
Chapter 8

Some Results on Meromorphic

Functions Sharing Four Values

DM

8.1 Introduction

The relation between uniqueness and value sharing of meromorphic functions

is one major problem in value distribution theory as we mentioned in section 2.6.

In this chapter, we study two meromorphic functions f and g that share four values

DM.

Suppose two meromorphic functions f and g share four values. In section 2.6,

we know that if either f and g share three values CM and the other one IM, or f

and g share two values CM and the other two IM, then f and g must share four

values CM, and the conclusion of Theorem 2.6.3 hold. The case that f and g share

three values IM and the other one CM is still open. Therefore, it is natural to ask

whether the conclusion of Theorem 2.6.3 holds or not if f and g share four values

DM. The answer is negative, and a counterexample was given by Gundersen [8]. In
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order to understand that two meromorphic functions share four values DM more

closely, we need some terminologies.

We say that z0 a p-fold a-point of f if f(z)−a has p-fold zero at z = z0. When

f(z0) = g(z0) = a, we say that z0 is a (p, q)-fold a-point of f and g if z0 is a p-fold

a-point of f and a q-fold a-point of g. In case f and g share a and all a-points are

(p, q)-fold, we call a a (p, q)-fold value of f and g.

Under this terminologies, the meromorphic functions f and g given in Gunder-

sen’s example indeed share two (1, 2)-fold values and two (2, 1)-fold values. Howev-

er, for two meromorphic functions f and g sharing four values a1, a2, a3, a4, if each

ai-point is either a (1, 2)-fold or (2, 1)-fold point of f and g, then Reinders [30, 31]

proved that f and g are the precise form of Gundersen’s example, up to some Möbius

transformation. Latter, Reinders [32] gave another pair of meromorphic functions

f and g sharing four values a1, a2, a3, a4, and each ai-point is either a (1, 3)-fold or

(3, 1)-fold point of f and g, which are also essentially unique.

It is interesting to know that whether there is any other example of two distinct

non-constant meromorphic functions f and g sharing four values a1, a2, a3, a4 and

each ai-point is either a (p, q)-fold or (q, p)-fold point of f and g, for a given pair of

distinct positive integers p and q.

The main result of this chapter is to show that the above assertion holds if and

only if (p, q) is either (1, 2) or (1, 3), and f and g are essentially the forms given by

Gundersen and Reinders.

8.2 Key Examples and Facts

In order to show that there exist two meromorphic functions sharing four values

IM but not CM, Gundersen [8] gave the following example.

f(z) =
eh(z) + b

(eh(z) − b)2
, g(z) =

(eh(z) + b)2

8b2(eh(z) − b)
,
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where h is a non-constant entire function and b a non-zero complex number. It is

easy to check that f and g share 0, 1
b
,∞,− 1

8b
DM, where 0 and 1

b
are (1, 2)-fold

values of f and g, while ∞ and − 1
8b

are (2, 1)-fold values of f and g. A somewhat

surprising fact is that Reinders proved Gundersen’s example is essentially unique.

More precisely, Reinders [30, 31] proved the following Theorem.

Theorem 8.2.1 Let f and g be meromorphic functions that share four distinct

values a1, a2, a3, a4, such that each ai-point is either a (1, 2)-fold or (2, 1)-fold point

of f and g. Define

f̂(z) =
eh(z) + 1

(eh(z) − 1)2
, ĝ(z) =

(eh(z) + 1)2

8(eh(z) − 1)
,

where h(z) is a non-constant entire function. Then f and g are of the forms:

f = L ◦ f̂ , g = L ◦ ĝ,

where L is a Möbius transformation.

Reinders [32] latter defined the following pair of meromorphic functions F and

G, and proved the following theorem.

Theorem 8.2.2 Let

F =
U ′

8
√

3
· U

U + 1
, G =

U ′

8
√

3
· U + 4

(U + 1)2
,

where U is a non-constant solution of the differential equation

(U ′)2 = 12U(U + 1)(U + 4).

Then F and G share the values 0, 1,∞ and −1. Every 0, 1,∞ and −1 point is

either a (1, 3)-fold or (3, 1)-fold point of F and G.

Also, from a result of Reinders [32], we can get the following theorem.
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Theorem 8.2.3 Let f and g be meromorphic functions that share four distinct val-

ues a1, a2, a3, a4 DM, such that each ai-point is either a (1, 3)-fold or (3, 1)-fold point

of f and g. Let F and G be the meromorphic functions defined as in Theorem 8.2.2,

then f and g are of the form

f = L ◦ F ◦ h, g = L ◦G ◦ h,

where h is a non-constant entire function and L is a Möbius transformation.

8.3 Main Result and Proof

In order to prove the main result, we need the following fact of meromorphic

functions sharing four distinct values which was proved by Gundersen [10].

Theorem 8.3.1 Let f and g be two distinct non-constant meromorphic functions

and share four distinct values a1, a2, a3, a4 IM. Then

(i) T (r, f) = T (r, g) + S(r, f), T (r, g) = T (r, f) + S(r, g);

(ii)
∑4

i=1 N(r, 1
f−ai

) = 2T (r, f) + S(r, f).

Now, we can prove our main theorem.

Theorem 8.3.2 Let f and g be two distinct, non-constant meromorphic functions

that share four values a1, a2, a3, a4 DM. Let (p, q) be a pair of positive integers with

p < q. If each ai-point is either a (p, q)-fold or (q, p)-fold points of f and g, then

(p, q) is either (1, 2) or (1, 3). Moreover, f and g are the forms defined in Theorem

8.2.1 and 8.2.3.

Proof . Suppose f and g share a1, a2, a3, a4. Write k = p + q, it is easy to see

that k must be greater than two since p, q are distinct positive integers. For k = 3,
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the only possible pair of (p, q) is (1, 2). Then f and g are given in the form of

Theorem 8.2.1. When k = 4, the only possible pair of (p, q) is (1, 3). Then f and g

are given in the form of Theorem 8.2.2.

Now, consider k ≥ 5. For each shared value ai of f and g, any ai-point z0 is

either a (p, q)-fold or (q, p)-fold of f and g. Therefore, it is clear that

(p + q)N(r,
1

f − ai

) ≤ N(r,
1

f − ai

) + N(r,
1

g − ai

).

Since N(r, 1
f−ai

) ≤ T (r, f) + O(1) and N(r, 1
g−ai

) ≤ T (r, g) + O(1), 1 ≤ i ≤ 4, and

T (r, g) = T (r, f) + S(r, g) by Theorem 8.3.1, we have, for 1 ≤ i ≤ 4,

(p + q)N(r,
1

f − ai

) ≤ T (r, f) + T (r, f) + S(r, f) = 2T (r, f) + S(r, f).

Therefore, we get

(p + q)
4∑

i=1

N(r,
1

f − ai

) ≤ 8T (r, f) + S(r, f).

Apply Theorem 8.3.1 again, which says
∑4

i=1 N(r, 1
f−ai

) = 2T (r, f) + S(r, f), we

obtain

2(p + q)T (r, f) ≤ 8T (r, f) + S(r, f),

which implies that k = p + q ≤ 4. This contradicts to our assumption that k ≥ 5.

Therefore, k cannot be greater than 4 and the theorem is proved. ❑
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