
Chapter 2

Basic Theory of Value

Distribution

In this chapter, we introduce and review some basic facts and notations in

complex analysis and value distribution which will be used throughout the rest of

the thesis. For the sake of brevity, proofs are omitted because they are standard

and may be found in [4, 7, 12, 35, 38].

2.1 Poisson-Jensen’s Formula

In Nevanlinna’s value distribution theory, the following Poisson-Jensen’s for-

mula plays a very important role.

Theorem 2.1.1 (Poisson-Jensen’s formula) Let 0 < R < ∞ and f be mero-

morphic in |z| ≤ R and aµ and bν be the zeros and poles of f in |z| ≤ R, 1 ≤ µ ≤ M ,

1 ≤ ν ≤ N , respectively. If z = reiθ, 0 ≤ r < R, and f(z) 6= 0,∞, then we have
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log |f(z)| = 1

2π

∫ 2π

0

log |f(Reiϕ)| R2 − r2

R2 − 2Rr cos(θ − ϕ) + r2
dϕ

+
M∑

µ=1

log

∣∣∣∣
R(z − aµ)

R2 − aµz

∣∣∣∣−
N∑

ν=1

log

∣∣∣∣
R(z − bν)

R2 − bνz

∣∣∣∣ .

By taking z = 0 in Theorem 2.1.1, we get the Jensen’s formula.

Theorem 2.1.2 (Jensen’s formula) Under the assumption of Theorem 2.1.1, if

f(0) 6= 0,∞, then we have

log | f(0) | = 1

2π

∫ 2π

0

log
∣∣ f(Reiϕ)

∣∣ dϕ−
M∑

µ=1

log
R

| aµ | +
N∑

ν=1

log
R

| bν | .

The assumption f(0) 6= 0,∞ in Theorem 2.1.1 can be eliminated. In fact,

for 0 ≤ r < ∞, let n(r, f) denote the number of poles of f in |z| ≤ r counting

multiplicities. Consider the Laurent expansion of f at the origin

f(z) = cλz
λ + cλ+1z

λ+1 + · · · .

Note that λ = n(0, 1
f
)− n(0, f). Consider the function

g(z) =





f(z)(R
z
)λ if z 6= 0

cλR
λ if z = 0,

then we have the generalized Jensen’s formula.

Theorem 2.1.3 (generalized Jensen’s formula) Under the assumption of The-

orem 2.1.1 without the condition f(0) 6= 0,∞, then we have

log | cλ | = 1

2π

∫ 2π

0

log
∣∣ f(Reiϕ)

∣∣ dϕ−
M∑

µ=1

log
R

| aµ | − n(0,
1

f
) log R

+
N∑

ν=1

log
R

| bν | + n(0, f) log R,

where cλ is the first non-zero coefficient of the Laurent expansion of f at 0.
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2.2 The Nevanlinna’s First Fundamental

Theorem

From now on, meromorphic function means meromorphic in the whole complex

plane. First of all, we introduce the positive logarithmic function.

Definition 2.2.1 For x ≥ 0,

log+ x = max{log x, 0} =





log x if x ≥ 1

0 if x ≤ 1.

Obviously, log+ x is a continuous non-negative increasing function on [0,∞) satis-

fying log x = log+ x− log+ 1

x
and | log x| = log+ x + log+ 1

x
.

Let f be a meromorphic function, Nevanlinna [25] introduced the following

notations.

Definition 2.2.2 For 0 < r < ∞,

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ.

Definition 2.2.3 For 0 < r < ∞,

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt + n(0, f) log r,

where n(t, f) denotes the number of poles of f in the disc | z | ≤ t counting multi-

plicities. N(r, f) is called the counting function of f .

Definition 2.2.4 For 0 < r < ∞, the function T (r, f) defined by

T (r, f) = m(r, f) + N(r, f)

is called the (Nevanlinna) characteristic function of f .
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It is clear that T (r, f) is a non-negative increasing function and a convex function

of log r. Let f be given in Theorem 2.1.1. It follows form the integration by parts

in Riemann-Stieltjes integral, we have

M∑
µ=1

log
R

| aµ | =

∫ R

0

n(t, 1
f
)− n(0, 1

f
)

t
dt

and
N∑

ν=1

log
R

| bν | =

∫ R

0

n(t, f)− n(0, f)

t
dt.

On the other hand, the generalized Jensen’s formula can be rewritten as

1

2π

∫ 2π

0

log+
∣∣ f(Reiϕ)

∣∣ dϕ +
N∑

ν=1

log
R

| bν | + n(0, f) log R

=
1

2π

∫ 2π

0

log+

∣∣∣∣
1

f(Reiϕ)

∣∣∣∣ dϕ +
M∑

µ=1

log
R

| aµ | + n(0,
1

f
) log R + log | cλ | .

Therefore, we obtain

m(R, f) + N(R, f) = m(R,
1

f
) + N(R,

1

f
) + log | cλ | ,

that is

T (R, f) = T (R,
1

f
) + log | cλ | ,

which is another form of the generalized Jensen’s formula and is also known as the

Nevanlinna-Jensen’s formula.

Theorem 2.2.5 (Nevanlinna-Jensen’s formula) Let f be a meromorphic func-

tion , then, for r > 0,

T (r, f) = T (r,
1

f
) + log | cλ | ,

where cλ is the first non-zero coefficient of the Laurent expansion of f at 0.

By the Nevanlinna-Jensen’s formula, we can get the Nevanlinna’s first funda-

mental theorem.
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Theorem 2.2.6 (The Nevanlinna’s First Fundamental Theorem) Let f be

a meromorphic function and a be a finite complex number. Then, for r > 0, we

have

T (r,
1

f − a
) = T (r, f) + log |cλ|+ ε(a, r),

where cλ is the first non-zero coefficient of the Laurent expansion of 1
f−a

at 0, and

|ε(a, r)| ≤ log+ |a|+ log 2.

Usually, the Nevanlinna’s first fundamental theorem is written as

T (r,
1

f − a
) = T (r, f) + O(1).

2.3 The Nevanlinna’s Second Fundamental

Theorem

Now, we come to the most important theorem in the theory of value distribu-

tion, namely, the Nevanlinna’s second fundamental theorem.

Theorem 2.3.1 (The Nevanlinna’s Second Fundamental Theorem) Let f be

a non-constant meromorphic function and aj ∈ C, 1 ≤ j ≤ q, be q distinct finite

values (q ≥ 2). Then

m(r, f) +

q∑
j=1

m(r,
1

f − aj

) ≤ 2T (r, f)−N1(r) + S(r, f),

where N1(r) = 2N(r, f)−N(r, f ′) + N(r, 1
f ′ ) and

S(r, f) = m(r,
f ′

f
) + m(r,

q∑
j=1

f ′

f − aj

) + O(1).

Given a ∈ C, by the Nevanlinna’s first fundamental theorem,

m(r,
1

f − a
) = T (r, f)−N(r,

1

f − a
) + O(1).

Hence, the Nevanlinna’s second fundamental theorem can be rewritten as follows.
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Theorem 2.3.2 Let f be a non-constant meromorphic function and aj ∈ C∞,

1 ≤ j ≤ q, be q distinct values (q ≥ 3). Then

(q − 2)T (r, f) <

q∑
j=1

N(r,
1

f − aj

)−N1(r) + S(r, f),

where N1(r) and S(r, f) are given as in Theorem 2.3.1.

Note that, in Theorem 2.3.2, if some aj = ∞, then N(r, 1
f−aj

) should be read as

N(r, f).

Let n1(t) = 2n(t, f) − n(t, f ′) + n(t, 1
f ′ ) and let n(t, f) denote the number of

distinct poles of f in |z| ≤ t. Define

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt + n(0, f) log r,

which is called the reduced counting function of f . Note that, if z0 is a pole of f

of order k in |z| ≤ t, then z0 is counted k − 1 times by n1(r). Similarly, for a finite

value a, if z0 is a zero f − a of order k in |z| ≤ t, then z0 is also counted k− 1 times

by n1(r). Hence,

q∑
j=1

N(r,
1

f − aj

)−N1(r) ≤
q∑

j=1

N(r,
1

f − aj

).

Therefore, we have the third form of the Nevanlinna’s second fundamental theorem.

Theorem 2.3.3 Let f be a non-constant meromorphic function and aj ∈ C∞,

1 ≤ j ≤ q, be q distinct values (q ≥ 3). Then

(q − 2)T (r, f) <

q∑
j=1

N(r,
1

f − aj

) + S(r, f),

where S(r, f) is given as in Theorem 2.3.1.

2.4 The Estimation of S(r, f )

In the Nevanlinna’s second fundamental theorem, the remainder term S(r, f)

is a complicated object which can be estimated by using the method of logarithmic
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derivative. It turns out that S(r, f) is small comparing to T (r, f). In order to make

it clear, we need the concept of the growth of meromorphic function.

Classically, we use the maximum modulus to measure the growth of an entire

function.

Definition 2.4.1 Let f be an entire function and M(r, f) = max|z|=r |f(z)|, 0 ≤
r < ∞. The order λ of f is defined to be

λ = lim sup
r→∞

log+ log+ M(r, f)

log r

and the lower order is defined to be

µ = lim inf
r→∞

log+ log+ M(r, f)

log r
.

For example, ez is of order 1 and all polynomials are of order 0. However, the defi-

nition can not be applied to meromorphic functions which are not entire. Instead,

we use T (r, f) to measure the growth of meromorphic functions.

Definition 2.4.2 Let f be a meromorphic function. The order λ of f is defined to

be

λ = lim sup
r→∞

log+ T (r, f)

log r

and the lower order µ of f is defined to be

µ = lim inf
r→∞

log+ T (r, f)

log r
.

Theorem 2.4.3 Let 0 ≤ r < R < ∞ and f be an entire function, we have

T (r, f) ≤ log+ M(r, f) ≤ R + r

R− r
T (R, f).

In particular,

T (r, f) ≤ log+ M(r, f) ≤ 3T (2r, f).
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By Theorem 2.4.3, the order and lower order of an entire function are unam-

biguous. Now, we can state the properties of S(r, f).

Lemma 2.4.4 Let f be a non-constant meromorphic function. If f is of finite

order, then

m(r,
f ′

f
) = O(log r), (r →∞).

If f is of infinite order, then

m(r,
f ′

f
) = O(log(rT (r, f))), (r →∞, r 6∈ E),

where E is a set of finite measure.

Theorem 2.4.5 Let f be a non-constant meromorphic function and S(r, f) be de-

fined in Theorem 2.3.1. If f is of finite order, then

S(r, f) = O(log r), (r →∞).

If f is of infinite order, then

S(r, f) = O(log(rT (r, f))), (r →∞, r 6∈ E),

where E is a set of finite measure.

In the thesis, we will denote by S(r, f) any quantity satisfy S(r, f) = o(T (r, f))

as r →∞ if f is of finite order, and S(r, f) = o(T (r, f)) as r →∞, r 6∈ E if f is of

infinite order, where E is a set of finite measure.

Definition 2.4.6 Let f be a meromorphic function. A meromorphic function a(z)

is said to be a small function of f if T (r, a) = S(r, f).

By Lemma 2.4.4, m(r,
f ′

f
) = S(r, f). Moreover, Milloux [21] proved the follow-

ing.
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Theorem 2.4.7 Let f be a non-constant meromorphic function and k be a positive

integer and let

Ψ(z) =
k∑

i=1

ai(z)f (i)(z),

where a1(z), a2(z), . . . , ak(z) are small functions of f . Then

m(r,
Ψ

f
) = S(r, f).

2.5 Deficient Value of Meromorphic Functions

In 1929, Nevanlinna [25] introduce the quantity δ(a, f) to measure the degree

of a meromorphic function misses a value a. Denote C∞ = C ∪ {∞}, the extended

complex number system.

Definition 2.5.1 Let f be a non-constant meromorphic function and a ∈ C∞. The

deficiency of a with respect to f is defined to be

δ(a, f) = lim inf
r→∞

m(r, 1
f−a

)

T (r, f)
= 1− lim sup

r→∞

N(r, 1
f−a

)

T (r, f)
.

If δ(a, f) > 0, then a is called a deficient value of f .

Definition 2.5.2 Let f be a non-constant meromorphic function and a ∈ C∞. We

define

Θ(a, f) = 1− lim sup
r→∞

N(r, 1
f−a

)

T (r, f)
,

and

θ(a, f) = lim inf
r→∞

N(r, 1
f−a

)−N(r, 1
f−a

)

T (r, f)
.

Clearly, 0 ≤ δ(a, f) ≤ 1, 0 ≤ Θ(a, f) ≤ 1 and 0 ≤ θ(a, f) ≤ 1. Also,

0 ≤ δ(a, f) + θ(a, f) ≤ Θ(a, f). By Theorem 2.3.3, we have

12



Theorem 2.5.3 Let f be a non-constant meromorphic function. Then

∑
a

δ(a, f) + θ(a, f) ≤
∑

a

Θ(a, f) ≤ 2.

Corollary 2.5.4 Let f be a non-constant meromorphic function. Then there are

at most countably many deficient values of f and

∑
a

δ(a, f) ≤ 2.

2.6 Some Well-Known Results on Four Value

Problem

In this section, we record some well-known results on four value problem. First, we

need some definitions.

Definition 2.6.1 Let f and g be non-constant meromorphic functions and a ∈ C∞.

We say that

(i) f and g share a CM (counting multiplicities) if f(z)− a = 0 and g(z)− a = 0

have the same number of zeros with the same multiplicities.

(ii) f and g share a IM (ignoring multiplicities) if f(z)− a = 0 and g(z)− a = 0

have the same number of zeros ignoring multiplicities.

(iii) f and g share a DM (different multiplicities) if f and g share a IM and the

zeros of f(z) − a = 0 and g(z) − a = 0 have different multiplicities at every

point.

For example, ez and e−z share 0, 1,−1,∞ CM; p(z) = z2(z − 1) and q(z) =

z3(z − 1)2 share 0 DM.

In 1929, R. Nevanlinna [25] proved the following remarkable results.
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Theorem 2.6.2 If f and g are two meromorphic functions and share five distinct

values in C∞, then f ≡ g.

Theorem 2.6.3 If f and g are two meromorphic functions and share four distinct

values a1, a2, a3 and a4 CM, then f is a Möbius transformation of g, two of the

values, say a1 and a2, must be lacunary, and the cross ratio (a1, a2, a3, a4) = −1.

In 1979 and 1983, G. G. Gundersen [8, 10] proved the following results.

Theorem 2.6.4 If f and g are two meromorphic functions and share three values

CM and share a fourth value IM, then they share all four values CM and, hence,

Theorem 2.6.3 holds.

Theorem 2.6.5 Let f and g be two meromorphic functions sharing four values

a1, a2, a3 and a4. If f and g share a1, a2 CM, and a3, a4 IM, then f and g share all

four values CM and, hence, Theorem 2.6.3 holds.

What happens for the remaining case?, i.e., if f and g share one value CM

and three values IM, can one get the same conclusions as in Theorem 2.6.3? This

problem is still open and there are some partial results by putting some additional

assumptions [18, 34, 35].
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