Chapter 5

The Deficient Values of a Class of Meromorphic Functions

5.1 Introduction

A well-known result by Picard [27] says that any non-constant entire function f can omit at most one finite complex value, which we call a Picard exceptional value of f. Nevanlinna generalized the idea of omitting values, and define now called the Nevanlinna deficiency $\delta(a, f)$ to measure the degree of a meromorphic function f "misses" the value a. Recall that an extended complex value a is a deficient value of f if $\delta(a, f)>0$. Under this terminology, if a is a Picard exceptional value of f, then $\delta(a, f)=1$.

Yang [35, 37] proved that any non-constant rational function f has exactly one deficient value a. Also, we can easily calculate the Nevanlinna deficiency $\delta(a, f)$ for the corresponding deficient value a. For completeness, we will state Yang's results in section 5.2.

To construct a meromorphic function with two deficient values, our approach is as follows. First, we consider a meromorphic function g with two Piacrd exceptional
values a and b. Then, take a polynomial $P(z)$, and consider the meromorphic function $f(z)=P(g(z))$. We will show that f has at most two deficient values, and the only possible deficient values are $P(a)$ and $P(b)$. If g is of finite order, both $P(a)$ and $P(b)$ are deficient values of f, and the corresponding deficiencies can be computed explicitly. While a polynomial $P(z)$ is fixed, we define $\nu(\alpha)$ to be the multiplicity of the zero of $P(z)-P(\alpha)$ at $z=\alpha$ if α is a finite complex number, and $\nu(\infty)$ to be the degree of $P(z)$.

Now, given a non-constant meromorphic function g with two Picard exceptional values 0 and ∞, then it is well-known that $g(z)=e^{h(z)}$, where $h(z)$ is an entire function. Moreover, if g is of finite order, then h must be a non-constant polynomial [28]. In this case, we have the following theorems.

Theorem A Let h be a non-constant polynomial and $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+$ $\cdots+a_{k} z^{k}$ be a non-constant polynomial, where $k \geq 0$ and a_{k}, a_{n} are non-zero constants. Let $f(z)=P\left(e^{h(z)}\right)$. We have
(i) If $k \geq 1$, then 0 and ∞ are the only two deficient values of f. Moreover, $\delta(0, f)=\frac{\nu(0)}{n}=\frac{k}{n}$ and $\delta(\infty, f)=\frac{\nu(\infty)}{n}=1$.
(ii) If $k=0$, then a_{0} and ∞ are the only two deficient values of f. Moreover, $\delta\left(a_{0}, f\right)=\frac{\nu(0)}{n}$ and $\delta(\infty, f)=\frac{\nu(\infty)}{n}=1$.

Theorem B Let g be a non-constant meromorphic function of finite order, such that g has two Picard exceptional values a and b. Let $P(z)$ be a non-constant polynomial of degree n. We have
(i) If $P(a)=P(b)$, then $P(a)$ is the only deficient value of $P(g)$. Moreover, $\delta(P(a), P(g))=\frac{\nu(a)+\nu(b)}{n}$.
(ii) If $P(a) \neq P(b)$ and a, b are finite, then $P(a)$ and $P(b)$ are the only two deficient values of $P(g)$. Moreover, $\delta(P(a), P(g))=\frac{\nu(a)}{n}$ and $\delta(P(b), P(g))=\frac{\nu(b)}{n}$.
(iii) If a is finite and $b=\infty$, then $P(a)$ and ∞ are the only deficient values of $P(g)$. Moreover, $\delta(P(a), P(g))=\frac{\nu(a)}{n}$ and $\delta(\infty, P(g))=\frac{\nu(\infty)}{n}=1$.

When g is of infinite order, we can get similar but somewhat weaker results as Theorem A and B, which will be stated in section 5.3 and 5.4.

5.2 The Deficient Values of Rational Functions

Clearly, by definition 2.5.1, $0 \leq \delta(a, f) \leq 1$. If $\delta(a, f)$ is much more close to 1 , this means $N\left(r, \frac{1}{f-a}\right)$ much smaller than $T(r, f)$. In other words, the lack of f at a is much more acuter. In general, it is quite difficult to find the deficient values of an arbitrary meromorphic function. However, for rational function, C. C. Yang [37] proved the following.

Theorem 5.2.1 Let f be a non-constant rational function defined by

$$
f(z)=\frac{a_{p} z^{p}+a_{p-1} z^{p-1}+\cdots+a_{0}}{b_{q} z^{q}+b_{q-1} z^{q-1}+\cdots+b_{0}}
$$

where $a_{p} z^{p}+a_{p-1} z^{p-1}+\cdots+a_{0}$ and $b_{q} z^{q}+b_{q-1} z^{q-1}+\cdots+b_{0}$ are relatively prime. Then
(i) $N(r, f)=q \log r$ and $N\left(r, \frac{1}{f}\right)=p \log r$.
(ii) $m(r, f)= \begin{cases}(p-q) \log r+O(1) & \text { if } p>q \\ O(1) & \text { if } p \leq q\end{cases}$
(iii) $N\left(r, \frac{1}{f-a}\right)= \begin{cases}\max \{p, q\} \log r & \text { if } p \neq q \\ p \log r & \text { if } p=q \text { and } a_{p} \neq a b_{q} \\ k \log r & \text { if } p=q \text { and } a_{p}=a b_{q} \text { for some } 0 \leq k \leq p-1,\end{cases}$ where a is a non-zero complex number.
(iv) $T(r, f)=\max \{p, q\} \log r+O(1)$.

It follows from Theorem 5.2.1, we can completely classify all deficient values and their corresponding deficiency for rational functions as follows.

Corollary 5.2.2 If f is a non-constant rational function, then f has only one deficient value $f(\infty)$. More precisely, we have the following cases:
(i) If $p>q$, then ∞ is the only deficient value of f and $\delta(\infty, f)=1-\frac{q}{p}$.
(ii) If $p<q$, then 0 is the only deficient value of f and $\delta(0, f)=1-\frac{p}{q}$.
(iii) If $p=q$, then $\frac{a_{p}}{b_{q}}$ is the only deficient value of f and $\delta\left(\frac{a_{p}}{b_{q}}, f\right)=1-\frac{k}{p}$, where k is the largest non-negative integer j such that $a_{j} \neq a b_{j}$.

5.3 The Proof of Theorem A

Let g be a non-constant meromorphic function with two Picard exceptional values 0 and ∞, so $g(z)=e^{h(z)}$, where $h(z)$ is an entire function. In this section, we study the deficient values and deficiencies of $P(g)$, where $P(z)$ is a non-constant polynomial. First, we establish some lemmas.

Lemma 5.3.1 Let h be a non-constant entire function and $f(z)=a+b e^{h(z)}$, where a and b are non-zero complex numbers. Then

$$
m\left(r, \frac{1}{f}\right)=S\left(r, e^{h}\right)
$$

Proof. By the Nevanlinna's second fundamental theorem,

$$
\begin{aligned}
T\left(r, \frac{1}{f}\right) & =T(r, f)+O(1) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}(r, f)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{b e^{h}}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{f}\right)+S(r, f) .
\end{aligned}
$$

Hence,

$$
m\left(r, \frac{1}{f}\right)=T\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f}\right)=S(r, f)=S\left(r, e^{h}\right)
$$

Lemma 5.3.2 Let h be a non-constant entire function and $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+$ $\cdots+a_{0}$ be a polynomial, where a_{0} and a_{n} are non-zero complex numbers. If $f(z)=P\left(e^{h(z)}\right)$, then

$$
m\left(r, \frac{1}{f}\right)=S\left(r, e^{h}\right)
$$

Proof. Write $P(z)=c \prod_{j=1}^{n}\left(z-\alpha_{j}\right)$. Clearly, $\alpha_{j} \neq 0$ for all $1 \leq j \leq n$. By Lemma 5.3.1, we have

$$
\begin{aligned}
m\left(r, \frac{1}{f}\right) & =m\left(r, \frac{1}{c \prod_{j=1}^{n}\left(e^{h}-\alpha_{j}\right)}\right) \\
& \leq \sum_{j=1}^{n} m\left(r, \frac{1}{e^{h}-\alpha_{j}}\right)+O(1) \\
& =S\left(r, e^{h}\right) .
\end{aligned}
$$

In order to find $m\left(r, \frac{1}{P\left(e^{h}\right)}\right)$, we need the following fact [37] about the characteristic function of polynomial in a meromorphic function.

Theorem 5.3.3 Let g be a non-constant meromorphic function and $P(z)=a_{n} z^{n}+$ $\cdots+a_{0}$, where a_{0}, \ldots, a_{n} are small functions of g. Then

$$
T(r, P(g))=n T(r, g)+S(r, g)
$$

In particular, if g is of finite order, so is $P(g)$.

Now, we can express $m\left(r, \frac{1}{P\left(e^{h}\right)}\right)$ in terms of $m\left(r, \frac{1}{e^{h}}\right)$, which is fundamental to the proofs of Theorem A and B.

Theorem 5.3.4 Let h be a non-constant entire function and $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+$ $\cdots+a_{k} z^{k}$ be a polynomial, where $k \geq 0$ and a_{k}, a_{n} are non-zero constants. If $f(z)=P\left(e^{h(z)}\right)$, then

$$
m\left(r, \frac{1}{f}\right)=k m\left(r, \frac{1}{e^{h}}\right)+S\left(r, e^{h}\right) .
$$

Proof. Write $P(z)=z^{k} Q(z)$ and $Q(z)=c \prod_{j=1}^{n-k}\left(z-\alpha_{j}\right)$, where $\alpha_{j} \neq 0$ for all $1 \leq j \leq n-k$. Then, by Lemma 5.3.2 and Theorem 5.3.3,

$$
\begin{aligned}
T\left(r, P\left(e^{h}\right)\right) & =T\left(r, \frac{1}{P\left(e^{h}\right)}\right)+O(1) \\
& =N\left(r, \frac{1}{P\left(e^{h}\right)}\right)+m\left(r, \frac{1}{P\left(e^{h}\right)}\right)+O(1) \\
& =N\left(r, \frac{1}{Q\left(e^{h}\right)}\right)+m\left(r, \frac{1}{P\left(e^{h}\right)}\right)+O(1) \\
& \leq \sum_{j=1}^{n-k} N\left(r, \frac{1}{e^{h}-\alpha_{j}}\right)+m\left(r, \frac{1}{P\left(e^{h}\right)}\right)+O(1) \\
& \leq \sum_{j=1}^{n-k} N\left(r, \frac{1}{e^{h}-\alpha_{j}}\right)+k m\left(r, \frac{1}{e^{h}}\right)+m\left(r, \frac{1}{Q\left(e^{h}\right)}\right)+O(1) \\
& \leq \sum_{j=1}^{n-k} N\left(r, \frac{1}{e^{h}-\alpha_{j}}\right)+k m\left(r, \frac{1}{e^{h}}\right)+S\left(r, e^{h}\right) \\
& \leq \sum_{j=1}^{n-k} T\left(r, \frac{1}{e^{h}-\alpha_{j}}\right)+k T\left(r, \frac{1}{e^{h}}\right)+S\left(r, e^{h}\right) \\
& =n T\left(r, e^{h}\right)+S\left(r, e^{h}\right) \\
& =T\left(r, P\left(e^{h}\right)\right)+S\left(r, e^{h}\right) .
\end{aligned}
$$

Therefore, we have equality everywhere. In particular,

$$
m\left(r, \frac{1}{f}\right)=k m\left(r, \frac{1}{e^{h}}\right)+S\left(r, e^{h}\right) .
$$

Now, we are ready to prove Theorem A.

Theorem A Let h be a non-constant polynomial and $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+$ $\cdots+a_{k} z^{k}$ be a non-constant polynomial, where $k \geq 0$ and a_{k}, a_{n} are non-zero constants. Let $f(z)=P\left(e^{h(z)}\right)$. We have
(i) If $k \geq 1$, then 0 and ∞ are the only two deficient values of f. Moreover, $\delta(0, f)=\frac{\nu(0)}{n}=\frac{k}{n}$ and $\delta(\infty, f)=\frac{\nu(\infty)}{n}=1$.
(ii) If $k=0$, then a_{0} and ∞ are the only two deficient values of f. Moreover, $\delta\left(a_{0}, f\right)=\frac{\nu(0)}{n}$ and $\delta(\infty, f)=\frac{\nu(\infty)}{n}=1$.

Proof. Note that h is a polynomial, e^{h} is of finite order. We have $S\left(r, e^{h}\right)=$ $o\left(T\left(r, e^{h}\right)\right)$ as $r \rightarrow \infty$. Clearly, in any case, ∞ is a deficient value of f and $\delta(\infty, f)=$ $\frac{\nu(\infty)}{n}=1$.

For $k \geq 1$, we have $\nu(0)=k$ and, by Theorem 5.3.4,

$$
\begin{aligned}
\delta(0, f) & =\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{f}\right)}{T(r, f)} \\
& =\liminf _{r \rightarrow \infty} \frac{k m\left(r, \frac{1}{e^{h}}\right)+S\left(r, e^{h}\right)}{n T\left(r, e^{h}\right)+S\left(r, e^{h}\right)} \\
& =\frac{k}{n}
\end{aligned}
$$

On the other hand, for any $a \neq 0$, by Lemma 5.3.2, we have

$$
\begin{aligned}
\delta(a, f) & =\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{f-a}\right)}{T(r, f)} \\
& =\liminf _{r \rightarrow \infty} \frac{S\left(r, e^{h}\right)}{n T\left(r, e^{h}\right)+S\left(r, e^{h}\right)} \\
& =0 .
\end{aligned}
$$

Hence, 0 and ∞ are the only two deficient values of f and $\delta(0, f)=\frac{k}{n}, \delta(\infty, f)=1$. This proves (i).

For $k=0$, we can write $P(z)-a_{0}=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{l} z^{l}$, where $a_{l} \neq 0$ and $\nu(0)=l$. As above, we have

$$
\begin{aligned}
\delta\left(a_{0}, f\right) & =\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{f-a_{0}}\right)}{T(r, f)} \\
& =\liminf _{r \rightarrow \infty} \frac{\operatorname{lm}\left(r, \frac{1}{e^{h}}\right)+S\left(r, e^{h}\right)}{n T\left(r, e^{h}\right)+S\left(r, e^{h}\right)} \\
& =\frac{l}{n}
\end{aligned}
$$

Moreover, for any $a \neq a_{0}$, by Lemma 5.3.2, we have

$$
\begin{aligned}
\delta(a, f) & =\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{f-a}\right)}{T(r, f)} \\
& =\liminf _{r \rightarrow \infty} \frac{S\left(r, e^{h}\right)}{n T\left(r, e^{h}\right)+S\left(r, e^{h}\right)} \\
& =0 .
\end{aligned}
$$

Therefore, a_{0} and ∞ are the only two deficient values of f and $\delta\left(a_{0}, f\right)=\frac{l}{n}$, $\delta(\infty, f)=1$, which proves (ii).

For general transcendental entire function h, due to the fact that $S(r, f)=$ $o(T(r, f))$ as $r \rightarrow \infty$ and $r \notin E$, where E is a set of finite measure, we cannot get Theorem A. However, as in the proof of Theorem A, we have the following.

Theorem \mathbf{A}^{\prime} Let h be a transcendental entire function of infinite order and $P(z)=$ $a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{k} z^{k}$ be a non-constant polynomial, where $k \geq 0$ and a_{k}, a_{n} are non-zero constants. Let $f(z)=P\left(e^{h(z)}\right)$. We have
(i) If $k \geq 1$, then $\delta(0, f) \leq \frac{\nu(0)}{n}=\frac{k}{n}$ and $\delta(\infty, f)=\frac{\nu(\infty)}{n}=1$. In particular, 0 and ∞ are the only possible deficient values of f.
(ii) If $k=0$, then $\delta\left(a_{0}, f\right) \leq \frac{\nu(0)}{n}$ and $\delta(\infty, f)=\frac{\nu(\infty)}{n}=1$. In particular, a_{0} and ∞ are the only possible deficient values of f.

5.4 The Proof of Theorem B

Since 0 and ∞ are the Picard exceptional values of e^{h}, Theorem A says that $P(0)$ and $P(\infty)$ are the only deficient values of $f=P\left(e^{h}\right)$. Hence, it is reasonable to conjecture that if e^{h} is replaced by any meromorphic function g with two Picard exceptional values a and b, then $P(a)$ and $P(b)$ are the only deficient values of $P(g)$. Indeed, it is true. First, we need some lemmas.

Lemma 5.4.1 Let g be a non-constant meromorphic function with two Picard exceptional values a and b. Then

$$
m\left(r, \frac{1}{g-\alpha}\right)=S(r, g)
$$

for any $\alpha \in \mathbb{C}_{\infty} \backslash\{a, b\}$.

Proof. Given $\alpha \in \mathbb{C}_{\infty} \backslash\{a, b\}$. We may assume that α, a and b are finite. By the Nevanlinna's second fundamental theorem,

$$
\begin{aligned}
T\left(r, \frac{1}{g-\alpha}\right) & =T(r, g)+O(1) \\
& \leq \bar{N}\left(r, \frac{1}{g-\alpha}\right)+\bar{N}\left(r, \frac{1}{g-a}\right)+\bar{N}\left(r, \frac{1}{g-b}\right)+S(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{g-\alpha}\right)+S(r, g) \\
& \leq N\left(r, \frac{1}{g-\alpha}\right)+S(r, g) .
\end{aligned}
$$

Hence,

$$
m\left(r, \frac{1}{g-\alpha}\right)=T\left(r, \frac{1}{g-\alpha}\right)-N\left(r, \frac{1}{g-\alpha}\right)=S(r, g) .
$$

The following theorem is fundamental in finding the deficiency of $P(g)$.

Theorem 5.4.2 Let g be a non-constant meromorphic function with two finite Picard exceptional values a, b and let $P(z)$ be a non-constant polynomial of degree n. We have
(i) If $P(a) \neq P(b)$, then

$$
\begin{gathered}
m\left(r, \frac{1}{P(g)-P(a)}\right)=\nu(a) m\left(r, \frac{1}{g-a}\right)+S(r, g), \text { and } \\
m\left(r, \frac{1}{P(g)-P(b)}\right)=\nu(b) m\left(r, \frac{1}{g-b}\right)+S(r, g) .
\end{gathered}
$$

(ii) If $P(a)=P(b)$, then

$$
m\left(r, \frac{1}{P(g)-P(a)}\right)=(\nu(a)+\nu(b)) m\left(r, \frac{1}{g-a}\right)+S(r, g) .
$$

Proof. Denote $k_{1}=\nu(a)$ and $k_{2}=\nu(b)$. Then we can write

$$
P(z)-P(a)=c(z-a)^{k_{1}} \prod_{i=1}^{n-k_{1}}\left(z-\alpha_{i}\right)
$$

and

$$
P(z)-P(b)=c(z-b)^{k_{2}} \prod_{j=1}^{n-k_{2}}\left(z-\beta_{j}\right)
$$

where $\alpha_{i} \neq a$ for all $1 \leq i \leq n-k_{1}$, and $\beta_{j} \neq b$ for all $1 \leq j \leq n-k_{2}$.
Note that if $P(a) \neq P(b)$, then $\alpha_{i} \neq a, b$ for all $1 \leq i \leq n-k_{1}$ and $\beta_{j} \neq a, b$ for all $1 \leq j \leq n-k_{2}$. By Lemma 5.4.1 and Theorem 5.3.4, we have

$$
\begin{aligned}
T(r, P(g)) & =T\left(r, \frac{1}{P(g)-P(a)}\right)+O(1) \\
& =N\left(r, \frac{1}{P(g)-P(a)}\right)+m\left(r, \frac{1}{P(g)-P(a)}\right)+O(1) \\
& \leq \sum_{i=1}^{n-k_{1}} N\left(r, \frac{1}{g-\alpha_{i}}\right)+m\left(r, \frac{1}{P(g)-P(a)}\right)+O(1) \\
& \leq \sum_{i=1}^{n-k_{1}} N\left(r, \frac{1}{g-\alpha_{i}}\right)+k_{1} m\left(r, \frac{1}{g-a}\right)+\sum_{i=1}^{n-k_{1}} m\left(r, \frac{1}{g-\alpha_{i}}\right)+O(1) \\
& \leq \sum_{i=1}^{n-k_{1}} T\left(r, \frac{1}{g-\alpha_{i}}\right)+k_{1} T\left(r, \frac{1}{g-a}\right)+S(r, g) \\
& =n T(r, g)+S(r, g) \\
& =T(r, P(g))+S(r, g) .
\end{aligned}
$$

Hence,

$$
m\left(r, \frac{1}{P(g)-P(a)}\right)=k_{1} m\left(r, \frac{1}{g-a}\right)+S(r, g)
$$

Similarly, we have

$$
m\left(r, \frac{1}{P(g)-P(b)}\right)=k_{2} m\left(r, \frac{1}{g-b}\right)+S(r, g)
$$

This proves (i).

If $P(a)=P(b)$, then we can write

$$
P(z)-P(a)=c(z-a)^{k_{1}}(z-b)^{k_{2}} \prod_{j=1}^{n-k_{1}-k_{2}}\left(z-\gamma_{j}\right)
$$

where $\gamma_{j} \neq a, b$ for all $1 \leq j \leq n-k_{1}-k_{2}$. As in the proof of (i), we still get

$$
m\left(r, \frac{1}{P(g)-P(a)}\right)=\left(k_{1}+k_{2}\right) m\left(r, \frac{1}{g-a}\right)+S(r, g),
$$

which proves (ii).

In Theorem 5.4.2, we assume that both a and b are finite values. If one of a and b is ∞, say $b=\infty$, then $P(a) \neq P(b)$ and $P(g)$ is entire. So, as in the proof of Theorem 5.4.2, we have

Theorem 5.4.2 ${ }^{\prime}$ Let g be a non-constant meromorphic function with two Picard exceptional values a and ∞ and let $P(z)$ be a non-constant polynomial of degree n. Then we have

$$
m\left(r, \frac{1}{P(g)-P(a)}\right)=\nu(a) m\left(r, \frac{1}{g-a}\right)+S(r, g)
$$

and

$$
m(r, P(g))=\nu(\infty) m(r, g)+S(r, g)=T(r, P(g))
$$

Now, we are in the position to prove Theorem B.

Theorem B Let g be a non-constant meromorphic function of finite order, such that g has two Picard exceptional values a and b. Let $P(z)$ be a non-constant polynomial of degree n. We have
(i) If $P(a)=P(b)$, then $P(a)$ is the only deficient value of $P(g)$. Moreover, $\delta(P(a), P(g))=\frac{\nu(a)+\nu(b)}{n}$.
(ii) If $P(a) \neq P(b)$ and a, b are finite, then $P(a)$ and $P(b)$ are the only two deficient values of $P(g)$. Moreover, $\delta(P(a), P(g))=\frac{\nu(a)}{n}$ and $\delta(P(b), P(g))=\frac{\nu(b)}{n}$.
(iii) If a is finite and $b=\infty$, then $P(a)$ and ∞ are the only two deficient values of $P(g)$. Moreover, $\delta(P(a), P(g))=\frac{\nu(a)}{n}$ and $\delta(\infty, P(g))=\frac{\nu(\infty)}{n}=1$.

Proof. Note that g is of finite order, so is $P(g)$ by Theorem 5.3.3. We have $S(r, g)=o(T(r, g))$ as $r \rightarrow \infty$.

If $P(a)=P(b)$, then a and b must be finite values. By Theorem 5.4.2, we get

$$
\delta(P(a), P(g))=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{P(g)-P(a)}\right)}{T(r, P(g))}=\frac{\nu(a)+\nu(b)}{n} .
$$

On the other hand, for any $\alpha \neq P(a)$, we can write $P(z)-\alpha=c \prod_{j=1}^{n}\left(z-\alpha_{j}\right)$, where $\alpha_{j} \neq a, b$ for all $1 \leq j \leq n$. Then, by Lemma 5.4.1, we have

$$
\delta(\alpha, P(g))=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{P(g)-\alpha}\right)}{T(r, P(g))}=\liminf _{r \rightarrow \infty} \frac{S(r, g)}{T(r, P(g))}=0 .
$$

Therefore, $P(a)$ is the only deficient value of $P(g)$ and $\delta(P(a), P(g))=\frac{\nu(a)+\nu(b)}{n}$. This proves (i).

If $P(a) \neq P(b)$ and a, b are finite, then, by Theorem 5.4.2, we have

$$
\delta(P(a), P(g))=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{P(g)-P(a)}\right)}{T(r, P(g))}=\frac{\nu(a)}{n}
$$

and

$$
\delta(P(b), P(g))=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{P(g)-P(b)}\right)}{T(r, P(g))}=\frac{\nu(b)}{n} .
$$

Moreover, as in the proof of (i), for any $\alpha \neq P(a), P(b)$, we have

$$
\delta(\alpha, P(g))=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{P(g)-\alpha}\right)}{T(r, P(g))}=\liminf _{r \rightarrow \infty} \frac{S(r, g)}{T(r, P(g))}=0 .
$$

Therefore, $P(a)$ and $P(b)$ are the only deficient values of $P(g)$ and $\delta(P(a), P(g))=$ $\frac{\nu(a)}{n}, \delta(P(b), P(g))=\frac{\nu(b)}{n}$. This proves (ii).

Finally, if a is finite and $b=\infty$, then, by Theorem 5.4.2', we have

$$
\delta(P(a), P(g))=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{P(g)-P(a)}\right)}{T(r, P(g))}=\frac{\nu(a)}{n}
$$

and

$$
\delta(\infty, P(g))=\liminf _{r \rightarrow \infty} \frac{m(r, P(g))}{T(r, P(g))}=\frac{\nu(\infty)}{n}=1
$$

Moreover, as in the proof of (i), for any $\alpha \neq P(a), P(b)$, we have

$$
\delta(\alpha, P(g))=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{P(g)-\alpha}\right)}{T(r, P(g))}=\liminf _{r \rightarrow \infty} \frac{S(r, g)}{T(r, P(g))}=0 .
$$

Therefore, $P(a)$ and ∞ are the only deficient values of $P(g)$ and $\delta(P(a), P(g))=$ $\frac{\nu(a)}{n}, \delta(P(a), P(g))=1$, which proves (iii).

For arbitrary meromorphic function g with two Picard exceptional values, as the reasoning in the end of section 5.3, we have the following result.

Theorem \mathbf{B}^{\prime} Let g be a non-constant meromorphic function of infinite order, such that g has two Picard exceptional values a and b. Let $P(z)$ be a non-constant polynomial of degree n. We have
(i) If $P(a)=P(b)$, then $\delta(P(a), P(g)) \leq \frac{\nu(a)+\nu(b)}{n}$. In particular, $P(a)$ is the only possible deficient value of $P(g)$.
(ii) If $P(a) \neq P(b)$ and a, b are finite, then $\delta(P(a), P(g)) \leq \frac{\nu(a)}{n}$ and $\delta(P(b), P(g)) \leq$ $\frac{\nu(b)}{n}$. In particular, $P(a)$ and $P(b)$ are the only possible deficient values of $P(g)$.
(iii) If a is finite and $b=\infty$, then $\delta(P(a), P(g)) \leq \frac{\nu(a)}{n}$ and $\delta(\infty, P(g))=\frac{\nu(\infty)}{n}=1$. In particular, $P(a)$ and ∞ are the only possible deficient values of $P(g)$.

