2 Entire solutions for discrete reaction-diffusion

equations

2.1 Preliminaries

First, we define and make the notion of subsolution and supersolution of (1.1) as

follows.

Definition 2.1 A function u(x,t) defined on Rx[s, S| is called a subsolution of
(1.1) if u(z,t) < ulz,t) ((z,t) € R x [s,5]) for any solution u(z,t) of (1.1) such
that u(z, s) < u(z,s) (x € R). We call u(z,t) a subsolution of (1.1) in Rx(—o0, =T
for some T > 0, if u(x,t) is a subsolution of (1.1) defined on R x [s, =T for any

s < =T. Similarly, a supersolution can be defined by reversing the inequalities.

Lemma 2.2 Let ¢;(x,t), i = 1,2, be functions satisfying 0 < ¢;(x,t) < 1 and

Then u(x,t) := max{¢1(x,t), pa(x,t)} is a subsolution of (1.1) in R x (—oo0, =T].

Proof. Given any s < —T. Set Q := R x [s, —=T). Let u(z,t) be a solution of (1.1)
in Q with u(x,s) > u(z,s) for all x € R. Applying the strong maximum principle
(see [1]) to wi(x,t) = u(w,t) — ¢s(x,t), i = 1,2, we assert that w;(x,t) > 0 in €,

i =1,2.Thus u(x,t) > ¢;(z,t) in Q, i = 1,2, which yields the desired conclusion.[]



We note that a bounded function ¢(z,t) of C? is a subsolution of (1.1) in R x

(—OO, _T] if th("t)_¢('+17t)_¢<'_17t)+2¢('7t)_f<¢('vt)) <0inRx (_007 —T],

while it is a supersolution if ¢4 (-, t) — (- +1,¢) — o(- — 1,t) +2¢(-, t) — f(o(-, 1)) > 0

in R x (—oo0, =T) (see [1]).

From now on, we alway assume ¢ = ¢,,;,. Let A be the larger root of the

characteristic equation

A—er—er+2=0.

(2.1)

Concerning the asymptotic behaviors of the traveling wave solution U(x) near x =

+00 in [3], we have the following estimates for z < 0:
ke’ < U(z) < Ke,
for some positive k,K. Also, for x > 0 we have
YeH <1 - Ul) < e,
for some positive 7, § and p is the unique positive root of
cu+e+e " —-3=0.
Moveover, there are positive numbers ; (i = 1,2) such that
. U'x)

inf

. U'(x)
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2.2 Existence of entire solutions

Consider the following ordinary differential equation:

p(t) =c+ Neap(t), (t <0),

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



where N, ¢ and « are constants with ¢, « > 0. We can solve this equation easily

and obtain the solution as

1 N
p(t) = p(0) + ct — —log {1 + —e?0(1 — ecat)} : (2.7)
a c
If N >0, it is clear that the solution p(¢) is monotone increasing. Let
1 N
w = p(0) = ~log (1 i _eap@) | (2.8)
Q@ c

Then we obtain

0<p(t)—ct —w < Rpe™, (t<0), (2.9)

for some positive constant Ry. Now, we have the following lemma.

Lemma 2.3 Let p(t) be the solution of (2.6) with p(0) < 0, a = X\, N > max{K?/(¢1k),
2K /(Y2)} and let w be defined by (2.8). Suppose that A > . Then
u(z,t) :=U(x+p(t)) + U(—z + p(t)) (2.10)
and
u(z,t) :=max{U(z+ ct+w),U(—x + ct + w)} (2.11)

are a supersolution and a subsolution of (1.1) for t <0, respectively.

Proof. First, by Lemma 2.2, we see that u(z,t) := max{U(z+ ct+w),U(—z+ct+
w)} is a subsolution of (1.1) for ¢ < 0. Next, we prove that @(z, t) is a supersolution.
Let U(z +p(t)) = Uy, U(—z + p(t)) = Ua. Set N[v|(z,t) := vi(x,t) — v(x+ 1,t) —

v(ix —1,t) + 2v(z,t) — f(v(z,t)). By a simple computation, we have

NTa] = (U] + U))(Ne* — G(x, 1)), (2.12)



where

UyUs(2 — 3U, — 3Us)
Ul + U}

G(z,t) ==

We also see from (2.2), (2.3) and (2.5) that

ke < Uly) <KV, (y<0),
ke < Y U®y) <Uly), (y<0),

Poye ™ < hy(1-Uly)) <U'(y), (y=0).

(2.13)

(2.14)
(2.15)

(2.16)

Note that p(t) < 0 for all t < 0. We divide R into three regions to estimate G(z,1).

(1) p < x < —p: Using (2.14) and (2.15), we obtain

2, U, 9 [(2eMa+p) oA(—z-+p)
G($7t) = U{ i Ué — wlk(e)\(x-i-p) + 6)\(—95—0—17))
2K2€2)\p 2K2 p

= <
k(e 1+ e e = 29k C
(2) x < p: It follows from (2.14)-(2.16) that

2U, 2K eMwtp)
G (x, t) < - ;< 5y
Ui+ U, ke (z+p) + wQVQ*M(*$+P)
_ 2K e
wlke/\p + 1/1276—(/\—@%—@
< %e@.
T ey

(3) —p < z: By the symmetry G(—z,t) = G(x,t) and (2.18), we obtain

2K
G(z,t) < e,

Hence we obtain

Na) = (U, + U))(Ne — G(z,t)) > 0.

Therefore, @ is a supersolution of (1.1) for ¢ < 0. This proves the lemma.

(2.17)

(2.18)

(2.19)



Remark 2.4 The assumption X\ > p in Lemma 2.3 is valid provided that cpip >

_1
2log2 "
Lemma 2.5 Let u(xz,t) and u(x,t) be the supersolution and the subsolution given
i Lemma 2.3. Suppose all the assumption of Lemma 2.3 holds. Then there is a

positive constant My such that

0 <(z,t) —u(x,t) < Me ((z,t) € R x (—o0,0]). (2.20)

Proof. Suppose that ¢ < 0. Since U’ > 0, we have U(z + ct +w) > U(—z + ct + w)
for x > 0. Thus u(x,t) = U(x + ct +w) for x > 0 and u(z,t) = U(—x + ct + w) for
x < 0. For x > 0, we have
0 <u(z,t) —u(zr,t) =U(x+pt)+U(—x+pt) —U(xr+ct +w)
< Km0 4 osup, |U'(2)| Roe™ (2.21)
< Ke®) 4 Moe < Mye,
for some M; > 0. On the other hand, for x < 0, we have
0 <u(z,t) —u(z,t) =U(x+p(t)+U(—z+p(t) —U(—x+ ct +w)
< K@+t 4 sup, |U'(2)| Roe (2.22)
< KeM® 4 Moet < Myet,

This completes the proof. 0

Following [5], we have the following proposition.



Proposition 2.6 Under the same assumptions of Lemma 2.3, there is an entire

solution u*(x,t) of (1.1) such that

u(z,t) < u(z,t) <u(z,t) ((z,t) € R x (—o0,0]), (2.23)

where w is defined by (2.8), u(x,t) and u(z,t) are given in Lemma 2.3.

Proof. Denote by u(z,t; vy) asolution to (1.1) with the initial condition u(zx, 0; vy(-)) =

vo(z). Set

Un(x,t) = u(z, t;u(-,—n)), n=1,2 ...
Since u is a subsolution and u(x, —n — 1+ 0) = u(z,0;u(-, —(n + 1))), we have

u(z,—n —1+1t) <wu(z,t;u(-, —(n+1))).
By taking t = 1, we obtain

vn(z,0) = u(z,—n) < u(z, L;u(-,—(n+1))) = v (z, 1).
Thus the maximum principle yields
vn(z,n) < vpir(z,n + 1),

which implies {v,, (-, n)} is monotone increasing. On the other hand, since v, (z,n) <
u(x,0), there is a function v* such that v, converges uniformly to v*. Therefore,

u*(z,t) = u(z,t;v*) is a solution for all ¢ > 0.

Next, we show that u*(x,t) is defined for all ¢ < 0. Given T > 0, there is an

integer n; such that ny > T. Then, for n > n;, we have

u(z, =T v,) = u(x, =T;u(x,n;u(-,—n))) = u(z,n — T;u(-, —n)).



Set

wy(z) = u(x,n — T;u(-, —n)). (2.24)
Then v, (z,n) = u(z, T;w,(x,t)) and
Wpt1(z) =u(z,n+1—=Tiu(-,—(n+1))) > ulx,n — T;u(-, —n)) = w,(x).

This implies the sequence {w,} is monotone increasing. Applying the same argu-

ment, there is a function vy to which w,, converges uniformly. We see that
v* = lim v, = lim u(x, T; w,(z,t)) = u(z, T;vr).
Thus we obtain

vr = u(x, =T;v").

Since T' > 0 is arbitrary, we conclude that u*(x,t) := wu(z,t;v*) is defined for all

teR.

Finally, we show that (2.23) holds. From above, we have

u (z,=T) =u(z, -T;v") =vpr = lim w, (2.25)

Since u is a subsolution and @(z, —n) > u(z,0; u(-, —n)) = u(x, —n), we have
u(x,—n+t) > u(z, t;u(-,—n)) > u(z,—n+1t) VY(z,t) € R x[0,n].
By taking t = n — T, we obtain
u(z,=T) > w, =u(z,n —T;u(-, —n)) > u(zx, =T). (2.26)
Hence, it follows from (2.25) and (2.26) that u(z, —7) < u*(z,-T) < u(z, -T).

Since T' > 0 is arbitrary, (2.23) holds. This proves the proposition. O

10



Remark 2.7 By virtue of the condition A\ > pu we can check that the supersolution
u(zx,t), defined fort <0, is bounded by 1 for large |t|. In fact, we may assume that

K < 1/2 in the condition (2.2) by shifting appropriately. Then
Ul +p(t) +U(—z +pt)) < KM +e e (p<a<—p),

while
Ul+p)+U(—z+p) <1—rye @) 4 Ke—\(z — p)

<1—(y-— Ke(AJru)pe—(/\—u)fr)e—u(1+p) (—p <),

Ul +p)+U(—x+p) < Ker@tP) 41 — qerle=p)

<1 — (7 — KeWtmpeQ-mzyeula=p) (5 < p).

This implies u(x,t) < 1 fort < =T with a large T > 0. Hence, by the strong maz-
imum principle, we can assert that the solution u(x,t) of Proposition 2.6 satisfies

0 <u(x,t) <1 forall (x,t) € R

Proposition 2.8 Let u(x,t) be an entire solution constructed in Proposition 2.6.
Under the same assumptions of Lemma 2.3 and Proposition 2.6, there is a positive

number My such that fort <0,

0 < sup,o {u(, 1) — Ulx + ct +w))

(2.27)
+ sup, <o {u(z,t) = U(—z + ct + w)} < Mye.
Proof. Suppose that ¢t < 0. For x > 0,
0 <U(z+p(t)+U(—z+p(t) —U(zr+ct+w)
< KeM=2#+t) 4 sup, |U'(2)| Roe (2.28)

< Ke)\p(t) 4 M2€C)‘t < %Mlec/\t’
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for some M; > 0. Combining (2.23) and (2.28), we obtain
1
0< u(z,t) —U(x+ct+w) <u(x,t) —U(x+ct+w) < §M1€C)\t.

On the other hand, for z < 0, we have

0 <U(x+p@)+U(—z+p(t) —U(—x+ct+w)

< KeMetP®) 4 sup, |U'(2)|Roe (2:29)

IN

Ke)\p(t) + M2€C)‘t < %Mlec)\t.

Therefore it follows from (2.23) and (2.29) that
1
0< u(z,t) —U(—r+ct+w) <u(x,t) —U(—zx+ct+w) < iMleC’\t.

Hence (2.27) holds. O
Proof of Theorem 1.1: Given arbitrary 6y, 65, we consider the translation and the

time-shift as

Ux+E+ct+71)=U(@+ct+&+cr),

Uz —&+4c(t+71)=U(—x+ct — &+ cT).

Define u(zx,t) := u(z + £, t + 7) with

:01—(92 7'2014-92—2(4)

5: 9 ) . 2—6’

where u(x,t) is the entire solution of Proposition 2.6. Then we easily obtain

max{U(x + ct + 61),U(—x + ct + 02)}
<a(x,t) <u(x+&t+71) (< -—7).
On the other hand, (1.4) immediately follows from (2.27). Thus we complete the

proof of Theorem 1.1. O
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Remark 2.9 FEntire solutions can also be constructed by using traveling wave with
speed ¢ > Cpin if one can find a pair of suitable supersolution and subsolution.

However, we cannot find such one. Therefore we left it as an open problem.
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