
Chapter 7

On the Uniqueness of Entire

Functions and Their Derivatives

7.1 Introduction

The uniqueness problems on entire functions that share a finite non-zero val-

ue a with their derivatives has been broadly studied. In 1977, Rubel and C. C.

Yang [29] proved that if an entire function f share two finite, distinct values CM

with f ′, then f ≡ f ′. This result has been generalized to the case that f and f ′

share two values IM by Gundersen [9] and by Mues-Steinmetz [20]. In 1986, Jank,

Mues and Volkmann [19] proved the following theorem.

Theorem A Let f be a non-constant entire function. If f and f ′ share the value

a (a 6= 0) IM, and f ′′(z) = a whenever f(z) = a, then f ≡ f ′.

Gundersen and L. Z. Yang [11, 39] considered the sharing value problems of f

and its nth-order derivative f (n), and obtained the following result.

Theorem B Let f be a non-constant entire function of finite order, let a be a

finite non-zero value and let n be a positive integer. If f and f (n) share a CM, then
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(f (n) − a)/(f − a) = c, where c is a non-zero constant.

The next two theorems are proved by Li and C. C. Yang [16].

Theorem C Let f be a non-constant entire function, let a be a finite non-zero

value and let n be a positive integer. If f , f (n) and f (n+1) share a CM, then f = f ′.

Theorem D Let f be a non-constant entire function, let a be a finite non-zero

value and let n ≥ 2 be a positive integer. If f , f ′ and f (n) share a CM, then

f(z) = becz − a(1− c)

c
,

where b, c are non-zero constants and cn−1 = 1.

In this chapter, we study non-constant entire functions which share opposite

values with their derivatives. To explain more precisely, we use a terminology

introduced by Frank and Ohlenroth in [6]. Let f and g be two non-constant entire

functions, a1 and a2 be two arbitrary complex numbers. We say that f and g

share the pair (a1, a2) CM (IM) if f − a1 and g − a2 share 0 CM (IM). Under this

terminology, given an entire function f and a positive integer n, f and f (n) share

the pair (a,−a) CM (IM) means that f − a and f (n) + a have the same zeros with

the same multiplicities (without counting multiplicities).

The main results of this chapter is to reformulate all theorems A-D in the sense

of non-constant entire functions sharing opposite values with their derivatives, and

give their proofs by using similar techniques in the original proofs in [19, 11, 16, 39].

7.2 Lemmas and Known Results

In this section, we summarize some facts that we need in the proofs of our

main theorems.
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Lemma 7.2.1 [24] Let g1, . . . , gp be transcendental entire functions and a1, . . . , ap

be non-zero constants. If
∑p

i=1 aigi(z) = 1, then
∑p

i=1 δ(0, gi) ≤ p− 1.

Lemma 7.2.2 Let f be a non-constant entire function, and let a 6= 0 be a finite

value. If f and f ′ share the pair (a,−a) IM, then a is not a Picard exceptional

value of f .

Proof . If a is a Picard exceptional value of f , then −a is a Picard exceptional

value of f ′. Write f−a = eα and f ′+a = eβ for some non-constant entire functions

α and β, we have

−1

a
α′eα +

1

a
eβ = 1.

By Lemma 7.2.1, we get a contradiction. Hence, a is not a Picard exceptional value

of f . ❑

Lemma 7.2.3 Let f be a non-constant entire function, and let a 6= 0 be a finite

value. If f and f ′ share the pair (a,−a) IM and f ′′(z) = a whenever f(z) = a, then

f and f ′ share (a,−a) CM, and all zeros of f − a and f ′ + a are simple.

Proof . By Lemma 7.2.2, a is not a Picard exceptional value of f . Let z0 be a zero

of f − a, then f ′(z0) = −a 6= 0 and f ′′(z0) = a 6= 0. Hence, all the zeros of f − a

and f ′ + a are simple. In particularly, f − a and f ′ + a share 0 CM, that is, f and

f ′ share (a,−a) CM. ❑

Lemma 7.2.4 [12] Let f be a meromorphic function, let n be a positive integer

and let F be a function of the form F = fn + Q(f), where Q(f) is a differential

polynomial in f with degree less or equal to n− 1. If

N(r, f) + N

(
r,

1

F

)
= S(r, f),

then

F =
(
f +

g

n

)n

,

where g is a meromorphic function satisfying T (r, g) = S(r, f).
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Lemma 7.2.5 [3, 5] Let f be a non-constant meromorphic function and let P (f),

Q(f) be differential polynomials in f with P (f) 6≡ 0. Let n be a positive integer and

fnQ(f) = P (f).

If the degree of P (f) is not greater than n, then

m(r,Q(f)) = S(r, f).

Lemma 7.2.6 [11, 39] Let h be a non-constant polynomial and n be a positive

integer. Then every solution F of the differential equation

F (n) − ehF = 1

is an entire function of infinite order.

Lemma 7.2.7 [15] Let ϕ be a non-zero entire function. If ϕn + P (ϕ) ≡ 0, where

P (ϕ) is a differential polynomial in ϕ with constant coefficients, and the degree of

P (ϕ) is at most n− 1, then ϕ is a constant.

7.3 Main Results and Proofs

Theorem 7.3.1 Let f be a non-constant entire function, and let a 6= 0 be a finite

value. If f and f ′ share the pair (a,−a) IM, and f ′′(z) = a whenever f(z) = a,

then f ≡ −f ′.

Proof . By Lemma 7.2.2, a is not a Picard exceptional value of f . Let z0 be a zero

of f − a and write

f(z) = a + a1(z − z0) + a2(z − z0)
2 + · · · . (7.3.1)

Then

f ′(z) = a1 + 2a2(z − z0) + 3a3(z − z0)
2 + · · · , (7.3.2)
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and

f ′′(z) = 2a2 + 6a3(z − z0) + · · · . (7.3.3)

From (7.3.1), (7.3.2), (7.3.3) and the assumptions, we get a1 = −a and 2a2 = a.

Therefore, z0 is a multiple zero of f + f ′. If f 6≡ −f ′, then, by Lemma 7.2.3, we

have

2N

(
r,

1

f − a

)
≤ N

(
r,

1

f + f ′

)

≤ T (r, f + f ′) + O(1)

= m

(
r, f

(
1 +

f ′

f

))
+ O(1)

≤ m(r, f) + S(r, f)

= T (r, f) + S(r, f).

Note that

m

(
r,

1

f − a

)
+ m

(
r,

1

f ′ + a

)
≤ m

(
r,

1

f ′

)
+ m

(
r,

1

f ′ + a

)
+ S(r, f)

= m

(
r,

1

f ′
+

1

f ′ + a

)
+ S(r, f)

≤ m

(
r,

1

f ′′

)
+ S(r, f).

From above inequalities, we have

T (r, f) + T (r, f ′) = N

(
r,

1

f − a

)
+ N

(
r,

1

f ′ + a

)
+ m

(
r,

1

f − a

)
+ m

(
r,

1

f ′ + a

)
+ O(1)

≤ N

(
r,

1

f − a

)
+ N

(
r,

1

f ′ + a

)
+ m

(
r,

1

f ′′

)
+ S(r, f)

= 2N

(
r,

1

f − a

)
+ T (r, f ′′)−N

(
r,

1

f ′′

)
+ S(r, f)

≤ 2N

(
r,

1

f − a

)
+ T (r, f ′)−N

(
r,

1

f ′′

)
+ S(r, f)

≤ T (r, f) + T (r, f ′)−N

(
r,

1

f ′′

)
+ S(r, f),

which implies that

N

(
r,

1

f ′′

)
= S(r, f) (7.3.4)
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and

T (r, f) ≤ 2N

(
r,

1

f − a

)
+ S(r, f). (7.3.5)

By assumption, we have

N

(
r,

1

f − a

)
≤ N

(
r,

1
f ′′
f ′ + 1

)

≤ T

(
r,

f ′′

f ′

)
+ O(1)

= N

(
r,

f ′′

f ′

)
+ S(r, f)

= N

(
r,

1

f ′

)
+ S(r, f).

From this and (7.3.5), we obtain

T (r, f) ≤ 2N

(
r,

1

f ′

)
+ S(r, f). (7.3.6)

Set

φ =
f ′

f − a
− f ′′

f ′ + a
, ψ =

f ′′ + f ′

f − a
. (7.3.7)

By assumption, we know that φ and ψ are entire functions satisfying

T (r, φ) = m(r, φ) = S(r, f)

and

T (r, ψ) = m(r, ψ) = S(r, f).

Let z0 be a zero of f − a. From (7.3.1) and (7.3.7), we get

φ(z0) =
1

2

(
−1− 1

a
f ′′′(z0)

)

and

ψ(z0) = −1

a
f ′′′(z0)− 1.

Therefore,

2φ(z0)− ψ(z0) = 0. (7.3.8)

If 2φ− ψ 6≡ 0, then (7.3.8) implies that

N

(
r,

1

f − a

)
≤ N

(
r,

1

2φ− ψ

)
≤ T (r, φ) + T (r, ψ) + O(1) = S(r, f),
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which contradicts to (7.3.5). Hence

2φ− ψ ≡ 0. (7.3.9)

Let z1 be a zero of f ′ but f ′′(z1) 6= 0. Such z1 does exist by (7.3.4) and (7.3.6).

From (7.3.7) and (7.3.9), we have

0 = 2φ(z1)− ψ(z1) = −f ′′(z1)

(
2

a
+

1

f(z1)− a

)
.

Hence

f(z1) =
a

2
. (7.3.10)

From (7.3.9), we get

2φ′ − ψ′ ≡ 0.

From (7.3.7) and (7.3.10), we obtain

0 = 2φ′(z1)− ψ′(z1) =
2

a
f ′′(z1)

(
f ′′(z1)

a
− 1

)
,

Hence

f ′′(z1) = a and φ(z1) = −1. (7.3.11)

If φ 6≡ −1, then, from (7.3.11), we have

N

(
r,

1

f ′

)
−N

(
r,

1

f ′′

)
≤ N

(
r,

1

φ + 1

)

≤ T (r, φ) + O(1) = S(r, f). (7.3.12)

On the other hand, from (7.3.4) and (7.3.6), we obtain

T (r, f) ≤ 2N

(
r,

1

f ′

)
− 2N

(
r,

1

f ′′

)
+ S(r, f).

Combining this with (7.3.12), we get

T (r, f) = S(r, f).

This is a contradiction. Therefore, φ ≡ −1 and, then, ψ ≡ −2 by (7.3.9). Substi-

tuting this into (7.3.7), we obtain the second order differential equation

f ′′ + f ′ + 2(f − a) = 0, (7.3.13)
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which has solutions

f(z) = c1e
λ1z + c2e

λ2z + a, (7.3.14)

where λ1 and λ2 are the distinct roots of the equation λ2 + λ + 2 = 0, c1 and c2 are

constants. Hence

f ′′(z) = c1λ
2
1e

λ1z + c2λ
2
2e

λ2z,

which implies that one of c1 and c2 must be zero by (7.3.4). Without loss of

generality, we assume that c2 = 0. Then

f(z) = c1e
λ1z + a.

Obviously, c1 6= 0, so a is a Picard exceptional value of f , which is impossible by

Lemma 7.2.2. Hence, f ≡ −f ′, and the theorem is proved. ❑

From Theorem 7.3.1, we immediately have the following consequence.

Corollary 7.3.2 Let f be a non-constant entire function, and let a 6= 0 be a finite

value. If f, f ′ share the pair (a,−a) CM and f, f ′′ share a CM, then f ≡ −f ′.

Now, we extend the corollary to the case of higher order derivatives of f .

Theorem 7.3.3 Let f be a non-constant entire function, a 6= 0 be a finite value,

and let n be a positive integer. If f , f (n) share the pair (a,−a) CM and f , f (n+1)

share a CM, then f (n) ≡ −f (n+1). More precisely,

f(z) =





ce−z + 2a if n is even

ce−z if n is odd,

where c is a non-zero constant.

Proof . If f (n) 6≡ −f (n+1), then, by the hypothesis,

f (n) + a

f − a
= eα,

f (n+1) − a

f − a
= eβ, (7.3.15)
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where α and β are entire functions. Set

ϕ =
f (n) + f (n+1)

f − a
. (7.3.16)

Then ϕ is a non-zero entire function satisfying T (r, ϕ) = S(r, f). Note that
eα

ϕ
+

eβ

ϕ
= 1. By Nevanlinna’s second fundamental theorem, we get

T

(
r,

eα

ϕ

)
≤ N

(
r,

eα

ϕ

)
+ N

(
r,

ϕ

eα

)
+ N

(
r,

1
eα

ϕ
− 1

)
+ S

(
r,

eα

ϕ

)

= N

(
r,

eα

ϕ

)
+ N

(
r,

ϕ

eα

)
+ N

(
r,

ϕ

eβ

)
+ S

(
r,

eα

ϕ

)

= N

(
r,

1

ϕ

)
+ N(r, ϕ) + N(r, ϕ) + S

(
r,

eα

ϕ

)

≤ 3T (r, ϕ) + S

(
r,

eα

ϕ

)

= S(r, f).

Hence

T (r, eα) ≤ T

(
r,

eα

ϕ

)
+ T (r, ϕ) = S(r, f).

Similarly, we have T (r, eβ) = S(r, f). From (7.3.15), we have

eα(f − a) = f (n) + a, f (n+1) = eβ(f − a) + a.

We deduce that

α′eα(f − a) + eαf ′ = f (n+1) = eβ(f − a) + a.

Hence

f ′ = α1f + β1, (7.3.17)

where α1 = eβ−α−α′ and β1 = ae−α− aeβ−α + aα′. Note that α1 and β1 are entire

functions satisfying T (r, α1) = S(r, f) and T (r, β1) = S(r, f). Taking derivatives

on equation (7.3.17), we get

f (k) = αkf + βk (7.3.18)
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for k = 1, 2, . . . , where αk and βk are entire functions satisfying the recursive for-

mulas

αk+1 = α′k + α1αk, βk+1 = β′k + β1αk (7.3.19)

for k = 1, 2, . . . . Clearly, T (r, αk) = S(r, f) and T (r, βk) = S(r, f) for k = 1, 2, . . . .

From (7.3.15), we have

m

(
r,

1

f − a

)
= m

(
r,

1

a

(
eα − f (n)

f − a

))

≤ m(r, eα) + m

(
r,

f (n)

f − a

)
+ O(1)

= S(r, f).

Therefore,

m

(
r,

1

f − a

)
= S(r, f). (7.3.20)

By hypothesis, we know that the multiplicities of the zeros of f − a are at most n.

So, by (7.3.20), we have

T (r, f) = N

(
r,

1

f − a

)
+ S(r, f)

≤ nN

(
r,

1

f − a

)
+ S(r, f).

Again, by hypothesis, we know that the zeros of f −a are the zeros of aαn + βn + a

and aαn+1 + βn+1 − a. If aαn + βn + a 6≡ 0, then

T (r, f) ≤ nN

(
r,

1

f − a

)
+ S(r, f)

≤ nN

(
r,

1

aαn + βn + a

)

= S(r, f),

which is a contradiction. Hence

aαn + βn + a ≡ 0. (7.3.21)

Similarly, we have

aαn+1 + βn+1 − a ≡ 0. (7.3.22)
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Combine (7.3.15), (7.3.18), (7.3.21) and (7.3.22), we easily get

αn = eα, αn+1 = eβ.

If α1 is constant, then, by (7.3.19), we get αk = αk
1 for k = 1, 2, . . .. Hence, eα and

eβ are constants. It follows that β1 is also a constant. Again, by (7.3.19), we get

βk = β1α
k−1
1 . In this case, (7.3.21) and (7.3.22) become

αn−1
1 (aα1 + β1) = −a, αn

1 (aα1 + β1) = a.

From which we deduce that α1 = −1, β1 = 2a if n is even and α1 = −1, β1 = 0

if n is odd. In any case, from (7.3.17), we conclude that f (n) ≡ −f (n+1) which is

impossible by the assumption.

Now, we assume that α1 is not a constant. By (7.3.19) and by induction, we

get

αk = αk
1 +

k(k − 1)

2
αk−2

1 α′1 + Pk−2, (7.3.23)

where Pk−2 is a differential polynomial in α1 with degree not greater than k− 2 for

k ≥ 2. Note that

N(r, α1) + N

(
r,

1

αn

)
+ N

(
r,

1

αn+1

)
= 0.

By Lemma 7.2.4, there exists two entire functions g1 and g2 such that

αn =
(
α1 +

g1

n

)n

, αn+1 =

(
α1 +

g2

n + 1

)n+1

, (7.3.24)

and T (r, g1) + T (r, g2) = S(r, α1). Therefore, α1 +
g1

n
and α1 +

g2

n + 1
have no

zeros. If
g1

n
6≡ g2

n + 1
, then, by Nevanlinna’s second fundamental theorem for small

functions, we have

T (r, α1) ≤ N

(
r,

1

α1 + g1

n

)
+ N

(
r,

1

α1 + g2

n+1

)
+ N (r, α1) + S(r, α1)

= S(r, α1),

which is impossible. Hence,
g1

n
≡ g2

n + 1
. By (7.3.24), we get

αn+1
n ≡ αn

n+1.
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Therefore, from (7.3.23), we obtain

αn+1
n = α

n(n+1)
1 +

n(n− 1)(n + 1)

2
αn2+n−2

1 α′1 + Q1,

and

αn
n+1 = α

n(n+1)
1 +

n2(n + 1)

2
αn2+n−2

1 α′1 + Q2,

where Q1 and Q2 are differential polynomials in α1 with constant coefficients and

degrees not greater than n2 + n− 2. Hence

n2 + n

2
αn2+n−2

1 α′1 = Q1 −Q2.

By Lemma 7.2.5, we get m(r, α′1) = S(r, α1). Thus

T (r, α′1) = S(r, α1). (7.3.25)

From (7.3.19) and (7.3.24), and
g2

n + 1
=

g1

n
, we get

(
α1 +

g1

n

)n+1

=

(
α1 +

g2

n + 1

)n+1

= αn+1

= α′n + α1αn

= n
(
α1 +

g1

n

)n−1
(

α′1 +
g′1
n

)
+ α1

(
α1 +

g1

n

)n

.

Therefore (
α1 +

g1

n

)n−1
(

g1

n
α1 − nα′1 − g′1 +

g2
1

n2

)
= 0.

Since α1 +
g1

n
has no zeros, we conclude that

g1

n
α1 − nα′1 − g′1 +

g2
1

n2
≡ 0,

that is,

α1 = n2 α′

g1

+ n
g′

g1

− 1

n
g1.

From T (r, g1) = S(r, α1) and (7.3.25), we get T (r, α1) = S(r, α1), which is al-

so impossible. Therefore, f (n) ≡ −f (n+1), that is, f (n)(z) = ce−z and f(z) =
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(−1)nce−z + P (z), where c is a non-zero constant and P (z) is a polynomial with

degree not greater than n− 1. Choose n distinct zeros zi of f (n)(z) + a, 1 ≤ i ≤ n.

It is easy to see that if n is even, then P (zi) = 2a for all 1 ≤ i ≤ n, and if n is odd,

then P (zi) = 0 for all 1 ≤ i ≤ n. Since the degree of P (z) is at most n, we conclude

that P (z) ≡ 2a when n is even, and P (z) ≡ 0 when n is odd. Therefore,

f(z) =





ce−z + 2a if n is even,

ce−z if n is odd,

and the theorem is proved. ❑

Theorem 7.3.4 Let f be a non-constant entire function of finite order and let a

be a finite value. If f and f ′ share the pair (a,−a) CM, then

f ′ + a

f − a
= c,

where c is a non-zero constant.

Proof . Case 1. a 6= 0. Since f and f ′ share (a,−a) CM and f is of finite order,

there exists a polynomial h such that

f ′ + a

f − a
= eh.

Set F = 1− f

a
. Then

F ′ − ehF = 1.

If h is non-constant, then, by Lemma 7.2.6 (n = 1), we obtain that F is of infinite

order. Since f is of finite order, it is a contradiction. Therefore, h is a constant and

f ′ + a

f − a
= c,

where c is a non-zero constant.

Case 2. a = 0. In this case, the hypothesis says that f and f ′ share 0 CM, so 0

must be a Picard exceptional value of f and f ′, and f = eh for some non-constant

entire function h. Since f is of finite order, h must be a polynomial. Since f ′ = h′eh
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has no zeros, h′ ≡ c for some constant c 6= 0. Hence, f ′ = cf , and the theorem is

proved. ❑

If we replace f ′ by f (n) in the proof of Theorem 7.3.4, then we can easily

conclude the following theorem.

Theorem 7.3.5 Let f be a non-constant entire function of finite order, let a be a

finite non-zero value and let n be a positive integer. If f and f (n) share the pair

(a,−a) CM, then

f (n) + a

f − a
= c,

where c is a non-zero constant.

Theorem 7.3.6 Let f be an entire function, let a be a finite non-zero value and

let n ≥ 2 be a positive integer. If f and f ′ share the pair (a,−a) CM and f , f (n)

share a CM, then f ′ ≡ −f (n). More precisely,

f(z) = becz +
a(1 + c)

c
,

where b, c are non-zero constants and cn−1 = −1.

Proof . Suppose f ′ 6≡ −f (n). Since f , f ′ share (a,−a) CM and f , f (n) share a

CM, similar to the proof of Theorem 7.3.3, there exists an entire function α such

that

eα =
f ′ + a

f − a
(7.3.26)

and T (r, eα) = S(r, f). Rewriting (7.3.26) as

f ′ = eαf − a− aeα

and taking the derivatives, we get

f (k) = αkf + βk, (7.3.27)
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k = 1, 2, . . . , where α1 = eα, β1 = −(a + aeα) and we can get the the recursive

formulas

αk+1 = α′k + α1αk, βk+1 = β′k + β1αk (7.3.28)

as in the proof of Theorem 7.3.3. Clearly, αk and βk are entire functions satisfying

T (r, αk) = S(r, f) and T (r, βk) = S(r, f). By the hypothesis and (7.3.27), all

zeros of f − a are simple and are also zeros of aαn + βn − a. As in the proof of

Theorem 7.3.3, (7.3.26) and T (r, eα) = S(r, f) implies m

(
r,

1

f − a

)
= S(r, f).

Therefore, N

(
r,

1

f − a

)
6= S(r, f). If aαn + βn − a 6≡ 0, then we have

N

(
r,

1

f − a

)
≤ N

(
r,

1

aαn + βn − a

)

≤ T (r, αn) + T (r, βn) + O(1)

= S(r, f),

which is impossible. So aαn + βn − a ≡ 0. On the other hand, by the recursive

formulas (7.3.28) and by induction, it follows that

aαk + βk = −a
(
αk−1 + α′k−2 + · · ·+ α

(k−2)
1

)
,

k = 2, 3, . . .. In particular, we have

αn−1 + α′n−2 + · · ·+ α
(n−2)
1 ≡ −1. (7.3.29)

It follows from (7.3.28), the equation (7.3.29) can be expressed as

αn−1
1 + P (α1) ≡ 0,

where P (α1) is a differential polynomial in α1 with degree not greater than n− 2.

By Lemma 7.2.7, we conclude that α1 is a constant. Therefore, from (7.3.28) and

(7.3.29), we obtain αn−1
1 = −1 and αk = αk

1, for k = 1, 2, . . ., which imply αn = −α1

and βn = −β1. Again, from (7.3.27), we have

f (n) = αnf + βn

= −α1f − β1

= −f ′,
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which contradicts to the assumption. Therefore, f ′ ≡ −f (n). Hence

f(z) =
n∑

j=1

cje
λjz,

where λ1, . . . , λn are distinct roots of λn + λ = 0 and c1, . . . , cn are constants. It

follows that f is of finite order. Since f and f ′ share the pair (a,−a) CM, by

Theorem 7.3.4, there exists a non-zero constant c such that f ′ + a = c(f − a).

Hence

f(z) = becz +
a(1 + c)

c
,

and

f (n)(z) = bcnecz = cn

(
f − a(1 + c)

c

)
,

where b is a non-zero constant. Let z0 be a zero of f (n) − a. Then

a = f (n)(z0) = bcnecz0 = cn

(
f(z0)− a(1 + c)

c

)
= −cn−1a.

So cn−1 = −1, and the theorem is proved. ❑
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