Chapter 2

A Network Optimization Model

2.1 Utility Functions

Following the concepts of reference point methodology [22], we assume that the
decision maker specifies requirements in terms of aspiration and reservation levels
by introducing desired and required values for several outcomes, depending on the
specified aspiration and reservation levels, a; and r;, respectively. Further, assumes
that an utility function of ¢; can be viewed as an extension of the fuzzy membership
function in terms of a strictly monotonic and concave utility function as shown in
Figure 2.1. (see [9], [13], [18] etc.)
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fi(a:) = log, (2.1)

where d; = a;/r;. Formally, we define f;(-) over the range [0, 00), with f;(0) = —oc0
and f/(0) = oo. It is a strictly increasing function of ¢;, having value 1 if ¢; = a;, and
value 0 if ¢; = r;. The utility function can map the different values onto a normalized
scale of the decision maker’s satisfaction. Moreover, the logarithmic utility function
will be intimately associated with the concept of proportional fairness (see [3], [9],

and [10].)

Proposition 1 The utility function f;(q;) is continuous, increasing, and concave.



The proof was given in [15]. We will formulate the mathematical model of the fair

bandwidth allocation by using the utility function.

Figure 2.1: The Graph of an Utility Function f;(¢;)

2.2 A Network Optimization Model

Consider a network optimization model. Let V be a set of nodes. Denote E”* C F
a subset of incoming links to the node v € V, and F%* C E a subset of outgoing
links from the node v € V. Namely, F, C F and E; C F be subsets of links
connected with the source node o and destination node d, respectively. We may
formulate the mathematical model of the fair bandwidth allocation when adopting
the utility function (2.1) interpreted as a measure of QoS on networks, . In [15], the
precomputation-based maximization model with its constraints can be formulated

as follows:



max Zwifi(qi) (2-2)
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Ke @ the marginal cost of bandwidth for each link e

B : the total available budget

U, : the maximal capacity of each link e

L. : the mean delay allocated to each link e

D, : the maximal end-to-end delay allocated to each class ¢

b; : the bandwidth requirement for class i.

Decision variables in this model are x = (g;, x;,;(e)), foralli € I, j € K;, e € E.

In [15], it proposed the analogue model, where the constraints of its model
are complex. It was not able to be solved by a general software but has been

reformulated in a piecewise linear type problem and being solved in ILOG [2].



In the following, we adopt the network constraints of the above model. By
understanding the network constraints, it would be clear about the model and at-
tributes of each weight for each class. We apply the above model for computation
by solver BARON in software GAMS (see [11] and [12]) to obtain the numerical

results because GAMS is more flexible in nonlinear optimization.

2.3 Network Constraints

For each connection j of class i, we denote the routing path connecting the source
node o and destination node d by p; ;. To determine whether link e is chosen we

define the binary decision variable

1 if link e € Di.j
0 iflinke ¢ p;;.

Xij(€) = (2.12)
In our thesis, the network problems which we discuss is that each connection

of the same class chooses the same and the only one routing path.

Given the total available budget B and the marginal cost k. of bandwidths for
each link e € E, we want to allocate the bandwidths in order to provide each class
with maximal possible QoS. Denoted by K; a set of connections in class 7. Suppose
there is the number of connections in K; is J;, i.e., |K;| = J;. Then, these decision

variables must be nonnegative:

g >0, Vi€, fori=1,...,m. (2.13)

First, let ¢; ; be the bandwidth allocated to the connection j of class i, respec-
tively. Suppose that every connection in the same class uses the same bandwidth

and has the same bandwidth requirement, so we have ¢;; = g2 = --- = ¢, s,.

We denote ¢;(= ¢i1 = ¢i2 = -+ = ¢i,s;) be the bandwidth allocated to each

connection of class 7. Thus, the constraint follows

¢ > b; (2.14)



where b; is the bandwidth requirement for class i. It shows that every connection in

the same class uses the same bandwidth and has the same bandwidth requirement.

Due to the limited budget on network planning, We have the budget constraint

on the network:

D DD kerdixigle) < B (2.15)
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and

> aixijle) <U., Ye€E (2.16)
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where U, is the maximal capacity of each link e. The above constraint says that the

aggregate bandwidth of all connections at any link does not exceed the capacity.

Moreover, for each class 7, since every connection has the maximal end-to-end
delay constraint, we have the end-to-end delay constraint:
D lexijle) < Di, Vi, j (2.17)
ecE
where /. is a mean delay allocated to each link e and D; is maximal end-to-end delay

allocated to each class 7.

Let E, C E be the subset of links connected with the source node o, then we

have

> xile) =1, Vi,j. (2.18)

ecE,
Let E; C E be the subset of links connected with the destination node d, then we

have

> Xijle) =1, Vi, j. (2.19)

ecEy

Let E' C E be the subset of links flowed into the node v and E°“ C E be the set

of links flowed out of the node v, then we have

> xigle) = > xigle), Vi, j. (2.20)
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Constraints (2.18), (2.19) and (2.20) express the node conservation relations

indicating that flow in equals flow out for every connection j in class 1.

Let x = {(qi, xi,j(e))| Vj € K;, for i =1,...,m,Ve € E} € R" denote the vector
of decision variables and Q* = {x|x satisfies constraints (2.3) — (2.11)} denote the
feasible set. We consider a resource allocation problem defined as an optimization

problem with m objective functions f;(x):
max{f(x) :x € Q" } (2.21)

where f(x) = (f1(x), f2(x),..., fm(x)) is a vector-function that maps the decision

space R" into the criterion space R™.



