Chapter 3

Unicity of Meromorphic Functions

of Class A

3.1 Introduction

A meromorphic function f is of class A if it satisfies

It includes all meromorphic functions f satisfy either §(0, f) = (oo, f) = 1 or
©(0, f) = O(oo,f) = 1. In this chapter, we study the unicity condition of ¢
distinct meromorphic functions of class A. Let fi, fa,..., f, be ¢ non-constant
meromorphic functions and a be a complex number. Define No(r, a, fi, fa, ..., fq)
to be the reduced counting function of the common zeros of f;(z)—a, 1 < j < ¢, and
we will simply use the notation Ng(r, a) if it is clear what functions we are referring
to. We denote by E the set of r in (0, 00) with finite linear measure which may be
variant in different place and denote by S(r, f) any quantity which is o(T'(r, f)) as

r—oo,r¢FE.

Given meromorphic functions fi, fo, ..., f; of class A. Define the number 7 as
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follows.

I; NO(T7 ]-)
7 =limsup e—=-———.
oz 2= 1 fi)

The main goal of this chapter is to study necessary conditions for 7 to ensure that

fi, fa, ..., f, are distinct. Brosch [2] proved the following result.

Theorem 3.1.1 Let f, g € A, and

No(r, 1
7 = lim sup olr.1,/,9) >

1
;g%,o T(’I“7 f) + T(’l“, g) 3

Then either f =g or f-g = 1.

By the theorem, we know that if f, g are distinct meromorphic functions of class A
and f-g # 1, then we must have

T < (3.1.1)

Wl =

In the case of three meromorphic functions of class A, Jank and Terglane [14]

proved the following theorem.

Theorem 3.1.2 Let f, g, h € A be three distinct meromorphic functions. Then

T:limsup NO(T>17f7g7h>
=7 T(r, f)+T(r,g) +T(r,h)

1
< -,
— 4
Also, Jank and Terglance [14] gave an example to show that the result in Theorem

3.1.2 is sharp.

To generalize the discussion above, one can ask, given ¢ meromorphic functions,
what is the necessary condition for these meromorphic functions being distinct.
Observe from the above theorems, for two meromorphic functions we have 7 < %,
and 7 < % for three meromorphic functions. It is reasonable to conjecture that if

1

fi € A, 1 < j < g, are distinct, then 7 < P In fact, we will get even better

conclusion as in our main theorem.
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Theorem 3.1.3 Let f1, fo, ..., fy be q distinct meromorphic functions of class A,
where ¢ > 3. Then

. No(r, 1) <2
T=lmsup =77~ < =—
e 2y L f) T3

when q is even, and

. No(r,1) L 2
= 111m
4 WP T(r,f;) ~ 3¢—1

T—00

r¢E J=1

when q 1s odd.

3.2 Some Facts About Meromorphic Functions of
Class A

In order to prove Theorem 3.1.3, we need some basic properties of meromorphic

function whose proof can be found in [35].

Lemma 3.2.1 Let f € A and k € N. Then

(i) T(r, 55 = S(r. /).
(ii) T(r, f®) = T(r, f) + S(r, f).

(iii) f® € A.

Lemma 3.2.2 Let f € A and a be a finite non-zero number. Then

1
f—a

where Wl)(r, f—ia) denotes the reduced counting function of simple zeros of f — a.

Nl)(ra ):T(T‘,f)—l—S(T,f),

Lemma 3.2.3 Let f,g € A be distinct and A = (’}—/,/ - ]?—fl) — (L — ;—fll). IfA=0,
then f-g=1.
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3.3 Main Results and Proofs

Now, we can prove our main theorem.

Theorem 3.1.3 Let fi, fo, ..., f; be q distinct meromorphic functions of class

A, where ¢ > 3. Then

7 = lim sup —(INO(T, D < 2
g 2 T fs) T 3

when q is even, and
No(r,1) 2

7 = lim sup <
I T(r f) ~ 3¢—1

when q is odd.

Proof. Set

A — (f_{’_ 2f; >_ (f_f'_ 2Jj )
] )
fi fi—1 i hi-1
where 1 <i < j <gq. If A;; #0, let 2y be a simple zero of f;(z) — 1 and f;(z) — 1,
then it is easy to see that zy is a zero of A;;. Denote by Ny(r, ﬁ) the reduced

counting function of the zeros of fi(z)—1 with multiplicities > 2. Then, by Lemma

3.2.1 and 3.2.2, we have

No(r, 1, fi, [7)

IN

N(r, A%J) + N(Q(r, ﬁ) + N(g(r, #)

T(r,Ai;) +O0Q) + S(r, fi) + S(r, f;)

N(r,Ay) + S(r, fi) + S(r, f;)

N(r, ) — No(r, 1, fi, f;) + N(r, ﬁ) — No(r, 1, fi, f;) + S(r, fi) + S(r, £;)
T(r, fi) + T(r, f;) = 2No(r, L, fi, f;) + S(r, fi) + S(r, f;).

VAN VAN VAN

IN

Therefore,

SN()(T, 1) S 3N0(7”, 1, fi7 f]) S T(T, fz) + T(T, f]) + S(T, fz) + S(T’, f])

Now, assume that ¢ = 2n is even. If A;; = 0 and A;; = 0 for j # k, then,

by Lemma 3.2.3, we get f; = f; which is impossible by assumption. Therefore,
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there are at most n of A;; which are identically zero and we may assume that only
Aqg, Asy, ..., Ag—1)q may be identically zero. Apply the above inequality to all A;;

which are nonzero and add together, we obtain

((g) >3N0(r1 (¢—2 ZT fJ+Zs r. 1)

Hence,
2n — 2 1 2

T < =—=—.

3n2n—1)—n] 3n 3q

Finally, we assume that ¢ = 2n+1 is odd. By the same argument as above, we
may assume that only Ajg, Agy, ..., Ag—2)(g—1) May be identically zero and obtain

the following inequality

q—1 q
((2) - 257) sMatn ) < (4= DT ) + 0= DT ) + 30500
j=1 Jj=1
Since
No(r,1) < N(r, ﬁ) <T(r, fj)+0(1), 1<j<q-1,
we have

—_

(4— DNo(n1) < ST, £;) + O(1).

7j=1

Combine these inequalities, we have

{3((3)—%)“97—1)}1\[0(“ (g—1) ZT f]+ZS r ).

Therefore,
2n 1 2

3[n(2n+1)—n]+2n:3n+1 T 3¢—1

T <

O

Obviously, Theorem 3.1.3 generalizes Theorem 3.1.2. An easy consequence of

Theorem 3.1.3 is the following corollary.

Corollary 3.3.1 Let f; € A, 1 < j <gq, be distinct, where ¢ > 3. If T > 3% when

q s even or T > ;—_1 when q is odd, then at least two of f; are the same.
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The inequality in the main theorem is sharp for ¢ = 3,4. When ¢ = 3, the
example can be found in [14]. When ¢ = 4, let f1, fa, f3, f1 be the following functions

fi(z) = €%, folz) = €77, f3(2) = €, and fu(z) = ™. (3.3.1)

Clearly, they are meromorphic functions of class A and we have

1

NQ(T, 1) = N(’I“, ﬁ

)=T(r, f1) +S(r, f1),

where the first equality follows from the definition of f;, 1 < j <4, and the second

one follows from Lemma 3.2.2. Moreover,

T(r, fo) =T(r, f1)+O(1), T(r, f3) =2T(r, f1)+0(1), and T(r, f1) = 2T (r, f1)+O(1).

Therefore,
= li No(r,1) . T(rf) +S0rfi) _1
T = limsup —————— = lim _ L
reE Zj:l T(r,f;) 7 67 (r, f1) +O(1) 6

3.4 A Conjecture

Our main result Theorem 3.1.3 says that any ¢ distinct meromorphic functions

of class A must satisfies

T < 3%1 if ¢ is even,
T§3(]2—_1 if ¢ is odd.

For ¢ = 3,4, this result is sharp. But for ¢ > 5, we don’t know whether it is sharp
or not. As the construction of the example (3.3.1), we can follow exact the same

pattern to construct the following examples for ¢ > 5:

fi(z) =¢€ falz) = e %, ..., fanm1(2) = €%, fon(2) = 7™ if ¢ = 2n,

and

fi(z) = €%, fol2) = 7%, fan(2) = €72, fopay = €MD if g = 2n + 1.
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Apply the same arguments as above, we obtain that

q(qi2) if ¢ is even,
T =

The numbers 7 match Theorem 3.1.3 in the cases ¢ = 3, 4, but less than the numbers
there. Therefore, it is reasonable to conjecture that the examples actually provide

the sharp conditions.

Conjecture. Let f1, fo,..., f; be ¢ distinct meromorphic functions of class A,

where ¢ > 3. Then

No(r, 1 4
7 = limsup —; o(r, 1)

o i L(r. f5) ~ alg+2)

when ¢ is even, and

r No(r, 1) o4
7 = lim sup <
o T f5) T (g +1)?

when ¢ is odd.
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