Chapter 7

On the Uniqueness of Entire

Functions and Their Derivatives

7.1 Introduction

The uniqueness problems on entire functions that share a finite non-zero val-
ue a with their derivatives has been broadly studied. In 1977, Rubel and C. C.
Yang [29] proved that if an entire function f share two finite, distinct values CM
with f’, then f = f’. This result has been generalized to the case that f and f’
share two values IM by Gundersen [9] and by Mues-Steinmetz [20]. In 1986, Jank,
Mues and Volkmann [19] proved the following theorem.

Theorem A Let f be a non-constant entire function. If f and f’ share the value

a (a #0) IM, and f”(z) = a whenever f(z) = a, then f = f'.

Gundersen and L. Z. Yang [11, 39] considered the sharing value problems of f

and its nth-order derivative f and obtained the following result.

Theorem B Let f be a non-constant entire function of finite order, let a be a

finite non-zero value and let n be a positive integer. If f and f™ share a CM, then
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(f™ —a)/(f — a) = ¢, where c is a non-zero constant.
The next two theorems are proved by Li and C. C. Yang [16].

Theorem C Let f be a non-constant entire function, let a be a finite non-zero

value and let n be a positive integer. If f, f™ and f*+Y share a CM, then f = f’.

Theorem D Let f be a non-constant entire function, let a be a finite non-zero
value and let n > 2 be a positive integer. If f, f/ and f™ share a CM, then
1—
f(Z)Ibecz—a( C),

Cc

where b, ¢ are non-zero constants and ¢! = 1.

In this chapter, we study non-constant entire functions which share opposite
values with their derivatives. To explain more precisely, we use a terminology
introduced by Frank and Ohlenroth in [6]. Let f and g be two non-constant entire
functions, a; and as be two arbitrary complex numbers. We say that f and g
share the pair (aj,a) CM (IM) if f —ay and g — ag share 0 CM (IM). Under this
terminology, given an entire function f and a positive integer n, f and f™ share
the pair (a, —a) CM (IM) means that f —a and f™ + a have the same zeros with

the same multiplicities (without counting multiplicities).

The main results of this chapter is to reformulate all theorems A-D in the sense
of non-constant entire functions sharing opposite values with their derivatives, and

give their proofs by using similar techniques in the original proofs in [19, 11, 16, 39].

7.2 Lemmas and Known Results

In this section, we summarize some facts that we need in the proofs of our

main theorems.
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Lemma 7.2.1 [24] Let g1,...,g, be transcendental entire functions and ay, ..., a,

be non-zero constants. If Y 0 a;g;(z) =1, then Y% 6(0,¢9;) <p—1.

Lemma 7.2.2 Let f be a non-constant entire function, and let a # 0 be a finite
value. If f and [’ share the pair (a,—a) IM, then a is not a Picard exceptional
value of f.

Proof. If a is a Picard exceptional value of f, then —a is a Picard exceptional
value of f/. Write f —a = e* and f’+a = € for some non-constant entire functions
o and 3, we have

1

1
—Zdle® + =P =1.
a a

By Lemma 7.2.1, we get a contradiction. Hence, a is not a Picard exceptional value

of f. 0

Lemma 7.2.3 Let f be a non-constant entire function, and let a # 0 be a finite
value. If f and f' share the pair (a, —a) IM and f"(2) = a whenever f(z) = a, then
f and f' share (a, —a) CM, and all zeros of f —a and f' + a are simple.

Proof. By Lemma 7.2.2, a is not a Picard exceptional value of f. Let zy be a zero
of f—a, then f'(20) = —a # 0 and f"(29) = a # 0. Hence, all the zeros of f —a
and f’ + a are simple. In particularly, f —a and f’ 4 a share 0 CM, that is, f and
f' share (a, —a) CM. 0

Lemma 7.2.4 [12] Let f be a meromorphic function, let n be a positive integer
and let F be a function of the form F = f" + Q(f), where Q(f) is a differential
polynomial in f with degree less or equal ton — 1. If

1

N(T,f)—f—N (TaF) = S(va)a
then
F=(r+2)",
n

where g is a meromorphic function satisfying T'(r,g) = S(r, f).
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Lemma 7.2.5 [3, 5] Let f be a non-constant meromorphic function and let P(f),

Q(f) be differential polynomials in f with P(f) #Z 0. Let n be a positive integer and

f"QUf) = P(f).

If the degree of P(f) is not greater than n, then

Lemma 7.2.6 [11, 39] Let h be a non-constant polynomial and n be a positive

integer. Then every solution F of the differential equation
F —ehp =1
is an entire function of infinite order.
Lemma 7.2.7 [15] Let ¢ be a non-zero entire function. If " + P(p) = 0, where

P(y) is a differential polynomial in ¢ with constant coefficients, and the degree of

P(y) is at most n — 1, then ¢ is a constant.

7.3 Main Results and Proofs

Theorem 7.3.1 Let f be a non-constant entire function, and let a # 0 be a finite
value. If f and f" share the pair (a,—a) IM, and f"(z) = a whenever f(z) = a,
then f = —f".

Proof. By Lemma 7.2.2, a is not a Picard exceptional value of f. Let 2y be a zero
of f — a and write

f(z)=a+ai(z—2)+ay(z—z)+--. (7.3.1)
Then

f'(2) = a1 + 2as(z — 20) + 3as(z — z)* +-- -, (7.3.2)
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and

f//(Z) :2a2+6a3(z—zo)+”' . (733)

From (7.3.1), (7.3.2), (7.3.3) and the assumptions, we get a; = —a and 2ay = a.
Therefore, zy is a multiple zero of f + f'. If f #Z —f’, then, by Lemma 7.2.3, we

1 1
QN(r,f_a) §N(T,—f+fl>

T(r, f+ ) +0(1)

“n(er(145)) o

<m(r, f) +S(r, f)
=T(r, f)+ S(r, ).

have

Note that

e R e e

(r, f)+T(r, f) ( f_a)%—N(r,f/ia)—irm(r,fia +m(?",f,i_a

1 1 1
SN(r’f—a>_'_N(r’f’"i‘a)_'—m(r,ﬁ +5(r, f)

! " — ri r
—2N(r,f_a)+T(T,f) N ,f,,>+S(,f)

L N — Ti r
§2N(7’,f_a)+T(r, )— N ,f”>+5(,f)
<T(r,f)+T(r, [ N(r,% + S(r, f),

which implies that
N (r, %) =S(r, f) (7.3.4)



and

T(r, f) < 2N (r, ) +S(r, f).

f—a
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From this and (7.3.5), we obtain

T(r, f) <2N <r, %) + S(r, ).

Set

f/ f/l ’l/} _ f//_|_f/

¢:f—a_f’+a’ f—a’

By assumption, we know that ¢ and 1 are entire functions satisfying

and

Let zp be a zero of f —a. From (7.3.1) and (7.3.7), we get

otea) = 5 (-1 51"
and
P(20) = —éf'"(zo) — L
Therefore,
2¢(20) — ¥(20) = 0.
If 26 — 4 2 0, then (7.3.8) implies that

N<¢ﬁﬁ)gw(n%%z)gwn@+ﬂnw+0m=SMﬁ7

o4

(7.3.5)

(7.3.6)

(7.3.7)

(7.3.8)



which contradicts to (7.3.5). Hence

2¢ — ) = 0.

(7.3.9)

Let z; be a zero of f' but f”(z1) # 0. Such z; does exist by (7.3.4) and (7.3.6).

From (7.3.7) and (7.3.9), we have

0= 20(0) — 0(a1) = =) (24 7).

a f(zn)—a
Hence
a
From (7.3.9), we get
2¢) — ' = 0.
From (7.3.7) and (7.3.10), we obtain
2 "(z
0= 20) = /(o) = 2 (T2 < 1),
Hence
f"(z1) = a and ¢(z) = —1. (7.3.11)
If ¢ # —1, then, from (7.3.11), we have
—/( 1 1 1
p) ) = ()
<T(r,¢)+0O(1) = S(r, f). (7.3.12)
On the other hand, from (7.3.4) and (7.3.6), we obtain
— 1 1
T(r,f) <2N r,? —2N (r,— | +5(r, f).
Combining this with (7.3.12), we get
T(r,f) = S(rf).
This is a contradiction. Therefore, ¢ = —1 and, then, ¢» = —2 by (7.3.9). Substi-
tuting this into (7.3.7), we obtain the second order differential equation
f"Hf+2(f —a)=0, (7.3.13)

25



which has solutions

f(2) = c1eM* + cpe™* +a, (7.3.14)

where \; and )\, are the distinct roots of the equation A2 +\+2 = 0, ¢; and ¢, are
constants. Hence

f(2) = e A2eM? o \2e?,
which implies that one of ¢; and ¢y must be zero by (7.3.4). Without loss of
generality, we assume that co = 0. Then

f(z) = ce™* +a.

Obviously, ¢; # 0, so a is a Picard exceptional value of f, which is impossible by

Lemma 7.2.2. Hence, f = —f’, and the theorem is proved. O

From Theorem 7.3.1, we immediately have the following consequence.

Corollary 7.3.2 Let f be a non-constant entire function, and let a # 0 be a finite

value. If f, f' share the pair (a,—a) CM and f, f” share a CM, then f = —f'.

Now, we extend the corollary to the case of higher order derivatives of f.

Theorem 7.3.3 Let f be a non-constant entire function, a # 0 be a finite value,
and let n be a positive integer. If f, f™ share the pair (a,—a) CM and f, fO+Y
share a CM, then f™ = — f"*+D  More precisely,

ce *+2a ifn is even
fz) =

ce™? if n s odd,

where ¢ is a non-zero constant.

Proof. If f % — f(+1) then, by the hypothesis,

f™+a
f—a

(n+1) __
= eo‘, % = eﬁ, (7315)
—a
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where o and (3 are entire functions. Set

f) 4 fntd)

o (7.3.16)

(p:

«

Then ¢ is a non-zero entire function satisfying 7'(r, ¢) = S(r, f). Note that <4
¥
8

e
— = 1. By Nevanlinna’s second fundamental theorem, we get

Hence
o

T(r,e*) <T (r, %) +T(r,p) = S(r, f).
Similarly, we have T'(r,e?) = S(r, f). From (7.3.15), we have
(f—a)=f"4a, [ =e(f—a)+a
We deduce that
o e(f —a)+ e f' = [ =(f —a) +a,

Hence

fr=af+05, (7.3.17)

where oy = 7% — o/ and 3 = ae™® — ae’® + aa’. Note that a; and 3, are entire
functions satisfying T'(r,ay) = S(r, f) and T'(r,51) = S(r, f). Taking derivatives
on equation (7.3.17), we get

8 = af + By (7.3.18)
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for k =1,2,..., where o and J; are entire functions satisfying the recursive for-

mulas

U1 = )+ aqay, B = B + oy (7.3.19)

for k=1,2,.... Clearly, T(r,coq) = S(r, f) and T'(r, Bx) = S(r, f) for k =1,2,....
From (7.3.15), we have

f)
<m(r,e®) +m <r, ) +0O(1)
f—a
= S(r, f)
Therefore,
1

By hypothesis, we know that the multiplicities of the zeros of f — a are at most n.

So, by (7.3.20), we have

T($) =N (r s ) +8(n0)

1
r
,f—a,
gnﬁ(r

) s

Again, by hypothesis, we know that the zeros of f —a are the zeros of ac,, + 3, + a
and aay, 1 + Bt — a. If acy, + B, + a #Z 0, then

T(r, f) < nN (7‘, ﬁ) + S0, f)

1
<nN ( —)
acy, + B +a

= S(r, f),
which is a contradiction. Hence
ac, + B, +a = 0. (7.3.21)

Similarly, we have

a1 + Bpi1 —a = 0. (7.3.22)
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Combine (7.3.15), (7.3.18), (7.3.21) and (7.3.22), we easily get

(0%
a, = e°, anH:eﬁ.

If o is constant, then, by (7.3.19), we get ay = of for k =1,2,.... Hence, e® and
e are constants. It follows that 3, is also a constant. Again, by (7.3.19), we get
By = Bt~ . In this case, (7.3.21) and (7.3.22) become

o} Haay + B1) = —a, al(aa; + 1) = a.

From which we deduce that ay = —1,8; = 2a if n is even and ay = —1,8; = 0
if n is odd. In any case, from (7.3.17), we conclude that f™ = —f+1) which is

impossible by the assumption.

Now, we assume that a; is not a constant. By (7.3.19) and by induction, we
get

k(k—1
o = of + %O/fﬁa'l + Py o, (7.3.23)

where Py_» is a differential polynomial in «; with degree not greater than k& — 2 for

k > 2. Note that

1 1
N(r,a1)+N(r,—)+N(r, ):0.
079 Opt1

By Lemma 7.2.4, there exists two entire functions g; and g, such that

n n+1
o = <a1 + &> , Qi1 = (a1 N ) ) (7.3.24)
n

n+1

and T'(r,g1) + T(r,92) = S(r,a1). Therefore, a; + 9L and oy + % have no
n n

zeros. If 9 Z %, then, by Nevanlinna’s second fundamental theorem for small
n' n

functions, we have

— 1 — 1 —
T(r,oq) < N[, +N|r,——— | + N(r,ay) + S(r,«
005 g) ) s

S(r, ay),
S . g1 92
which is impossible. Hence, — = . By (7.3.24), we get
n n+1
ayt = ang.

29



Therefore, from (7.3.23), we obtain

o,

n+l _ a;l(n-f—l) + n(n_ 12)(n+ 1) n 24n—2 o +Q1,

and

nin n?(n+1
O‘Zﬂzal( +1)+ (2 )an +n—2 ’—l—Qz,

where 1 and @), are differential polynomials in a; with constant coefficients and

degrees not greater than n? +n — 2. Hence

2
n°+n
2 04?24»”720/1 = Ql - QZ'

By Lemma 7.2.5, we get m(r, o)) = S(r,a1). Thus

T(r,ay) = S(r,aq). (7.3.25)
92 91
From (7.3.19) and (7.3.24), and = ==, we get
n

n+1
gl>7’b+1 G
oy + =+
(1 n (1 n—l—l)

= Op+t1

/
= o, + oay,

/

n—1 n
:n<a1+2> (a’1+gl)+a1 <a1+gl> :
n n

2
(al—i-gl) (glal—nal—gl+g—12>:0.
n n

. g1
Since a; + = has no zeros, we conclude that
n

Therefore

20&1—”041 91+g_1E )
n
that is,
0/ /
ap =n’— + ng— — —0.
g1 g n
From T'(r,g1) = S(r,aq) and (7.3.25), we get T'(r,a;) = S(r, 1), which is al-
so impossible. Therefore, f™ = —f"+) that is, f™(2) = ce™® and f(z) =
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(=1)"ce™* 4+ P(z), where ¢ is a non-zero constant and P(z) is a polynomial with
degree not greater than n — 1. Choose n distinct zeros z; of f™(z) +a, 1 <i < n.
It is easy to see that if n is even, then P(z;) = 2a for all 1 <i < n, and if n is odd,
then P(z;) = 0 for all 1 <1 < n. Since the degree of P(z) is at most n, we conclude
that P(z) = 2a when n is even, and P(z) = 0 when n is odd. Therefore,

ce * +2a if n is even,
f(z) =

ce”*? if n is odd,

and the theorem is proved. D

Theorem 7.3.4 Let f be a non-constant entire function of finite order and let a
be a finite value. If f and f" share the pair (a,—a) CM, then
['+a
f—a

:C’

where ¢ 1s a non-zero constant.

Proof. Case 1. a # 0. Since f and f’ share (a, —a) CM and f is of finite order,

there exists a polynomial h such that

f/“'a:eh‘
f—a
B f
Set I'=1— =. Then
a
F' —ehF =1.

If h is non-constant, then, by Lemma 7.2.6 (n = 1), we obtain that F' is of infinite
order. Since f is of finite order, it is a contradiction. Therefore, h is a constant and
ft+a
f—a

¢,

where c is a non-zero constant.
Case 2. a = 0. In this case, the hypothesis says that f and f’ share 0 CM, so 0
must be a Picard exceptional value of f and f’, and f = e’ for some non-constant

entire function h. Since f is of finite order, h must be a polynomial. Since f’ = h'e"
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has no zeros, h’ = ¢ for some constant ¢ # 0. Hence, f' = ¢f, and the theorem is

proved. 0

If we replace f' by f™ in the proof of Theorem 7.3.4, then we can easily

conclude the following theorem.

Theorem 7.3.5 Let f be a non-constant entire function of finite order, let a be a
finite non-zero value and let n be a positive integer. If f and f™ share the pair
(a, —a) CM, then
f™+a
= C,
f—a

where ¢ is a non-zero constant.

Theorem 7.3.6 Let f be an entire function, let a be a finite non-zero value and
let n > 2 be a positive integer. If f and f' share the pair (a, —a) CM and f, f
share a CM, then f' = —f™. More precisely,

a(l+c
f(z) — beCZ + ( )7
c
where b, ¢ are non-zero constants and ¢~ = —1.

Proof. Suppose f' # —f™. Since f, f’ share (a, —a) CM and f, f share a

CM, similar to the proof of Theorem 7.3.3, there exists an entire function a such

that
/
R (7.3.26)
f—a
and T'(r,e®) = S(r, f). Rewriting (7.3.26) as
f'=e*f—a—ae”

and taking the derivatives, we get

O = anf + B, (7.3.27)
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k=12 ..., where oy = ¢, [ = —(a + ae®) and we can get the the recursive

formulas

Q1 = o + a1y, Bri = Oy + Brag (7.3.28)
as in the proof of Theorem 7.3.3. Clearly, oy, and j are entire functions satisfying
T(ryax) = S(r,f) and T(r,B;) = S(r, f). By the hypothesis and (7.3.27), all
zeros of f — a are simple and are also zeros of aa,, + (3, — a. As in the proof of

Theorem 7.3.3, (7.3.26) and T'(r,e*) = S(r, f) implies m <r, 7 ! > = S(r, f).
—a
i a) # S(r, f). If ac,, + B, — a # 0, then we have

1 1
N(T’f_a) S]\/v(7ﬂ7@0571"i_ﬂ71_a)

<T(r,a,)+T(r,B,) + O(1)
= S(Ta f)7

Therefore, N (r, 7

which is impossible. So aa,, + 3, — a = 0. On the other hand, by the recursive
formulas (7.3.28) and by induction, it follows that

cmk+ﬁk:—ﬂ<am1+a@2+~-+a¥”»,
k=2,3,.... In particular, we have
Q1+ y+ 4l = -1, (7.3.29)
It follows from (7.3.28), the equation (7.3.29) can be expressed as
o}t + Play) =0,

where P(aq) is a differential polynomial in «; with degree not greater than n — 2.
By Lemma 7.2.7, we conclude that «; is a constant. Therefore, from (7.3.28) and
(7.3.29), we obtain o) ' = —1 and a, = of, for k = 1,2, ..., which imply o, = —;

and (3, = —f. Again, from (7.3.27), we have

f = anf + 5,
=-—af -
= _f,7
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which contradicts to the assumption. Therefore, f' = —f(™. Hence
f(Z) = che)\jz7
j=1

where Ay, ..., \, are distinct roots of A + X = 0 and ¢y, ..., ¢, are constants. It
follows that f is of finite order. Since f and f’ share the pair (a, —a) CM, by
Theorem 7.3.4, there exists a non-zero constant ¢ such that f' 4+ a = ¢(f — a).
Hence

f(z) =be” + —a(l i c),

c

and

f(n)(Z) — b = <f i &<1+C)) :

c
where b is a non-zero constant. Let z, be a zero of f — a. Then
1
a= f(n)(ZO) — bt — o (f(ZO) . (1( +C)) _ _Cn—la'
c

So ¢" ! = —1, and the theorem is proved. l
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