
Chapter 5

The Deficient Values of a Class of

Meromorphic Functions

5.1 Introduction

A well-known result by Picard [27] says that any non-constant entire function f

can omit at most one finite complex value, which we call a Picard exceptional value

of f . Nevanlinna generalized the idea of omitting values, and define now called the

Nevanlinna deficiency δ(a, f) to measure the degree of a meromorphic function f

“misses” the value a. Recall that an extended complex value a is a deficient value

of f if δ(a, f) > 0. Under this terminology, if a is a Picard exceptional value of f ,

then δ(a, f) = 1.

Yang [35, 37] proved that any non-constant rational function f has exactly one

deficient value a. Also, we can easily calculate the Nevanlinna deficiency δ(a, f) for

the corresponding deficient value a. For completeness, we will state Yang’s results

in section 5.2.

To construct a meromorphic function with two deficient values, our approach is

as follows. First, we consider a meromorphic function g with two Piacrd exceptional
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values a and b. Then, take a polynomial P (z), and consider the meromorphic

function f(z) = P (g(z)). We will show that f has at most two deficient values, and

the only possible deficient values are P (a) and P (b). If g is of finite order, both

P (a) and P (b) are deficient values of f , and the corresponding deficiencies can be

computed explicitly. While a polynomial P (z) is fixed, we define ν(α) to be the

multiplicity of the zero of P (z) − P (α) at z = α if α is a finite complex number,

and ν(∞) to be the degree of P (z).

Now, given a non-constant meromorphic function g with two Picard excep-

tional values 0 and ∞, then it is well-known that g(z) = eh(z), where h(z) is an

entire function. Moreover, if g is of finite order, then h must be a non-constant

polynomial [28]. In this case, we have the following theorems.

Theorem A Let h be a non-constant polynomial and P (z) = anzn + an−1z
n−1 +

· · · + akz
k be a non-constant polynomial, where k ≥ 0 and ak, an are non-zero

constants. Let f(z) = P (eh(z)). We have

(i) If k ≥ 1, then 0 and ∞ are the only two deficient values of f . Moreover,

δ(0, f) = ν(0)
n

= k
n

and δ(∞, f) = ν(∞)
n

= 1 .

(ii) If k = 0, then a0 and ∞ are the only two deficient values of f . Moreover,

δ(a0, f) = ν(0)
n

and δ(∞, f) = ν(∞)
n

= 1.

Theorem B Let g be a non-constant meromorphic function of finite order, such

that g has two Picard exceptional values a and b. Let P (z) be a non-constant

polynomial of degree n. We have

(i) If P (a) = P (b), then P (a) is the only deficient value of P (g). Moreover,

δ(P (a), P (g)) = ν(a)+ν(b)
n

.

(ii) If P (a) 6= P (b) and a, b are finite, then P (a) and P (b) are the only two deficient

values of P (g). Moreover, δ(P (a), P (g)) = ν(a)
n

and δ(P (b), P (g)) = ν(b)
n

.
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(iii) If a is finite and b = ∞, then P (a) and ∞ are the only deficient values of

P (g). Moreover, δ(P (a), P (g)) = ν(a)
n

and δ(∞, P (g)) = ν(∞)
n

= 1.

When g is of infinite order, we can get similar but somewhat weaker results as

Theorem A and B, which will be stated in section 5.3 and 5.4.

5.2 The Deficient Values of Rational Functions

Clearly, by definition 2.5.1, 0 ≤ δ(a, f) ≤ 1. If δ(a, f) is much more close to 1,

this means N(r, 1
f−a

) much smaller than T (r, f). In other words, the lack of f at

a is much more acuter. In general, it is quite difficult to find the deficient values

of an arbitrary meromorphic function. However, for rational function, C. C. Yang

[37] proved the following.

Theorem 5.2.1 Let f be a non-constant rational function defined by

f(z) =
apz

p + ap−1z
p−1 + · · ·+ a0

bqzq + bq−1zq−1 + · · ·+ b0

,

where apz
p + ap−1z

p−1 + · · ·+ a0 and bqz
q + bq−1z

q−1 + · · ·+ b0 are relatively prime.

Then

(i) N(r, f) = q log r and N(r, 1
f
) = p log r.

(ii) m(r, f) =





(p− q) log r + O(1) if p > q

O(1) if p ≤ q

(iii) N(r, 1
f−a

) =





max{p, q} log r if p 6= q

p log r if p = q and ap 6= abq

k log r if p = q and ap = abq for some 0 ≤ k ≤ p− 1,

where a is a non-zero complex number.

(iv) T (r, f) = max{p, q} log r + O(1).
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It follows from Theorem 5.2.1, we can completely classify all deficient values

and their corresponding deficiency for rational functions as follows.

Corollary 5.2.2 If f is a non-constant rational function, then f has only one

deficient value f(∞). More precisely, we have the following cases:

(i) If p > q, then ∞ is the only deficient value of f and δ(∞, f) = 1− q
p
.

(ii) If p < q, then 0 is the only deficient value of f and δ(0, f) = 1− p
q
.

(iii) If p = q, then ap

bq
is the only deficient value of f and δ(ap

bq
, f) = 1 − k

p
, where

k is the largest non-negative integer j such that aj 6= abj.

5.3 The Proof of Theorem A

Let g be a non-constant meromorphic function with two Picard exceptional

values 0 and ∞, so g(z) = eh(z), where h(z) is an entire function. In this section,

we study the deficient values and deficiencies of P (g), where P (z) is a non-constant

polynomial. First, we establish some lemmas.

Lemma 5.3.1 Let h be a non-constant entire function and f(z) = a+beh(z), where

a and b are non-zero complex numbers. Then

m(r,
1

f
) = S(r, eh).

Proof . By the Nevanlinna’s second fundamental theorem,

T (r, 1
f
) = T (r, f) + O(1)

≤ N(r, 1
f
) + N(r, 1

f−a
) + N(r, f) + S(r, f)

≤ N(r, 1
f
) + N(r, 1

beh ) + S(r, f)

≤ N(r, 1
f
) + S(r, f).
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Hence,

m(r,
1

f
) = T (r,

1

f
)−N(r,

1

f
) = S(r, f) = S(r, eh).

❑

Lemma 5.3.2 Let h be a non-constant entire function and P (z) = anz
n+an−1z

n−1+

· · · + a0 be a polynomial, where a0 and an are non-zero complex numbers. If

f(z) = P (eh(z)), then

m(r,
1

f
) = S(r, eh).

Proof . Write P (z) = c
∏n

j=1(z − αj). Clearly, αj 6= 0 for all 1 ≤ j ≤ n. By

Lemma 5.3.1, we have

m(r, 1
f
) = m(r, 1

c
Qn

j=1(e
h−αj)

)

≤ ∑n
j=1 m(r, 1

eh−αj
) + O(1)

= S(r, eh).

❑

In order to find m(r, 1
P (eh)

), we need the following fact [37] about the charac-

teristic function of polynomial in a meromorphic function.

Theorem 5.3.3 Let g be a non-constant meromorphic function and P (z) = anz
n+

· · ·+ a0, where a0, . . . , an are small functions of g. Then

T (r, P (g)) = nT (r, g) + S(r, g).

In particular, if g is of finite order, so is P (g).

Now, we can express m(r, 1
P (eh)

) in terms of m(r, 1
eh ), which is fundamental to

the proofs of Theorem A and B.
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Theorem 5.3.4 Let h be a non-constant entire function and P (z) = anz
n+an−1z

n−1+

· · · + akz
k be a polynomial, where k ≥ 0 and ak, an are non-zero constants. If

f(z) = P (eh(z)), then

m(r,
1

f
) = k m(r,

1

eh
) + S(r, eh).

Proof . Write P (z) = zkQ(z) and Q(z) = c
∏n−k

j=1 (z − αj), where αj 6= 0 for all

1 ≤ j ≤ n− k. Then, by Lemma 5.3.2 and Theorem 5.3.3,

T (r, P (eh)) = T (r, 1
P (eh)

) + O(1)

= N(r, 1
P (eh)

) + m(r, 1
P (eh)

) + O(1)

= N(r, 1
Q(eh)

) + m(r, 1
P (eh)

) + O(1)

≤ ∑n−k
j=1 N(r, 1

eh−αj
) + m(r, 1

P (eh)
) + O(1)

≤ ∑n−k
j=1 N(r, 1

eh−αj
) + k m(r, 1

eh ) + m(r, 1
Q(eh)

) + O(1)

≤ ∑n−k
j=1 N(r, 1

eh−αj
) + k m(r, 1

eh ) + S(r, eh)

≤ ∑n−k
j=1 T (r, 1

eh−αj
) + k T (r, 1

eh ) + S(r, eh)

= nT (r, eh) + S(r, eh)

= T (r, P (eh)) + S(r, eh).

Therefore, we have equality everywhere. In particular,

m(r,
1

f
) = k m(r,

1

eh
) + S(r, eh).

❑

Now, we are ready to prove Theorem A.

Theorem A Let h be a non-constant polynomial and P (z) = anzn + an−1z
n−1 +

· · · + akz
k be a non-constant polynomial, where k ≥ 0 and ak, an are non-zero

constants. Let f(z) = P (eh(z)). We have

(i) If k ≥ 1, then 0 and ∞ are the only two deficient values of f . Moreover,

δ(0, f) = ν(0)
n

= k
n

and δ(∞, f) = ν(∞)
n

= 1 .
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(ii) If k = 0, then a0 and ∞ are the only two deficient values of f . Moreover,

δ(a0, f) = ν(0)
n

and δ(∞, f) = ν(∞)
n

= 1.

Proof . Note that h is a polynomial, eh is of finite order. We have S(r, eh) =

o(T (r, eh)) as r →∞. Clearly, in any case, ∞ is a deficient value of f and δ(∞, f) =

ν(∞)
n

= 1.

For k ≥ 1, we have ν(0) = k and, by Theorem 5.3.4,

δ(0, f) = lim inf
r→∞

m(r, 1
f
)

T (r, f)

= lim inf
r→∞

km(r, 1
eh ) + S(r, eh)

nT (r, eh) + S(r, eh)

= k
n
.

On the other hand, for any a 6= 0, by Lemma 5.3.2, we have

δ(a, f) = lim inf
r→∞

m(r, 1
f−a

)

T (r, f)

= lim inf
r→∞

S(r, eh)

nT (r, eh) + S(r, eh)

= 0.

Hence, 0 and ∞ are the only two deficient values of f and δ(0, f) = k
n
, δ(∞, f) = 1.

This proves (i).

For k = 0, we can write P (z)− a0 = anz
n + an−1z

n−1 + · · ·+ alz
l, where al 6= 0

and ν(0) = l. As above, we have

δ(a0, f) = lim inf
r→∞

m(r, 1
f−a0

)

T (r, f)

= lim inf
r→∞

lm(r, 1
eh ) + S(r, eh)

nT (r, eh) + S(r, eh)

= l
n
.

Moreover, for any a 6= a0, by Lemma 5.3.2, we have

δ(a, f) = lim inf
r→∞

m(r, 1
f−a

)

T (r, f)

= lim inf
r→∞

S(r, eh)

nT (r, eh) + S(r, eh)

= 0.
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Therefore, a0 and ∞ are the only two deficient values of f and δ(a0, f) = l
n
,

δ(∞, f) = 1, which proves (ii). ❑

For general transcendental entire function h, due to the fact that S(r, f) =

o(T (r, f)) as r → ∞ and r /∈ E, where E is a set of finite measure, we cannot get

Theorem A. However, as in the proof of Theorem A, we have the following.

Theorem A′ Let h be a transcendental entire function of infinite order and P (z) =

anz
n + an−1z

n−1 + · · ·+ akz
k be a non-constant polynomial, where k ≥ 0 and ak, an

are non-zero constants. Let f(z) = P (eh(z)). We have

(i) If k ≥ 1, then δ(0, f) ≤ ν(0)
n

= k
n

and δ(∞, f) = ν(∞)
n

= 1. In particular, 0 and

∞ are the only possible deficient values of f .

(ii) If k = 0, then δ(a0, f) ≤ ν(0)
n

and δ(∞, f) = ν(∞)
n

= 1. In particular, a0 and

∞ are the only possible deficient values of f .

5.4 The Proof of Theorem B

Since 0 and ∞ are the Picard exceptional values of eh, Theorem A says that

P (0) and P (∞) are the only deficient values of f = P (eh). Hence, it is reasonable

to conjecture that if eh is replaced by any meromorphic function g with two Picard

exceptional values a and b, then P (a) and P (b) are the only deficient values of P (g).

Indeed, it is true. First, we need some lemmas.

Lemma 5.4.1 Let g be a non-constant meromorphic function with two Picard ex-

ceptional values a and b. Then

m(r,
1

g − α
) = S(r, g)

for any α ∈ C∞ \ {a, b}.
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Proof . Given α ∈ C∞ \ {a, b}. We may assume that α, a and b are finite. By the

Nevanlinna’s second fundamental theorem,

T (r, 1
g−α

) = T (r, g) + O(1)

≤ N(r, 1
g−α

) + N(r, 1
g−a

) + N(r, 1
g−b

) + S(r, g)

≤ N(r, 1
g−α

) + S(r, g)

≤ N(r, 1
g−α

) + S(r, g).

Hence,

m(r,
1

g − α
) = T (r,

1

g − α
)−N(r,

1

g − α
) = S(r, g).

❑

The following theorem is fundamental in finding the deficiency of P (g).

Theorem 5.4.2 Let g be a non-constant meromorphic function with two finite Pi-

card exceptional values a, b and let P (z) be a non-constant polynomial of degree n.

We have

(i) If P (a) 6= P (b), then

m(r,
1

P (g)− P (a)
) = ν(a)m(r,

1

g − a
) + S(r, g), and

m(r,
1

P (g)− P (b)
) = ν(b)m(r,

1

g − b
) + S(r, g).

(ii) If P (a) = P (b), then

m(r,
1

P (g)− P (a)
) = (ν(a) + ν(b))m(r,

1

g − a
) + S(r, g).

Proof . Denote k1 = ν(a) and k2 = ν(b). Then we can write

P (z)− P (a) = c(z − a)k1

n−k1∏
i=1

(z − αi)

and

P (z)− P (b) = c(z − b)k2

n−k2∏
j=1

(z − βj),
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where αi 6= a for all 1 ≤ i ≤ n− k1, and βj 6= b for all 1 ≤ j ≤ n− k2.

Note that if P (a) 6= P (b), then αi 6= a, b for all 1 ≤ i ≤ n − k1 and βj 6= a, b

for all 1 ≤ j ≤ n− k2. By Lemma 5.4.1 and Theorem 5.3.4, we have

T (r, P (g)) = T (r, 1
P (g)−P (a)

) + O(1)

= N(r, 1
P (g)−P (a)

) + m(r, 1
P (g)−P (a)

) + O(1)

≤ ∑n−k1

i=1 N(r, 1
g−αi

) + m(r, 1
P (g)−P (a)

) + O(1)

≤ ∑n−k1

i=1 N(r, 1
g−αi

) + k1 m(r, 1
g−a

) +
∑n−k1

i=1 m(r, 1
g−αi

) + O(1)

≤ ∑n−k1

i=1 T (r, 1
g−αi

) + k1 T (r, 1
g−a

) + S(r, g)

= nT (r, g) + S(r, g)

= T (r, P (g)) + S(r, g).

Hence,

m(r,
1

P (g)− P (a)
) = k1 m(r,

1

g − a
) + S(r, g).

Similarly, we have

m(r,
1

P (g)− P (b)
) = k2 m(r,

1

g − b
) + S(r, g).

This proves (i).

If P (a) = P (b), then we can write

P (z)− P (a) = c(z − a)k1(z − b)k2

n−k1−k2∏
j=1

(z − γj),

where γj 6= a, b for all 1 ≤ j ≤ n− k1 − k2. As in the proof of (i), we still get

m(r,
1

P (g)− P (a)
) = (k1 + k2)m(r,

1

g − a
) + S(r, g),

which proves (ii). ❑

In Theorem 5.4.2, we assume that both a and b are finite values. If one of a

and b is ∞, say b = ∞, then P (a) 6= P (b) and P (g) is entire. So, as in the proof of

Theorem 5.4.2, we have
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Theorem 5.4.2′ Let g be a non-constant meromorphic function with two Picard

exceptional values a and ∞ and let P (z) be a non-constant polynomial of degree

n. Then we have

m(r,
1

P (g)− P (a)
) = ν(a)m(r,

1

g − a
) + S(r, g)

and

m(r, P (g)) = ν(∞)m(r, g) + S(r, g) = T (r, P (g)).

Now, we are in the position to prove Theorem B.

Theorem B Let g be a non-constant meromorphic function of finite order, such

that g has two Picard exceptional values a and b. Let P (z) be a non-constant

polynomial of degree n. We have

(i) If P (a) = P (b), then P (a) is the only deficient value of P (g). Moreover,

δ(P (a), P (g)) = ν(a)+ν(b)
n

.

(ii) If P (a) 6= P (b) and a, b are finite, then P (a) and P (b) are the only two deficient

values of P (g). Moreover, δ(P (a), P (g)) = ν(a)
n

and δ(P (b), P (g)) = ν(b)
n

.

(iii) If a is finite and b = ∞, then P (a) and ∞ are the only two deficient values of

P (g). Moreover, δ(P (a), P (g)) = ν(a)
n

and δ(∞, P (g)) = ν(∞)
n

= 1.

Proof . Note that g is of finite order, so is P (g) by Theorem 5.3.3. We have

S(r, g) = o(T (r, g)) as r →∞.

If P (a) = P (b), then a and b must be finite values. By Theorem 5.4.2, we get

δ(P (a), P (g)) = lim inf
r→∞

m(r, 1
P (g)−P (a)

)

T (r, P (g))
=

ν(a) + ν(b)

n
.

On the other hand, for any α 6= P (a), we can write P (z) − α = c
∏n

j=1(z − αj),

where αj 6= a, b for all 1 ≤ j ≤ n. Then, by Lemma 5.4.1, we have

δ(α, P (g)) = lim inf
r→∞

m(r, 1
P (g)−α

)

T (r, P (g))
= lim inf

r→∞
S(r, g)

T (r, P (g))
= 0.
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Therefore, P (a) is the only deficient value of P (g) and δ(P (a), P (g)) = ν(a)+ν(b)
n

.

This proves (i).

If P (a) 6= P (b) and a, b are finite, then, by Theorem 5.4.2, we have

δ(P (a), P (g)) = lim inf
r→∞

m(r, 1
P (g)−P (a)

)

T (r, P (g))
=

ν(a)

n

and

δ(P (b), P (g)) = lim inf
r→∞

m(r, 1
P (g)−P (b)

)

T (r, P (g))
=

ν(b)

n
.

Moreover, as in the proof of (i), for any α 6= P (a), P (b), we have

δ(α, P (g)) = lim inf
r→∞

m(r, 1
P (g)−α

)

T (r, P (g))
= lim inf

r→∞
S(r, g)

T (r, P (g))
= 0.

Therefore, P (a) and P (b) are the only deficient values of P (g) and δ(P (a), P (g)) =

ν(a)
n

, δ(P (b), P (g)) = ν(b)
n

. This proves (ii).

Finally, if a is finite and b = ∞, then, by Theorem 5.4.2′, we have

δ(P (a), P (g)) = lim inf
r→∞

m(r, 1
P (g)−P (a)

)

T (r, P (g))
=

ν(a)

n

and

δ(∞, P (g)) = lim inf
r→∞

m(r, P (g))

T (r, P (g))
=

ν(∞)

n
= 1.

Moreover, as in the proof of (i), for any α 6= P (a), P (b), we have

δ(α, P (g)) = lim inf
r→∞

m(r, 1
P (g)−α

)

T (r, P (g))
= lim inf

r→∞
S(r, g)

T (r, P (g))
= 0.

Therefore, P (a) and ∞ are the only deficient values of P (g) and δ(P (a), P (g)) =

ν(a)
n

, δ(P (a), P (g)) = 1, which proves (iii). ❑

For arbitrary meromorphic function g with two Picard exceptional values, as

the reasoning in the end of section 5.3, we have the following result.

Theorem B′ Let g be a non-constant meromorphic function of infinite order, such

that g has two Picard exceptional values a and b. Let P (z) be a non-constant

polynomial of degree n. We have
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(i) If P (a) = P (b), then δ(P (a), P (g)) ≤ ν(a)+ν(b)
n

. In particular, P (a) is the only

possible deficient value of P (g).

(ii) If P (a) 6= P (b) and a, b are finite, then δ(P (a), P (g)) ≤ ν(a)
n

and δ(P (b), P (g)) ≤
ν(b)
n

. In particular, P (a) and P (b) are the only possible deficient values of P (g).

(iii) If a is finite and b = ∞, then δ(P (a), P (g)) ≤ ν(a)
n

and δ(∞, P (g)) = ν(∞)
n

= 1.

In particular, P (a) and ∞ are the only possible deficient values of P (g).
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