Chapter 7

On the Uniqueness of Entire Functions and Their Derivatives

7.1 Introduction

The uniqueness problems on entire functions that share a finite non-zero value a with their derivatives has been broadly studied. In 1977, Rubel and C. C. Yang [29] proved that if an entire function f share two finite, distinct values CM with f^{\prime}, then $f \equiv f^{\prime}$. This result has been generalized to the case that f and f^{\prime} share two values IM by Gundersen [9] and by Mues-Steinmetz [20]. In 1986, Jank, Mues and Volkmann [19] proved the following theorem.

Theorem A Let f be a non-constant entire function. If f and f^{\prime} share the value $a(a \neq 0) \mathrm{IM}$, and $f^{\prime \prime}(z)=a$ whenever $f(z)=a$, then $f \equiv f^{\prime}$.

Gundersen and L. Z. Yang [11, 39] considered the sharing value problems of f and its n th-order derivative $f^{(n)}$, and obtained the following result.

Theorem B Let f be a non-constant entire function of finite order, let a be a finite non-zero value and let n be a positive integer. If f and $f^{(n)}$ share $a \mathrm{CM}$, then
$\left(f^{(n)}-a\right) /(f-a)=c$, where c is a non-zero constant.

The next two theorems are proved by Li and C. C. Yang [16].

Theorem C Let f be a non-constant entire function, let a be a finite non-zero value and let n be a positive integer. If $f, f^{(n)}$ and $f^{(n+1)}$ share $a \mathrm{CM}$, then $f=f^{\prime}$.

Theorem \mathbf{D} Let f be a non-constant entire function, let a be a finite non-zero value and let $n \geq 2$ be a positive integer. If f, f^{\prime} and $f^{(n)}$ share $a \mathrm{CM}$, then

$$
f(z)=b e^{c z}-\frac{a(1-c)}{c},
$$

where b, c are non-zero constants and $c^{n-1}=1$.

In this chapter, we study non-constant entire functions which share opposite values with their derivatives. To explain more precisely, we use a terminology introduced by Frank and Ohlenroth in [6]. Let f and g be two non-constant entire functions, a_{1} and a_{2} be two arbitrary complex numbers. We say that f and g share the pair $\left(a_{1}, a_{2}\right) \mathrm{CM}(\mathrm{IM})$ if $f-a_{1}$ and $g-a_{2}$ share 0 CM (IM). Under this terminology, given an entire function f and a positive integer n, f and $f^{(n)}$ share the pair $(a,-a) \mathrm{CM}(\mathrm{IM})$ means that $f-a$ and $f^{(n)}+a$ have the same zeros with the same multiplicities (without counting multiplicities).

The main results of this chapter is to reformulate all theorems A-D in the sense of non-constant entire functions sharing opposite values with their derivatives, and give their proofs by using similar techniques in the original proofs in [19, 11, 16, 39].

7.2 Lemmas and Known Results

In this section, we summarize some facts that we need in the proofs of our main theorems.

Lemma 7.2.1 [24] Let g_{1}, \ldots, g_{p} be transcendental entire functions and a_{1}, \ldots, a_{p} be non-zero constants. If $\sum_{i=1}^{p} a_{i} g_{i}(z)=1$, then $\sum_{i=1}^{p} \delta\left(0, g_{i}\right) \leq p-1$.

Lemma 7.2.2 Let f be a non-constant entire function, and let $a \neq 0$ be a finite value. If f and f^{\prime} share the pair $(a,-a) \mathrm{IM}$, then a is not a Picard exceptional value of f.

Proof. If a is a Picard exceptional value of f, then $-a$ is a Picard exceptional value of f^{\prime}. Write $f-a=e^{\alpha}$ and $f^{\prime}+a=e^{\beta}$ for some non-constant entire functions α and β, we have

$$
-\frac{1}{a} \alpha^{\prime} e^{\alpha}+\frac{1}{a} e^{\beta}=1 .
$$

By Lemma 7.2.1, we get a contradiction. Hence, a is not a Picard exceptional value of f.

Lemma 7.2.3 Let f be a non-constant entire function, and let $a \neq 0$ be a finite value. If f and f^{\prime} share the pair $(a,-a) \mathrm{IM}$ and $f^{\prime \prime}(z)=a$ whenever $f(z)=a$, then f and f^{\prime} share $(a,-a) \mathrm{CM}$, and all zeros of $f-a$ and $f^{\prime}+a$ are simple.

Proof. By Lemma 7.2.2, a is not a Picard exceptional value of f. Let z_{0} be a zero of $f-a$, then $f^{\prime}\left(z_{0}\right)=-a \neq 0$ and $f^{\prime \prime}\left(z_{0}\right)=a \neq 0$. Hence, all the zeros of $f-a$ and $f^{\prime}+a$ are simple. In particularly, $f-a$ and $f^{\prime}+a$ share 0 CM , that is, f and f^{\prime} share $(a,-a) \mathrm{CM}$.

Lemma 7.2.4 [12] Let f be a meromorphic function, let n be a positive integer and let F be a function of the form $F=f^{n}+Q(f)$, where $Q(f)$ is a differential polynomial in f with degree less or equal to $n-1$. If

$$
N(r, f)+N\left(r, \frac{1}{F}\right)=S(r, f)
$$

then

$$
F=\left(f+\frac{g}{n}\right)^{n}
$$

where g is a meromorphic function satisfying $T(r, g)=S(r, f)$.

Lemma 7.2.5 [3, 5] Let f be a non-constant meromorphic function and let $P(f)$, $Q(f)$ be differential polynomials in f with $P(f) \not \equiv 0$. Let n be a positive integer and

$$
f^{n} Q(f)=P(f)
$$

If the degree of $P(f)$ is not greater than n, then

$$
m(r, Q(f))=S(r, f)
$$

Lemma 7.2.6 [11, 39] Let h be a non-constant polynomial and n be a positive integer. Then every solution F of the differential equation

$$
F^{(n)}-e^{h} F=1
$$

is an entire function of infinite order.

Lemma 7.2.7 [15] Let φ be a non-zero entire function. If $\varphi^{n}+P(\varphi) \equiv 0$, where $P(\varphi)$ is a differential polynomial in φ with constant coefficients, and the degree of $P(\varphi)$ is at most $n-1$, then φ is a constant.

7.3 Main Results and Proofs

Theorem 7.3.1 Let f be a non-constant entire function, and let $a \neq 0$ be a finite value. If f and f^{\prime} share the pair $(a,-a) \mathrm{IM}$, and $f^{\prime \prime}(z)=a$ whenever $f(z)=a$, then $f \equiv-f^{\prime}$.

Proof. By Lemma 7.2.2, a is not a Picard exceptional value of f. Let z_{0} be a zero of $f-a$ and write

$$
\begin{equation*}
f(z)=a+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots . \tag{7.3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
f^{\prime}(z)=a_{1}+2 a_{2}\left(z-z_{0}\right)+3 a_{3}\left(z-z_{0}\right)^{2}+\cdots, \tag{7.3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime \prime}(z)=2 a_{2}+6 a_{3}\left(z-z_{0}\right)+\cdots \tag{7.3.3}
\end{equation*}
$$

From (7.3.1), (7.3.2), (7.3.3) and the assumptions, we get $a_{1}=-a$ and $2 a_{2}=a$. Therefore, z_{0} is a multiple zero of $f+f^{\prime}$. If $f \not \equiv-f^{\prime}$, then, by Lemma 7.2.3, we have

$$
\begin{aligned}
2 N\left(r, \frac{1}{f-a}\right) & \leq N\left(r, \frac{1}{f+f^{\prime}}\right) \\
& \leq T\left(r, f+f^{\prime}\right)+O(1) \\
& =m\left(r, f\left(1+\frac{f^{\prime}}{f}\right)\right)+O(1) \\
& \leq m(r, f)+S(r, f) \\
& =T(r, f)+S(r, f) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
m\left(r, \frac{1}{f-a}\right)+m\left(r, \frac{1}{f^{\prime}+a}\right) & \leq m\left(r, \frac{1}{f^{\prime}}\right)+m\left(r, \frac{1}{f^{\prime}+a}\right)+S(r, f) \\
& =m\left(r, \frac{1}{f^{\prime}}+\frac{1}{f^{\prime}+a}\right)+S(r, f) \\
& \leq m\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f)
\end{aligned}
$$

From above inequalities, we have

$$
\begin{aligned}
T(r, f)+T\left(r, f^{\prime}\right) & =N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f^{\prime}+a}\right)+m\left(r, \frac{1}{f-a}\right)+m\left(r, \frac{1}{f^{\prime}+a}\right)+O(1) \\
& \leq N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f^{\prime}+a}\right)+m\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \\
& =2 N\left(r, \frac{1}{f-a}\right)+T\left(r, f^{\prime \prime}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \\
& \leq 2 N\left(r, \frac{1}{f-a}\right)+T\left(r, f^{\prime}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \\
& \leq T(r, f)+T\left(r, f^{\prime}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
N\left(r, \frac{1}{f^{\prime \prime}}\right)=S(r, f) \tag{7.3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
T(r, f) \leq 2 N\left(r, \frac{1}{f-a}\right)+S(r, f) \tag{7.3.5}
\end{equation*}
$$

By assumption, we have

$$
\begin{aligned}
N\left(r, \frac{1}{f-a}\right) & \leq N\left(r, \frac{1}{\frac{f^{\prime \prime}}{f^{\prime}}+1}\right) \\
& \leq T\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+O(1) \\
& =N\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) .
\end{aligned}
$$

From this and (7.3.5), we obtain

$$
\begin{equation*}
T(r, f) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{7.3.6}
\end{equation*}
$$

Set

$$
\begin{equation*}
\phi=\frac{f^{\prime}}{f-a}-\frac{f^{\prime \prime}}{f^{\prime}+a}, \quad \psi=\frac{f^{\prime \prime}+f^{\prime}}{f-a} . \tag{7.3.7}
\end{equation*}
$$

By assumption, we know that ϕ and ψ are entire functions satisfying

$$
T(r, \phi)=m(r, \phi)=S(r, f)
$$

and

$$
T(r, \psi)=m(r, \psi)=S(r, f)
$$

Let z_{0} be a zero of $f-a$. From (7.3.1) and (7.3.7), we get

$$
\phi\left(z_{0}\right)=\frac{1}{2}\left(-1-\frac{1}{a} f^{\prime \prime \prime}\left(z_{0}\right)\right)
$$

and

$$
\psi\left(z_{0}\right)=-\frac{1}{a} f^{\prime \prime \prime}\left(z_{0}\right)-1 .
$$

Therefore,

$$
\begin{equation*}
2 \phi\left(z_{0}\right)-\psi\left(z_{0}\right)=0 . \tag{7.3.8}
\end{equation*}
$$

If $2 \phi-\psi \not \equiv 0$, then (7.3.8) implies that

$$
N\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{2 \phi-\psi}\right) \leq T(r, \phi)+T(r, \psi)+O(1)=S(r, f)
$$

which contradicts to (7.3.5). Hence

$$
\begin{equation*}
2 \phi-\psi \equiv 0 \tag{7.3.9}
\end{equation*}
$$

Let z_{1} be a zero of f^{\prime} but $f^{\prime \prime}\left(z_{1}\right) \neq 0$. Such z_{1} does exist by (7.3.4) and (7.3.6). From (7.3.7) and (7.3.9), we have

$$
0=2 \phi\left(z_{1}\right)-\psi\left(z_{1}\right)=-f^{\prime \prime}\left(z_{1}\right)\left(\frac{2}{a}+\frac{1}{f\left(z_{1}\right)-a}\right)
$$

Hence

$$
\begin{equation*}
f\left(z_{1}\right)=\frac{a}{2} . \tag{7.3.10}
\end{equation*}
$$

From (7.3.9), we get

$$
2 \phi^{\prime}-\psi^{\prime} \equiv 0
$$

From (7.3.7) and (7.3.10), we obtain

$$
0=2 \phi^{\prime}\left(z_{1}\right)-\psi^{\prime}\left(z_{1}\right)=\frac{2}{a} f^{\prime \prime}\left(z_{1}\right)\left(\frac{f^{\prime \prime}\left(z_{1}\right)}{a}-1\right),
$$

Hence

$$
\begin{equation*}
f^{\prime \prime}\left(z_{1}\right)=a \text { and } \phi\left(z_{1}\right)=-1 . \tag{7.3.11}
\end{equation*}
$$

If $\phi \not \equiv-1$, then, from (7.3.11), we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{f^{\prime}}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right) & \leq N\left(r, \frac{1}{\phi+1}\right) \\
& \leq T(r, \phi)+O(1)=S(r, f) \tag{7.3.12}
\end{align*}
$$

On the other hand, from (7.3.4) and (7.3.6), we obtain

$$
T(r, f) \leq 2 \bar{N}\left(r, \frac{1}{f^{\prime}}\right)-2 N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f)
$$

Combining this with (7.3.12), we get

$$
T(r, f)=S(r, f)
$$

This is a contradiction. Therefore, $\phi \equiv-1$ and, then, $\psi \equiv-2$ by (7.3.9). Substituting this into (7.3.7), we obtain the second order differential equation

$$
\begin{equation*}
f^{\prime \prime}+f^{\prime}+2(f-a)=0 \tag{7.3.13}
\end{equation*}
$$

which has solutions

$$
\begin{equation*}
f(z)=c_{1} e^{\lambda_{1} z}+c_{2} e^{\lambda_{2} z}+a, \tag{7.3.14}
\end{equation*}
$$

where λ_{1} and λ_{2} are the distinct roots of the equation $\lambda^{2}+\lambda+2=0, c_{1}$ and c_{2} are constants. Hence

$$
f^{\prime \prime}(z)=c_{1} \lambda_{1}^{2} e^{\lambda_{1} z}+c_{2} \lambda_{2}^{2} e^{\lambda_{2} z}
$$

which implies that one of c_{1} and c_{2} must be zero by (7.3.4). Without loss of generality, we assume that $c_{2}=0$. Then

$$
f(z)=c_{1} e^{\lambda_{1} z}+a
$$

Obviously, $c_{1} \neq 0$, so a is a Picard exceptional value of f, which is impossible by Lemma 7.2.2. Hence, $f \equiv-f^{\prime}$, and the theorem is proved.

From Theorem 7.3.1, we immediately have the following consequence.

Corollary 7.3.2 Let f be a non-constant entire function, and let $a \neq 0$ be a finite value. If f, f^{\prime} share the pair $(a,-a) \mathrm{CM}$ and $f, f^{\prime \prime}$ share a CM , then $f \equiv-f^{\prime}$.

Now, we extend the corollary to the case of higher order derivatives of f.

Theorem 7.3.3 Let f be a non-constant entire function, $a \neq 0$ be a finite value, and let n be a positive integer. If $f, f^{(n)}$ share the pair $(a,-a) \mathrm{CM}$ and $f, f^{(n+1)}$ share a CM , then $f^{(n)} \equiv-f^{(n+1)}$. More precisely,

$$
f(z)= \begin{cases}c e^{-z}+2 a & \text { if } n \text { is even } \\ c e^{-z} & \text { if } n \text { is odd }\end{cases}
$$

where c is a non-zero constant.

Proof. If $f^{(n)} \not \equiv-f^{(n+1)}$, then, by the hypothesis,

$$
\begin{equation*}
\frac{f^{(n)}+a}{f-a}=e^{\alpha}, \quad \frac{f^{(n+1)}-a}{f-a}=e^{\beta}, \tag{7.3.15}
\end{equation*}
$$

where α and β are entire functions. Set

$$
\begin{equation*}
\varphi=\frac{f^{(n)}+f^{(n+1)}}{f-a} \tag{7.3.16}
\end{equation*}
$$

Then φ is a non-zero entire function satisfying $T(r, \varphi)=S(r, f)$. Note that $\frac{e^{\alpha}}{\varphi}+$ $\frac{e^{\beta}}{\varphi}=1$. By Nevanlinna's second fundamental theorem, we get

$$
\begin{aligned}
T\left(r, \frac{e^{\alpha}}{\varphi}\right) & \leq \bar{N}\left(r, \frac{e^{\alpha}}{\varphi}\right)+\bar{N}\left(r, \frac{\varphi}{e^{\alpha}}\right)+\bar{N}\left(r, \frac{1}{\frac{e^{\alpha}}{\varphi}-1}\right)+S\left(r, \frac{e^{\alpha}}{\varphi}\right) \\
& =\bar{N}\left(r, \frac{e^{\alpha}}{\varphi}\right)+\bar{N}\left(r, \frac{\varphi}{e^{\alpha}}\right)+\bar{N}\left(r, \frac{\varphi}{e^{\beta}}\right)+S\left(r, \frac{e^{\alpha}}{\varphi}\right) \\
& =\bar{N}\left(r, \frac{1}{\varphi}\right)+\bar{N}(r, \varphi)+\bar{N}(r, \varphi)+S\left(r, \frac{e^{\alpha}}{\varphi}\right) \\
& \leq 3 T(r, \varphi)+S\left(r, \frac{e^{\alpha}}{\varphi}\right) \\
& =S(r, f)
\end{aligned}
$$

Hence

$$
T\left(r, e^{\alpha}\right) \leq T\left(r, \frac{e^{\alpha}}{\varphi}\right)+T(r, \varphi)=S(r, f)
$$

Similarly, we have $T\left(r, e^{\beta}\right)=S(r, f)$. From (7.3.15), we have

$$
e^{\alpha}(f-a)=f^{(n)}+a, \quad f^{(n+1)}=e^{\beta}(f-a)+a .
$$

We deduce that

$$
\alpha^{\prime} e^{\alpha}(f-a)+e^{\alpha} f^{\prime}=f^{(n+1)}=e^{\beta}(f-a)+a .
$$

Hence

$$
\begin{equation*}
f^{\prime}=\alpha_{1} f+\beta_{1}, \tag{7.3.17}
\end{equation*}
$$

where $\alpha_{1}=e^{\beta-\alpha}-\alpha^{\prime}$ and $\beta_{1}=a e^{-\alpha}-a e^{\beta-\alpha}+a \alpha^{\prime}$. Note that α_{1} and β_{1} are entire functions satisfying $T\left(r, \alpha_{1}\right)=S(r, f)$ and $T\left(r, \beta_{1}\right)=S(r, f)$. Taking derivatives on equation (7.3.17), we get

$$
\begin{equation*}
f^{(k)}=\alpha_{k} f+\beta_{k} \tag{7.3.18}
\end{equation*}
$$

for $k=1,2, \ldots$, where α_{k} and β_{k} are entire functions satisfying the recursive formulas

$$
\begin{equation*}
\alpha_{k+1}=\alpha_{k}^{\prime}+\alpha_{1} \alpha_{k}, \quad \beta_{k+1}=\beta_{k}^{\prime}+\beta_{1} \alpha_{k} \tag{7.3.19}
\end{equation*}
$$

for $k=1,2, \ldots$ Clearly, $T\left(r, \alpha_{k}\right)=S(r, f)$ and $T\left(r, \beta_{k}\right)=S(r, f)$ for $k=1,2, \ldots$. From (7.3.15), we have

$$
\begin{aligned}
m\left(r, \frac{1}{f-a}\right) & =m\left(r, \frac{1}{a}\left(e^{\alpha}-\frac{f^{(n)}}{f-a}\right)\right) \\
& \leq m\left(r, e^{\alpha}\right)+m\left(r, \frac{f^{(n)}}{f-a}\right)+O(1) \\
& =S(r, f)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
m\left(r, \frac{1}{f-a}\right)=S(r, f) \tag{7.3.20}
\end{equation*}
$$

By hypothesis, we know that the multiplicities of the zeros of $f-a$ are at most n. So, by (7.3.20), we have

$$
\begin{aligned}
T(r, f) & =N\left(r, \frac{1}{f-a}\right)+S(r, f) \\
& \leq n \bar{N}\left(r, \frac{1}{f-a}\right)+S(r, f)
\end{aligned}
$$

Again, by hypothesis, we know that the zeros of $f-a$ are the zeros of $a \alpha_{n}+\beta_{n}+a$ and $a \alpha_{n+1}+\beta_{n+1}-a$. If $a \alpha_{n}+\beta_{n}+a \not \equiv 0$, then

$$
\begin{aligned}
T(r, f) & \leq n \bar{N}\left(r, \frac{1}{f-a}\right)+S(r, f) \\
& \leq n N\left(r, \frac{1}{a \alpha_{n}+\beta_{n}+a}\right) \\
& =S(r, f)
\end{aligned}
$$

which is a contradiction. Hence

$$
\begin{equation*}
a \alpha_{n}+\beta_{n}+a \equiv 0 . \tag{7.3.21}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
a \alpha_{n+1}+\beta_{n+1}-a \equiv 0 \tag{7.3.22}
\end{equation*}
$$

Combine (7.3.15), (7.3.18), (7.3.21) and (7.3.22), we easily get

$$
\alpha_{n}=e^{\alpha}, \quad \alpha_{n+1}=e^{\beta} .
$$

If α_{1} is constant, then, by (7.3.19), we get $\alpha_{k}=\alpha_{1}^{k}$ for $k=1,2, \ldots$ Hence, e^{α} and e^{β} are constants. It follows that β_{1} is also a constant. Again, by (7.3.19), we get $\beta_{k}=\beta_{1} \alpha_{1}^{k-1}$. In this case, (7.3.21) and (7.3.22) become

$$
\alpha_{1}^{n-1}\left(a \alpha_{1}+\beta_{1}\right)=-a, \quad \alpha_{1}^{n}\left(a \alpha_{1}+\beta_{1}\right)=a .
$$

From which we deduce that $\alpha_{1}=-1, \beta_{1}=2 a$ if n is even and $\alpha_{1}=-1, \beta_{1}=0$ if n is odd. In any case, from (7.3.17), we conclude that $f^{(n)} \equiv-f^{(n+1)}$ which is impossible by the assumption.

Now, we assume that α_{1} is not a constant. By (7.3.19) and by induction, we get

$$
\begin{equation*}
\alpha_{k}=\alpha_{1}^{k}+\frac{k(k-1)}{2} \alpha_{1}^{k-2} \alpha_{1}^{\prime}+P_{k-2}, \tag{7.3.23}
\end{equation*}
$$

where P_{k-2} is a differential polynomial in α_{1} with degree not greater than $k-2$ for $k \geq 2$. Note that

$$
N\left(r, \alpha_{1}\right)+N\left(r, \frac{1}{\alpha_{n}}\right)+N\left(r, \frac{1}{\alpha_{n+1}}\right)=0 .
$$

By Lemma 7.2.4, there exists two entire functions g_{1} and g_{2} such that

$$
\begin{equation*}
\alpha_{n}=\left(\alpha_{1}+\frac{g_{1}}{n}\right)^{n}, \quad \alpha_{n+1}=\left(\alpha_{1}+\frac{g_{2}}{n+1}\right)^{n+1} \tag{7.3.24}
\end{equation*}
$$

and $T\left(r, g_{1}\right)+T\left(r, g_{2}\right)=S\left(r, \alpha_{1}\right)$. Therefore, $\alpha_{1}+\frac{g_{1}}{n}$ and $\alpha_{1}+\frac{g_{2}}{n+1}$ have no zeros. If $\frac{g_{1}}{n} \not \equiv \frac{g_{2}}{n+1}$, then, by Nevanlinna's second fundamental theorem for small functions, we have

$$
\begin{aligned}
T\left(r, \alpha_{1}\right) & \leq \bar{N}\left(r, \frac{1}{\alpha_{1}+\frac{g_{1}}{n}}\right)+\bar{N}\left(r, \frac{1}{\alpha_{1}+\frac{g_{2}}{n+1}}\right)+\bar{N}\left(r, \alpha_{1}\right)+S\left(r, \alpha_{1}\right) \\
& =S\left(r, \alpha_{1}\right)
\end{aligned}
$$

which is impossible. Hence, $\frac{g_{1}}{n} \equiv \frac{g_{2}}{n+1}$. By (7.3.24), we get

$$
\alpha_{n}^{n+1} \equiv \alpha_{n+1}^{n} .
$$

Therefore, from (7.3.23), we obtain

$$
\alpha_{n}^{n+1}=\alpha_{1}^{n(n+1)}+\frac{n(n-1)(n+1)}{2} \alpha_{1}^{n^{2}+n-2} \alpha_{1}^{\prime}+Q_{1}
$$

and

$$
\alpha_{n+1}^{n}=\alpha_{1}^{n(n+1)}+\frac{n^{2}(n+1)}{2} \alpha_{1}^{n^{2}+n-2} \alpha_{1}^{\prime}+Q_{2}
$$

where Q_{1} and Q_{2} are differential polynomials in α_{1} with constant coefficients and degrees not greater than $n^{2}+n-2$. Hence

$$
\frac{n^{2}+n}{2} \alpha_{1}^{n^{2}+n-2} \alpha_{1}^{\prime}=Q_{1}-Q_{2}
$$

By Lemma 7.2.5, we get $m\left(r, \alpha_{1}^{\prime}\right)=S\left(r, \alpha_{1}\right)$. Thus

$$
\begin{equation*}
T\left(r, \alpha_{1}^{\prime}\right)=S\left(r, \alpha_{1}\right) . \tag{7.3.25}
\end{equation*}
$$

From (7.3.19) and (7.3.24), and $\frac{g_{2}}{n+1}=\frac{g_{1}}{n}$, we get

$$
\begin{aligned}
\left(\alpha_{1}+\frac{g_{1}}{n}\right)^{n+1} & =\left(\alpha_{1}+\frac{g_{2}}{n+1}\right)^{n+1} \\
& =\alpha_{n+1} \\
& =\alpha_{n}^{\prime}+\alpha_{1} \alpha_{n} \\
& =n\left(\alpha_{1}+\frac{g_{1}}{n}\right)^{n-1}\left(\alpha_{1}^{\prime}+\frac{g_{1}^{\prime}}{n}\right)+\alpha_{1}\left(\alpha_{1}+\frac{g_{1}}{n}\right)^{n}
\end{aligned}
$$

Therefore

$$
\left(\alpha_{1}+\frac{g_{1}}{n}\right)^{n-1}\left(\frac{g_{1}}{n} \alpha_{1}-n \alpha_{1}^{\prime}-g_{1}^{\prime}+\frac{g_{1}^{2}}{n^{2}}\right)=0
$$

Since $\alpha_{1}+\frac{g_{1}}{n}$ has no zeros, we conclude that

$$
\frac{g_{1}}{n} \alpha_{1}-n \alpha_{1}^{\prime}-g_{1}^{\prime}+\frac{g_{1}^{2}}{n^{2}} \equiv 0
$$

that is,

$$
\alpha_{1}=n^{2} \frac{\alpha^{\prime}}{g_{1}}+n \frac{g^{\prime}}{g_{1}}-\frac{1}{n} g_{1} .
$$

From $T\left(r, g_{1}\right)=S\left(r, \alpha_{1}\right)$ and (7.3.25), we get $T\left(r, \alpha_{1}\right)=S\left(r, \alpha_{1}\right)$, which is also impossible. Therefore, $f^{(n)} \equiv-f^{(n+1)}$, that is, $f^{(n)}(z)=c e^{-z}$ and $f(z)=$
$(-1)^{n} c e^{-z}+P(z)$, where c is a non-zero constant and $P(z)$ is a polynomial with degree not greater than $n-1$. Choose n distinct zeros z_{i} of $f^{(n)}(z)+a, 1 \leq i \leq n$. It is easy to see that if n is even, then $P\left(z_{i}\right)=2 a$ for all $1 \leq i \leq n$, and if n is odd, then $P\left(z_{i}\right)=0$ for all $1 \leq i \leq n$. Since the degree of $P(z)$ is at most n, we conclude that $P(z) \equiv 2 a$ when n is even, and $P(z) \equiv 0$ when n is odd. Therefore,

$$
f(z)= \begin{cases}c e^{-z}+2 a & \text { if } n \text { is even } \\ c e^{-z} & \text { if } n \text { is odd }\end{cases}
$$

and the theorem is proved.

Theorem 7.3.4 Let f be a non-constant entire function of finite order and let a be a finite value. If f and f^{\prime} share the pair $(a,-a) \mathrm{CM}$, then

$$
\frac{f^{\prime}+a}{f-a}=c
$$

where c is a non-zero constant.

Proof. Case 1. $a \neq 0$. Since f and f^{\prime} share $(a,-a) \mathrm{CM}$ and f is of finite order, there exists a polynomial h such that

$$
\frac{f^{\prime}+a}{f-a}=e^{h}
$$

Set $F=1-\frac{f}{a}$. Then

$$
F^{\prime}-e^{h} F=1
$$

If h is non-constant, then, by Lemma 7.2.6 $(n=1)$, we obtain that F is of infinite order. Since f is of finite order, it is a contradiction. Therefore, h is a constant and

$$
\frac{f^{\prime}+a}{f-a}=c
$$

where c is a non-zero constant.
Case 2. $a=0$. In this case, the hypothesis says that f and f^{\prime} share 0 CM , so 0 must be a Picard exceptional value of f and f^{\prime}, and $f=e^{h}$ for some non-constant entire function h. Since f is of finite order, h must be a polynomial. Since $f^{\prime}=h^{\prime} e^{h}$
has no zeros, $h^{\prime} \equiv c$ for some constant $c \neq 0$. Hence, $f^{\prime}=c f$, and the theorem is proved.

If we replace f^{\prime} by $f^{(n)}$ in the proof of Theorem 7.3.4, then we can easily conclude the following theorem.

Theorem 7.3.5 Let f be a non-constant entire function of finite order, let a be a finite non-zero value and let n be a positive integer. If f and $f^{(n)}$ share the pair $(a,-a) \mathrm{CM}$, then

$$
\frac{f^{(n)}+a}{f-a}=c,
$$

where c is a non-zero constant.

Theorem 7.3.6 Let f be an entire function, let a be a finite non-zero value and let $n \geq 2$ be a positive integer. If f and f^{\prime} share the pair $(a,-a) \mathrm{CM}$ and $f, f^{(n)}$ share a CM , then $f^{\prime} \equiv-f^{(n)}$. More precisely,

$$
f(z)=b e^{c z}+\frac{a(1+c)}{c}
$$

where b, c are non-zero constants and $c^{n-1}=-1$.

Proof. Suppose $f^{\prime} \not \equiv-f^{(n)}$. Since f, f^{\prime} share $(a,-a) \mathrm{CM}$ and $f, f^{(n)}$ share a CM, similar to the proof of Theorem 7.3.3, there exists an entire function α such that

$$
\begin{equation*}
e^{\alpha}=\frac{f^{\prime}+a}{f-a} \tag{7.3.26}
\end{equation*}
$$

and $T\left(r, e^{\alpha}\right)=S(r, f)$. Rewriting (7.3.26) as

$$
f^{\prime}=e^{\alpha} f-a-a e^{\alpha}
$$

and taking the derivatives, we get

$$
\begin{equation*}
f^{(k)}=\alpha_{k} f+\beta_{k}, \tag{7.3.27}
\end{equation*}
$$

$k=1,2, \ldots$, where $\alpha_{1}=e^{\alpha}, \beta_{1}=-\left(a+a e^{\alpha}\right)$ and we can get the the recursive formulas

$$
\begin{equation*}
\alpha_{k+1}=\alpha_{k}^{\prime}+\alpha_{1} \alpha_{k}, \quad \beta_{k+1}=\beta_{k}^{\prime}+\beta_{1} \alpha_{k} \tag{7.3.28}
\end{equation*}
$$

as in the proof of Theorem 7.3.3. Clearly, α_{k} and β_{k} are entire functions satisfying $T\left(r, \alpha_{k}\right)=S(r, f)$ and $T\left(r, \beta_{k}\right)=S(r, f)$. By the hypothesis and (7.3.27), all zeros of $f-a$ are simple and are also zeros of $a \alpha_{n}+\beta_{n}-a$. As in the proof of Theorem 7.3.3, (7.3.26) and $T\left(r, e^{\alpha}\right)=S(r, f)$ implies $m\left(r, \frac{1}{f-a}\right)=S(r, f)$. Therefore, $N\left(r, \frac{1}{f-a}\right) \neq S(r, f)$. If $a \alpha_{n}+\beta_{n}-a \not \equiv 0$, then we have

$$
\begin{aligned}
N\left(r, \frac{1}{f-a}\right) & \leq N\left(r, \frac{1}{a \alpha_{n}+\beta_{n}-a}\right) \\
& \leq T\left(r, \alpha_{n}\right)+T\left(r, \beta_{n}\right)+O(1) \\
& =S(r, f)
\end{aligned}
$$

which is impossible. So $a \alpha_{n}+\beta_{n}-a \equiv 0$. On the other hand, by the recursive formulas (7.3.28) and by induction, it follows that

$$
a \alpha_{k}+\beta_{k}=-a\left(\alpha_{k-1}+\alpha_{k-2}^{\prime}+\cdots+\alpha_{1}^{(k-2)}\right)
$$

$k=2,3, \ldots$. In particular, we have

$$
\begin{equation*}
\alpha_{n-1}+\alpha_{n-2}^{\prime}+\cdots+\alpha_{1}^{(n-2)} \equiv-1 \tag{7.3.29}
\end{equation*}
$$

It follows from (7.3.28), the equation (7.3.29) can be expressed as

$$
\alpha_{1}^{n-1}+P\left(\alpha_{1}\right) \equiv 0
$$

where $P\left(\alpha_{1}\right)$ is a differential polynomial in α_{1} with degree not greater than $n-2$. By Lemma 7.2.7, we conclude that α_{1} is a constant. Therefore, from (7.3.28) and (7.3.29), we obtain $\alpha_{1}^{n-1}=-1$ and $\alpha_{k}=\alpha_{1}^{k}$, for $k=1,2, \ldots$, which imply $\alpha_{n}=-\alpha_{1}$ and $\beta_{n}=-\beta_{1}$. Again, from (7.3.27), we have

$$
\begin{aligned}
f^{(n)} & =\alpha_{n} f+\beta_{n} \\
& =-\alpha_{1} f-\beta_{1} \\
& =-f^{\prime},
\end{aligned}
$$

which contradicts to the assumption. Therefore, $f^{\prime} \equiv-f^{(n)}$. Hence

$$
f(z)=\sum_{j=1}^{n} c_{j} e^{\lambda_{j}} z
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are distinct roots of $\lambda^{n}+\lambda=0$ and c_{1}, \ldots, c_{n} are constants. It follows that f is of finite order. Since f and f^{\prime} share the pair $(a,-a) \mathrm{CM}$, by Theorem 7.3.4, there exists a non-zero constant c such that $f^{\prime}+a=c(f-a)$. Hence

$$
f(z)=b e^{c z}+\frac{a(1+c)}{c}
$$

and

$$
f^{(n)}(z)=b c^{n} e^{c z}=c^{n}\left(f-\frac{a(1+c)}{c}\right)
$$

where b is a non-zero constant. Let z_{0} be a zero of $f^{(n)}-a$. Then

$$
a=f^{(n)}\left(z_{0}\right)=b c^{n} e^{c z_{0}}=c^{n}\left(f\left(z_{0}\right)-\frac{a(1+c)}{c}\right)=-c^{n-1} a .
$$

So $c^{n-1}=-1$, and the theorem is proved.

