
2 Entire solutions for discrete reaction-diffusion

equations

2.1 Preliminaries

First, we define and make the notion of subsolution and supersolution of (1.1) as

follows.

Definition 2.1 A function u(x, t) defined on R×[s, S] is called a subsolution of

(1.1) if u(x, t) ≤ u(x, t) ((x, t) ∈ R × [s, S]) for any solution u(x, t) of (1.1) such

that u(x, s) ≤ u(x, s) (x ∈ R). We call u(x, t) a subsolution of (1.1) in R×(−∞,−T ]

for some T ≥ 0, if u(x, t) is a subsolution of (1.1) defined on R × [s,−T ] for any

s < −T . Similarly, a supersolution can be defined by reversing the inequalities.

Lemma 2.2 Let φi(x, t), i = 1, 2, be functions satisfying 0 < φi(x, t) < 1 and

(φi)t(·, t)−φi(·+1, t)−φi(·−1, t)+2φi(·, t)−f(φi(·, t)) ≤ 0 ((x, t) ∈ R×(−∞,−T ]).

Then u(x, t) := max{φ1(x, t), φ2(x, t)} is a subsolution of (1.1) in R × (−∞,−T ].

Proof . Given any s < −T . Set Ω := R × [s,−T ]. Let u(x, t) be a solution of (1.1)

in Ω with u(x, s) ≥ u(x, s) for all x ∈ R. Applying the strong maximum principle

(see [1]) to ωi(x, t) = u(x, t) − φi(x, t), i = 1, 2, we assert that ωi(x, t) ≥ 0 in Ω,

i = 1, 2.Thus u(x, t) ≥ φi(x, t) in Ω, i = 1, 2, which yields the desired conclusion.�
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We note that a bounded function φ(x, t) of C2 is a subsolution of (1.1) in R ×

(−∞,−T ] if φt(·, t)−φ(·+1, t)−φ(·−1, t)+2φ(·, t)−f(φ(·, t)) ≤ 0 in R×(−∞,−T ],

while it is a supersolution if φt(·, t)−φ(·+1, t)−φ(·−1, t)+2φ(·, t)−f(φ(·, t)) ≥ 0

in R × (−∞,−T ) (see [1]).

From now on, we alway assume c = cmin. Let λ be the larger root of the

characteristic equation

cλ − eλ − e−λ + 2 = 0. (2.1)

Concerning the asymptotic behaviors of the traveling wave solution U(x) near x =

±∞ in [3], we have the following estimates for x ≤ 0:

keλx ≤ U(x) ≤ Keλx, (2.2)

for some positive k,K. Also, for x ≥ 0 we have

γe−μx ≤ 1 − U(x) ≤ δe−μx, (2.3)

for some positive γ, δ and μ is the unique positive root of

cμ + eμ + e−μ − 3 = 0. (2.4)

Moveover, there are positive numbers ψi (i = 1, 2) such that

inf
x≤0

U ′(x)

U(x)
= ψ1, inf

x≥0

U ′(x)

1 − U(x)
= ψ2. (2.5)

2.2 Existence of entire solutions

Consider the following ordinary differential equation:

ṗ(t) = c + Neαp(t), (t ≤ 0), (2.6)
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where N , c and α are constants with c, α > 0. We can solve this equation easily

and obtain the solution as

p(t) = p(0) + ct − 1

α
log

{
1 +

N

c
eαp(0)(1 − ecαt)

}
. (2.7)

If N > 0, it is clear that the solution p(t) is monotone increasing. Let

ω := p(0) − 1

α
log

(
1 +

N

c
eαp(0)

)
. (2.8)

Then we obtain

0 < p(t) − ct − ω ≤ R0e
cαt, (t ≤ 0), (2.9)

for some positive constant R0. Now, we have the following lemma.

Lemma 2.3 Let p(t) be the solution of (2.6) with p(0) < 0, α = λ, N > max{K2/(ψ1k),

2K/(ψ2γ)} and let ω be defined by (2.8). Suppose that λ ≥ μ. Then

u(x, t) := U(x + p(t)) + U(−x + p(t)) (2.10)

and

u(x, t) := max{U(x + ct + ω), U(−x + ct + ω)} (2.11)

are a supersolution and a subsolution of (1.1) for t ≤ 0, respectively.

Proof. First, by Lemma 2.2, we see that u(x, t) := max{U(x+ ct+ω), U(−x+ ct+

ω)} is a subsolution of (1.1) for t ≤ 0. Next, we prove that u(x, t) is a supersolution.

Let U(x + p(t)) = U1, U(−x + p(t)) = U2. Set N [ν](x, t) := νt(x, t) − ν(x + 1, t) −

ν(x − 1, t) + 2ν(x, t) − f(ν(x, t)). By a simple computation, we have

N [u] = (U ′
1 + U ′

2)(Neλp − G(x, t)), (2.12)
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where

G(x, t) :=
U1U2(2 − 3U1 − 3U2)

U ′
1 + U ′

2

. (2.13)

We also see from (2.2), (2.3) and (2.5) that

keλy ≤ U(y) ≤ Keλy, (y ≤ 0), (2.14)

ψ1keλy ≤ ψ1U(y) ≤ U ′(y), (y ≤ 0), (2.15)

ψ2γe−μy ≤ ψ2(1 − U(y)) ≤ U ′(y), (y ≥ 0). (2.16)

Note that p(t) < 0 for all t ≤ 0. We divide R into three regions to estimate G(x, t).

(1) p ≤ x ≤ −p: Using (2.14) and (2.15), we obtain

G(x, t) ≤ 2U1U2

U ′
1 + U ′

2

≤ 2K2eλ(x+p)eλ(−x+p)

ψ1k(eλ(x+p) + eλ(−x+p))

=
2K2e2λp

ψ1k(eλx + e−λx)eλp
≤ 2K2

2ψ1k
eλp.

(2.17)

(2) x ≤ p: It follows from (2.14)-(2.16) that

G(x, t) ≤ 2U1

U ′
1 + U ′

2

≤ 2Keλ(x+p)

ψ1keλ(x+p) + ψ2γe−μ(−x+p)

=
2K

ψ1keλp + ψ2γe−(λ−μ)xe−μp
eλp

≤ 2K

ψ2γ
eλp.

(2.18)

(3) −p ≤ x: By the symmetry G(−x, t) = G(x, t) and (2.18), we obtain

G(x, t) ≤ 2K

ψ2γ
eλp. (2.19)

Hence we obtain

N [u] = (U ′
1 + U ′

2)(Neλp − G(x, t)) ≥ 0.

Therefore, u is a supersolution of (1.1) for t ≤ 0. This proves the lemma. �

7



Remark 2.4 The assumption λ ≥ μ in Lemma 2.3 is valid provided that cmin ≥
1

2 log 2
.

Lemma 2.5 Let u(x, t) and u(x, t) be the supersolution and the subsolution given

in Lemma 2.3. Suppose all the assumption of Lemma 2.3 holds. Then there is a

positive constant M1 such that

0 < u(x, t) − u(x, t) ≤ M1e
cλt ((x, t) ∈ R × (−∞, 0]). (2.20)

Proof . Suppose that t ≤ 0. Since U ′ > 0, we have U(x + ct + ω) ≥ U(−x + ct + ω)

for x ≥ 0. Thus u(x, t) = U(x + ct + ω) for x ≥ 0 and u(x, t) = U(−x + ct + ω) for

x ≤ 0. For x ≥ 0, we have

0 ≤ u(x, t) − u(x, t) = U(x + p(t)) + U(−x + p(t)) − U(x + ct + ω)

≤ Keλ(−x+p(t)) + supz |U ′(z)|R0e
cλt

≤ Keλp(t) + M2e
cλt ≤ M1e

cλt,

(2.21)

for some M1 > 0. On the other hand, for x ≤ 0, we have

0 ≤ u(x, t) − u(x, t) = U(x + p(t)) + U(−x + p(t)) − U(−x + ct + ω)

≤ Keλ(x+p(t)) + supz |U ′(z)|R0e
cλt

≤ Keλp(t) + M2e
cλt ≤ M1e

cλt.

(2.22)

This completes the proof. �

Following [5], we have the following proposition.
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Proposition 2.6 Under the same assumptions of Lemma 2.3, there is an entire

solution u∗(x, t) of (1.1) such that

u(x, t) ≤ u∗(x, t) ≤ u(x, t) ((x, t) ∈ R × (−∞, 0]), (2.23)

where ω is defined by (2.8), u(x, t) and u(x, t) are given in Lemma 2.3.

Proof . Denote by u(x, t; ν0) a solution to (1.1) with the initial condition u(x, 0; ν0(·)) =

ν0(x). Set

νn(x, t) = u(x, t; u(·,−n)), n = 1, 2, ... .

Since u is a subsolution and u(x,−n − 1 + 0) = u(x, 0; u(·,−(n + 1))), we have

u(x,−n − 1 + t) ≤ u(x, t; u(·,−(n + 1))).

By taking t = 1, we obtain

νn(x, 0) = u(x,−n) ≤ u(x, 1; u(·,−(n + 1))) = νn+1(x, 1).

Thus the maximum principle yields

νn(x, n) ≤ νn+1(x, n + 1),

which implies {νn(·, n)} is monotone increasing. On the other hand, since νn(x, n) ≤

u(x, 0), there is a function ν∗ such that νn converges uniformly to ν∗. Therefore,

u∗(x, t) := u(x, t; ν∗) is a solution for all t ≥ 0.

Next, we show that u∗(x, t) is defined for all t ≤ 0. Given T ≥ 0, there is an

integer n1 such that n1 > T . Then, for n ≥ n1, we have

u(x,−T ; νn) = u(x,−T ; u(x, n; u(·,−n))) = u(x, n − T ; u(·,−n)).
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Set

wn(x) = u(x, n − T ; u(·,−n)). (2.24)

Then νn(x, n) = u(x, T ; wn(x, t)) and

wn+1(x) = u(x, n + 1 − T ; u(·,−(n + 1))) ≥ u(x, n − T ; u(·,−n)) = wn(x).

This implies the sequence {wn} is monotone increasing. Applying the same argu-

ment, there is a function νT to which wn converges uniformly. We see that

ν∗ = lim
n→∞

νn = lim
n→∞

u(x, T ; wn(x, t)) = u(x, T ; νT ).

Thus we obtain

νT = u(x,−T ; ν∗).

Since T > 0 is arbitrary, we conclude that u∗(x, t) := u(x, t; ν∗) is defined for all

t ∈ R.

Finally, we show that (2.23) holds. From above, we have

u∗(x,−T ) = u(x,−T ; ν∗) = νT = lim
n→∞

ωn (2.25)

Since u is a subsolution and u(x,−n) ≥ u(x, 0; u(·,−n)) = u(x,−n), we have

u(x,−n + t) ≥ u(x, t; u(·,−n)) ≥ u(x,−n + t) ∀(x, t) ∈ R × [0, n].

By taking t = n − T , we obtain

u(x,−T ) ≥ ωn = u(x, n − T ; u(·,−n)) ≥ u(x,−T ). (2.26)

Hence, it follows from (2.25) and (2.26) that u(x,−T ) ≤ u∗(x,−T ) ≤ u(x,−T ).

Since T > 0 is arbitrary, (2.23) holds. This proves the proposition. �
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Remark 2.7 By virtue of the condition λ ≥ μ we can check that the supersolution

u(x, t), defined for t ≤ 0, is bounded by 1 for large |t|. In fact, we may assume that

K < 1/2 in the condition (2.2) by shifting appropriately. Then

U(x + p(t)) + U(−x + p(t)) ≤ K(eλx + e−λx)eλp (p ≤ x ≤ −p),

while

U(x + p) + U(−x + p) ≤ 1 − γe−μ(x+p) + Ke−λ(x − p)

≤ 1 − (γ − Ke(λ+μ)pe−(λ−μ)x)e−μ(x+p) (−p ≤ x),

U(x + p) + U(−x + p) ≤ Keλ(x+p) + 1 − γeμ(x−p)

≤ 1 − (γ − Ke(λ+μ)pe(λ−μ)x)eμ(x−p) (x ≤ p).

This implies u(x, t) ≤ 1 for t < −T with a large T > 0. Hence, by the strong max-

imum principle, we can assert that the solution u(x, t) of Proposition 2.6 satisfies

0 < u(x, t) < 1 for all (x, t) ∈ R
2.

Proposition 2.8 Let u(x, t) be an entire solution constructed in Proposition 2.6.

Under the same assumptions of Lemma 2.3 and Proposition 2.6, there is a positive

number M1 such that for t ≤ 0,

0 ≤ supx≥0 {u(x, t) − U(x + ct + ω)}

+ supx≤0 {u(x, t) − U(−x + ct + ω)} ≤ M1e
cλt.

(2.27)

Proof . Suppose that t ≤ 0. For x ≥ 0,

0 ≤ U(x + p(t)) + U(−x + p(t)) − U(x + ct + ω)

≤ Keλ(−x+p(t)) + supz |U ′(z)|R0e
cλt

≤ Keλp(t) + M2e
cλt ≤ 1

2
M1e

cλt,

(2.28)
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for some M1 > 0. Combining (2.23) and (2.28), we obtain

0 ≤ u(x, t) − U(x + ct + ω) ≤ u(x, t) − U(x + ct + ω) ≤ 1

2
M1e

cλt.

On the other hand, for x ≤ 0, we have

0 ≤ U(x + p(t)) + U(−x + p(t)) − U(−x + ct + ω)

≤ Keλ(x+p(t)) + supz |U ′(z)|R0e
cλt

≤ Keλp(t) + M2e
cλt ≤ 1

2
M1e

cλt.

(2.29)

Therefore it follows from (2.23) and (2.29) that

0 ≤ u(x, t) − U(−x + ct + ω) ≤ u(x, t) − U(−x + ct + ω) ≤ 1

2
M1e

cλt.

Hence (2.27) holds. �

Proof of Theorem 1.1: Given arbitrary θ1, θ2, we consider the translation and the

time-shift as

U(x + ξ + c(t + τ)) = U(x + ct + ξ + cτ),

U(−x − ξ + c(t + τ)) = U(−x + ct − ξ + cτ).

Define ũ(x, t) := u(x + ξ, t + τ) with

ξ :=
θ1 − θ2

2
, τ :=

θ1 + θ2 − 2ω

2c
,

where u(x, t) is the entire solution of Proposition 2.6. Then we easily obtain

max{U(x + ct + θ1), U(−x + ct + θ2)}

≤ ũ(x, t) ≤ u(x + ξ, t + τ) (t ≤ −τ).

On the other hand, (1.4) immediately follows from (2.27). Thus we complete the

proof of Theorem 1.1. �
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Remark 2.9 Entire solutions can also be constructed by using traveling wave with

speed c > cmin if one can find a pair of suitable supersolution and subsolution.

However, we cannot find such one. Therefore we left it as an open problem.
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