Chapter 6

Some Generalization of

Nevanlinna’s Five-Values Theorem

6.1 Introduction

Nevanlinna’s five-value theorem [25] says that if two meromorphic function-
s share five distinct values ignoring multiplicity, then these two functions must
be identical. More precisely, suppose f and g are meromorphic functions and

ai,as, . ..,as are five distinct values. If

where E(a,h) = {z | h(z) —a = 0} for a meromorphic function h(z), then f = g.

C. C. Yang [35] observed that one can weaken the assumption of sharing five
values to “partially” sharing five values in Nevanlinna’s five-value theorem. We
say that a meromorphic function f partially shares a value a with a meromorphic
function g if

E(a, f) C E(a,g).

Under this terminology, Yang [35] proved that if a meromorphic function f partially

41



share five values aq, as, ..., a5 with a meromorphic function ¢, and

liminfiﬁ(r L )/iﬁ(r L ) >1
roee f—aj — g—a 2

then f and ¢g must be identical. In Nevanlinna’s five-value theorem, we have

E(as, f) = E(a;, g) for all 1 <4 < 5. In this case,

5 5

— 1 — 1 1
lim inf N\|r,—— / N (r, ) =1>—
P G= 2N\ 2

so f = g. Hence Yang’s result is a generalization of Nevanlinna’s five-value theorem.

In this chapter, we generalize Yang’s result to two meromorphic functions par-
tially share either five or more values, or five or more small functions, and get the

following main results.

Theorem A Let f and g be two non-constant meromorphic functions and ay, as,

..., ag, be k distinct values, where k > 5 and E(a;, f) C E(a;,g) for all 1 <i < k.
If f # g, then

liminfiﬁ r 1 /iﬁ r 1 <L
r—00 1 ’f—ai = ’g—ai _k—?)

When k£ = 5, our theorem is exactly Yang’s result, so Theorem A is a general-

ization to both Yang’s result and Nevanlinna’s five-value theorem.

Li and Qiao [17] proved a small function version of Nevanlinna’s five-value
theorem, which says that if two meromorphic functions share five small functions,

then these two functions are identical.

Our theorem for meromorphic functions partially sharing values can also be

extend to partially sharing small functions.

Theorem B Let f and g be two non-constant meromorphic functions and a;(z),
as(z), ..., ag(z), be k distinct small functions of f and g, where & > 5, and
E(a;, f) € E(a;, g) for all 1 <i < k. If f # g, then

liminfiw 7’; /iﬁ r ! < g
r—oo L= f—a; — "g—a;) T 2k—5
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In Theorem A, Nevalinna’s second fundamental theorem is the main tool we use
in our proof. Note that in the proof of Theorem B, we cannot use the Nevalinna’s
second fundamental theorem, because its precise form concerning small functions
still remains open [33]. Instead, we use a result of Yang [35]. That is the reason

two main theorems have different formulations.

6.2 Meromorphic Functions Partially Share

Values

Definition 6.2.1 Let h(z) be a non-constant meromorphic function and a be a

value in the extended complex plane. We define

E(a,h) ={z|h(z) —a =0}

in which each zero is counted only once.

In this section, we study two meromorphic functions partially share five or
more values. Precisely speaking, we consider two meromorphic functions f and g,

and k distinct values aq,ao, ..., ax, k > 5, such that

E(aia f) - E(aiag)>

forall 1 <i<k.

When k£ =5, Yang [35] proved the following theorem.

Theorem 6.2.2 Let f and g be two non-constant meromorphic functions and aq,

as, ..., as be five distinct values. If
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then f = g.

In the proof of this theorem, Yang gave an argument to show that if f # g,
then

- 1 ° 1 1

hﬂlogszlN<r’f—aj>/;N(T’g—aj) Si’ (6.2.1)
and hence the theorem is true. The inequality (6.2.1) is the crucial part of this
theorem. It is a natural question to ask: if f and ¢ partially share more than five
values, what the corresponding inequality becomes? In this chapter, we answer this

question completely by the following theorem.

Theorem A Let f and g be two non-constant meromorphic functions and ay, as,

..., ai be k distinct values, where k > 5, and E(a;, f) C E(a;,g) for all 1 <i < k.
If f # g, then

liminfiﬁ(r ;>/iﬁ(r L ) < L
r—00 1 7f—ai ’ _l{?—?)

i1 g i

Proof. Without loss of generality, we may assume that all a; are finite. By

Nevanlinna’s second fundamental theorem, we have

k
— 1
k=270 ) < SN (r5 2 ) 502
i=1 ‘
and
L 1
(k=270 < L7 (ro 2o ) 48l
=1 v
By the hypothesis f # g, and E(a;, f) C E(a;,g), 1 <i < k, we have

Hence,
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for r ¢ E, which implies

(530 0) 7 (720) < (o) 55 (5)

for r € E. Therefore, we obtain

LA 1 Fo_ 1 1
llﬂﬁfZ}N(T’m)/ZN(T’g—ai) Rt

=1

which completes the proof. 0

From Theorem A, we immediately have the following corollary, which general-

izes Theorem 6.2.2, and Nevanlinna’s five-value theorem.

Corollary 6.2.3 Let f and g be two non-constant meromorphic functions and
ay,as, ..., a, be k distinct values, where k > 5, and E(a;, f) € E(a;, g) for all

1<i<k. If

k
.. — 1
hﬂg}lf ;1 N( —az)/ E < —Gz) > r_3

then f =g.

6.3 Meromorphic Functions Partially Share Small
Functions
We say that two non-constant meromorphic functions share a function a(z) if

we have f(z) —a(z) = 0 if and only if g(z) — a(z) = 0. For meromorphic functions

sharing small functions, Zhang [40] proved the following theorem.

Theorem 6.3.1 Let f and g be two non-constant meromorphic functions, and
ai(z),a2(2),...,a6(2), be six distinct small functions of f and g. If f and g share
ai(z),as(2),...,a6(2), then f = g.
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Li and Qiao[17] improved Theorem 6.3.1 as follows.

Theorem 6.3.2 Let f and g be two non-constant meromorphic functions, and

a1(z),as(2),...,a5(2), be five distinct small functions of f and g. If f and g share
CLl(Z), CLQ(Z), s 7a5(z)7 then f =g

Now, we consider the case that two meromorphic functions partially share small

functions.

Definition 6.3.3 Let h be a non-constant meromorphic function and a(z) be a

small function of h. We define

E(a,h) = {z|h(z) —a(z) =0}

wn which each zero is counted only once.
In order to prove Theorem B, we need the following lemma [35].

Lemma 6.3.4 Let h be a non-constant meromorphic function and ay(2), az(z), ...,

as(z) be five distinct small functions of h. Then

5
T(r,h) gz ——)+5(r.h).

Theorem B Let f and g be two non-constant meromorphic functions and a;(z),

(2), ..., ag(z), be k distinct small functions of f and g, where k£ > 5, and

a2
E(a;, f) C E(a;, g) for all 1 <i < k. If f # g, then
e 5
YV (n20) /S8 () < s
Proof. By Lemma 6.3.4, for any distinct aq,...,a5 € {1,2,...,k}, we have

5
2T(’I“,f) S ZN <’l“, f—;a) +S(7",f)
j=1 &
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Hence,

equivalently,

Similarly, we have

Hence,

as r € F, which implies

(5 o) 2 ) = (5 0) £ (r525)

for r € E. Therefore, we obtain,

k
o - 1 — 1 5
a3 F (n20) /37 (20 <5y

i=1

which completes the proof. 0

From Theorem B, we immediately have the following corollary, which general-

izes Theorem 6.3.1.

Corollary 6.3.5 Let f and g be two non-constant meromorphic functions and

ai(z),a2(2),...,ax(z) be k distinct small functions of f and g, where k > 5, and
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E(a;, f) C E(a, g) for all1 <i<k. If

k 1 b 1 5
lminf SN (7, / N(r > ,
lgg’llzl (Tf—az‘) ZZI <T9—ai) 2k =5

then f =g.
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