n > 1 can be described
as the representation mentioned in Theorem 3.3.3. It implies the equality holds in

Corollary 3.3.6, i.e., > 0, L*(w) = m.
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