
Chapter 3

Unicity of Meromorphic Functions

of Class A

3.1 Introduction

A meromorphic function f is of class A if it satisfies

N(r, f) + N(r,
1

f
) = S(r, f).

It includes all meromorphic functions f satisfy either δ(0, f) = δ(∞, f) = 1 or

Θ(0, f) = Θ(∞, f) = 1. In this chapter, we study the unicity condition of q

distinct meromorphic functions of class A. Let f1, f2, . . . , fq be q non-constant

meromorphic functions and a be a complex number. Define N0(r, a, f1, f2, . . . , fq)

to be the reduced counting function of the common zeros of fj(z)−a, 1 ≤ j ≤ q, and

we will simply use the notation N0(r, a) if it is clear what functions we are referring

to. We denote by E the set of r in (0,∞) with finite linear measure which may be

variant in different place and denote by S(r, f) any quantity which is o(T (r, f)) as

r →∞, r 6∈ E.

Given meromorphic functions f1, f2, . . . , fq of class A. Define the number τ as

15



follows.

τ = lim sup
r→∞
r 6∈E

N0(r, 1)∑q
j=1 T (r, fj)

.

The main goal of this chapter is to study necessary conditions for τ to ensure that

f1, f2, . . . , fq are distinct. Brosch [2] proved the following result.

Theorem 3.1.1 Let f , g ∈ A, and

τ = lim sup
r→∞
r 6∈E

N0(r, 1, f, g)

T (r, f) + T (r, g)
>

1

3
.

Then either f ≡ g or f · g ≡ 1.

By the theorem, we know that if f, g are distinct meromorphic functions of class A
and f · g 6≡ 1, then we must have

τ ≤ 1

3
. (3.1.1)

In the case of three meromorphic functions of class A, Jank and Terglane [14]

proved the following theorem.

Theorem 3.1.2 Let f , g, h ∈ A be three distinct meromorphic functions. Then

τ = lim sup
r→∞
r 6∈E

N0(r, 1, f, g, h)

T (r, f) + T (r, g) + T (r, h)
≤ 1

4
.

Also, Jank and Terglance [14] gave an example to show that the result in Theorem

3.1.2 is sharp.

To generalize the discussion above, one can ask, given q meromorphic functions,

what is the necessary condition for these meromorphic functions being distinct.

Observe from the above theorems, for two meromorphic functions we have τ ≤ 1
3
,

and τ ≤ 1
4

for three meromorphic functions. It is reasonable to conjecture that if

fj ∈ A, 1 ≤ j ≤ q, are distinct, then τ ≤ 1
q+1

. In fact, we will get even better

conclusion as in our main theorem.

16



Theorem 3.1.3 Let f1, f2, . . . , fq be q distinct meromorphic functions of class A,

where q ≥ 3. Then

τ = lim sup
r→∞
r 6∈E

N0(r, 1)∑q
j=1 T (r, fj)

≤ 2

3q

when q is even, and

τ = lim sup
r→∞
r 6∈E

N0(r, 1)∑q
j=1 T (r, fj)

≤ 2

3q − 1

when q is odd.

3.2 Some Facts About Meromorphic Functions of

Class A

In order to prove Theorem 3.1.3, we need some basic properties of meromorphic

function whose proof can be found in [35].

Lemma 3.2.1 Let f ∈ A and k ∈ N. Then

(i) T (r, f (k)

f
) = S(r, f).

(ii) T (r, f (k)) = T (r, f) + S(r, f).

(iii) f (k) ∈ A.

Lemma 3.2.2 Let f ∈ A and a be a finite non-zero number. Then

N1)(r,
1

f − a
) = T (r, f) + S(r, f),

where N1)(r,
1

f−a
) denotes the reduced counting function of simple zeros of f − a.

Lemma 3.2.3 Let f, g ∈ A be distinct and ∆ = (f ′′
f ′ − 2f ′

f−1
)− (g′′

g′ − 2g′
g−1

). If ∆ ≡ 0,

then f · g ≡ 1.
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3.3 Main Results and Proofs

Now, we can prove our main theorem.

Theorem 3.1.3 Let f1, f2, . . . , fq be q distinct meromorphic functions of class

A, where q ≥ 3. Then

τ = lim sup
r→∞
r 6∈E

N0(r, 1)∑q
j=1 T (r, fj)

≤ 2

3q

when q is even, and

τ = lim sup
r→∞
r 6∈E

N0(r, 1)∑q
j=1 T (r, fj)

≤ 2

3q − 1

when q is odd.

Proof . Set

∆ij =

(
f ′′i
f ′i
− 2f ′i

fi − 1

)
−

(
f ′′j
f ′j
− 2f ′j

fj − 1

)
,

where 1 ≤ i < j ≤ q. If ∆ij 6≡ 0, let z0 be a simple zero of fi(z)− 1 and fj(z)− 1,

then it is easy to see that z0 is a zero of ∆ij. Denote by N (2(r,
1

fk−1
) the reduced

counting function of the zeros of fk(z)−1 with multiplicities ≥ 2. Then, by Lemma

3.2.1 and 3.2.2, we have

N0(r, 1, fi, fj) ≤ N(r, 1
∆ij

) + N (2(r,
1

fi−1
) + N (2(r,

1
fj−1

)

≤ T (r, ∆ij) + O(1) + S(r, fi) + S(r, fj)

≤ N(r, ∆ij) + S(r, fi) + S(r, fj)

≤ N(r, 1
fi−1

)−N0(r, 1, fi, fj) + N(r, 1
fj−1

)−N0(r, 1, fi, fj) + S(r, fi) + S(r, fj)

≤ T (r, fi) + T (r, fj)− 2N0(r, 1, fi, fj) + S(r, fi) + S(r, fj).

Therefore,

3N0(r, 1) ≤ 3N0(r, 1, fi, fj) ≤ T (r, fi) + T (r, fj) + S(r, fi) + S(r, fj).

Now, assume that q = 2n is even. If ∆ij ≡ 0 and ∆ik ≡ 0 for j 6= k, then,

by Lemma 3.2.3, we get fj ≡ fk which is impossible by assumption. Therefore,
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there are at most n of ∆ij which are identically zero and we may assume that only

∆12, ∆34, . . ., ∆(q−1)q may be identically zero. Apply the above inequality to all ∆ij

which are nonzero and add together, we obtain

((
q

2

)
− q

2

)
3N0(r, 1) ≤ (q − 2)

q∑
j=1

T (r, fj) +

q∑
j=1

S(r, fj)

Hence,

τ ≤ 2n− 2

3[n(2n− 1)− n]
=

1

3n
=

2

3q
.

Finally, we assume that q = 2n+1 is odd. By the same argument as above, we

may assume that only ∆12, ∆34, . . ., ∆(q−2)(q−1) may be identically zero and obtain

the following inequality

((
q

2

)
− q − 1

2

)
3N0(r, 1) ≤ (q − 2)

q−1∑
j=1

T (r, fj) + (q − 1)T (r, fq) +

q∑
j=1

S(r, fj).

Since

N0(r, 1) ≤ N(r,
1

fj − 1
) ≤ T (r, fj) + O(1), 1 ≤ j ≤ q − 1,

we have

(q − 1)N0(r, 1) ≤
q−1∑
j=1

T (r, fj) + O(1).

Combine these inequalities, we have

{
3

((
q

2

)
− q − 1

2

)
+ (q − 1)

}
N0(r, 1) ≤ (q − 1)

q∑
j=1

T (r, fj) +

q∑
j=1

S(r, fj).

Therefore,

τ ≤ 2n

3[n(2n + 1)− n] + 2n
=

1

3n + 1
=

2

3q − 1
.

❑

Obviously, Theorem 3.1.3 generalizes Theorem 3.1.2. An easy consequence of

Theorem 3.1.3 is the following corollary.

Corollary 3.3.1 Let fj ∈ A, 1 ≤ j ≤ q, be distinct, where q ≥ 3. If τ > 2
3q

when

q is even or τ > 2
3q−1

when q is odd, then at least two of fj are the same.
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The inequality in the main theorem is sharp for q = 3, 4. When q = 3, the

example can be found in [14]. When q = 4, let f1, f2, f3, f4 be the following functions

f1(z) = ez, f2(z) = e−z, f3(z) = e2z, and f4(z) = e−2z. (3.3.1)

Clearly, they are meromorphic functions of class A and we have

N0(r, 1) = N(r,
1

f1 − 1
) = T (r, f1) + S(r, f1),

where the first equality follows from the definition of fj, 1 ≤ j ≤ 4, and the second

one follows from Lemma 3.2.2. Moreover,

T (r, f2) = T (r, f1)+O(1), T (r, f3) = 2T (r, f1)+O(1), and T (r, f4) = 2T (r, f1)+O(1).

Therefore,

τ = lim sup
r→∞
r 6∈E

N0(r, 1)∑4
j=1 T (r, fj)

= lim
r→∞

T (r, f1) + S(r, f1)

6T (r, f1) + O(1)
=

1

6
.

3.4 A Conjecture

Our main result Theorem 3.1.3 says that any q distinct meromorphic functions

of class A must satisfies




τ ≤ 2
3q

if q is even,

τ ≤ 2
3q−1

if q is odd.

For q = 3, 4, this result is sharp. But for q ≥ 5, we don’t know whether it is sharp

or not. As the construction of the example (3.3.1), we can follow exact the same

pattern to construct the following examples for q ≥ 5:

f1(z) = ez, f2(z) = e−z, . . . , f2n−1(z) = enz, f2n(z) = e−nz if q = 2n,

and

f1(z) = ez, f2(z) = e−z, . . . , f2n(z) = e−nz, f2n+1 = e(n+1)z if q = 2n + 1.
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Apply the same arguments as above, we obtain that

τ =





4
q(q+2)

if q is even,

4
(q+1)2

if q is odd.

The numbers τ match Theorem 3.1.3 in the cases q = 3, 4, but less than the numbers

there. Therefore, it is reasonable to conjecture that the examples actually provide

the sharp conditions.

Conjecture. Let f1, f2, . . . , fq be q distinct meromorphic functions of class A,

where q ≥ 3. Then

τ = lim sup
r→∞
r 6∈E

N0(r, 1)∑q
j=1 T (r, fj)

≤ 4

q(q + 2)

when q is even, and

τ = lim sup
r→∞
r 6∈E

N0(r, 1)∑q
j=1 T (r, fj)

≤ 4

(q + 1)2

when q is odd.
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