## Chapter 3

## Unicity of Meromorphic Functions of Class $\mathcal{A}$

### 3.1 Introduction

A meromorphic function $f$ is of class $\mathcal{A}$ if it satisfies

$$
\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)
$$

It includes all meromorphic functions $f$ satisfy either $\delta(0, f)=\delta(\infty, f)=1$ or $\Theta(0, f)=\Theta(\infty, f)=1$. In this chapter, we study the unicity condition of $q$ distinct meromorphic functions of class $\mathcal{A}$. Let $f_{1}, f_{2}, \ldots, f_{q}$ be $q$ non-constant meromorphic functions and $a$ be a complex number. Define $\bar{N}_{0}\left(r, a, f_{1}, f_{2}, \ldots, f_{q}\right)$ to be the reduced counting function of the common zeros of $f_{j}(z)-a, 1 \leq j \leq q$, and we will simply use the notation $\bar{N}_{0}(r, a)$ if it is clear what functions we are referring to. We denote by $E$ the set of $r$ in $(0, \infty)$ with finite linear measure which may be variant in different place and denote by $S(r, f)$ any quantity which is $o(T(r, f))$ as $r \rightarrow \infty, r \notin E$.

Given meromorphic functions $f_{1}, f_{2}, \ldots, f_{q}$ of class $\mathcal{A}$. Define the number $\tau$ as
follows.

$$
\tau=\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1)}{\sum_{j=1}^{q} T\left(r, f_{j}\right)} .
$$

The main goal of this chapter is to study necessary conditions for $\tau$ to ensure that $f_{1}, f_{2}, \ldots, f_{q}$ are distinct. Brosch [2] proved the following result.

Theorem 3.1.1 Let $f, g \in \mathcal{A}$, and

$$
\tau=\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1, f, g)}{T(r, f)+T(r, g)}>\frac{1}{3}
$$

Then either $f \equiv g$ or $f \cdot g \equiv 1$.

By the theorem, we know that if $f, g$ are distinct meromorphic functions of class $\mathcal{A}$ and $f \cdot g \not \equiv 1$, then we must have

$$
\begin{equation*}
\tau \leq \frac{1}{3} \tag{3.1.1}
\end{equation*}
$$

In the case of three meromorphic functions of class $\mathcal{A}$, Jank and Terglane [14] proved the following theorem.

Theorem 3.1.2 Let $f, g, h \in \mathcal{A}$ be three distinct meromorphic functions. Then

$$
\tau=\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1, f, g, h)}{T(r, f)+T(r, g)+T(r, h)} \leq \frac{1}{4}
$$

Also, Jank and Terglance [14] gave an example to show that the result in Theorem 3.1.2 is sharp.

To generalize the discussion above, one can ask, given $q$ meromorphic functions, what is the necessary condition for these meromorphic functions being distinct. Observe from the above theorems, for two meromorphic functions we have $\tau \leq \frac{1}{3}$, and $\tau \leq \frac{1}{4}$ for three meromorphic functions. It is reasonable to conjecture that if $f_{j} \in \mathcal{A}, 1 \leq j \leq q$, are distinct, then $\tau \leq \frac{1}{q+1}$. In fact, we will get even better conclusion as in our main theorem.

Theorem 3.1.3 Let $f_{1}, f_{2}, \ldots, f_{q}$ be $q$ distinct meromorphic functions of class $\mathcal{A}$, where $q \geq 3$. Then

$$
\tau=\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1)}{\sum_{j=1}^{q} T\left(r, f_{j}\right)} \leq \frac{2}{3 q}
$$

when $q$ is even, and

$$
\tau=\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1)}{\sum_{j=1}^{q} T\left(r, f_{j}\right)} \leq \frac{2}{3 q-1}
$$

when $q$ is odd.

### 3.2 Some Facts About Meromorphic Functions of Class $\mathcal{A}$

In order to prove Theorem 3.1.3, we need some basic properties of meromorphic function whose proof can be found in [35].

Lemma 3.2.1 Let $f \in \mathcal{A}$ and $k \in \mathbb{N}$. Then
(i) $T\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)$.
(ii) $T\left(r, f^{(k)}\right)=T(r, f)+S(r, f)$.
(iii) $f^{(k)} \in \mathcal{A}$.

Lemma 3.2.2 Let $f \in \mathcal{A}$ and $a$ be a finite non-zero number. Then

$$
\bar{N}_{1)}\left(r, \frac{1}{f-a}\right)=T(r, f)+S(r, f)
$$

where $\bar{N}_{1)}\left(r, \frac{1}{f-a}\right)$ denotes the reduced counting function of simple zeros of $f-a$.

Lemma 3.2.3 Let $f, g \in \mathcal{A}$ be distinct and $\Delta=\left(\frac{f^{\prime \prime}}{f^{\prime}}-\frac{2 f^{\prime}}{f-1}\right)-\left(\frac{g^{\prime \prime}}{g^{\prime}}-\frac{2 g^{\prime}}{g-1}\right)$. If $\Delta \equiv 0$, then $f \cdot g \equiv 1$.

### 3.3 Main Results and Proofs

Now, we can prove our main theorem.

Theorem 3.1.3 Let $f_{1}, f_{2}, \ldots, f_{q}$ be $q$ distinct meromorphic functions of class $\mathcal{A}$, where $q \geq 3$. Then

$$
\tau=\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1)}{\sum_{j=1}^{q} T\left(r, f_{j}\right)} \leq \frac{2}{3 q}
$$

when $q$ is even, and

$$
\tau=\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1)}{\sum_{j=1}^{q} T\left(r, f_{j}\right)} \leq \frac{2}{3 q-1}
$$

when $q$ is odd.

Proof. Set

$$
\Delta_{i j}=\left(\frac{f_{i}^{\prime \prime}}{f_{i}^{\prime}}-\frac{2 f_{i}^{\prime}}{f_{i}-1}\right)-\left(\frac{f_{j}^{\prime \prime}}{f_{j}^{\prime}}-\frac{2 f_{j}^{\prime}}{f_{j}-1}\right),
$$

where $1 \leq i<j \leq q$. If $\Delta_{i j} \not \equiv 0$, let $z_{0}$ be a simple zero of $f_{i}(z)-1$ and $f_{j}(z)-1$, then it is easy to see that $z_{0}$ is a zero of $\Delta_{i j}$. Denote by $\bar{N}_{(2}\left(r, \frac{1}{f_{k}-1}\right)$ the reduced counting function of the zeros of $f_{k}(z)-1$ with multiplicities $\geq 2$. Then, by Lemma 3.2.1 and 3.2.2, we have

$$
\begin{aligned}
\bar{N}_{0}\left(r, 1, f_{i}, f_{j}\right) & \leq N\left(r, \frac{1}{\Delta_{i j}}\right)+\bar{N}_{(2}\left(r, \frac{1}{f_{i}-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{f_{j}-1}\right) \\
& \leq T\left(r, \Delta_{i j}\right)+O(1)+S\left(r, f_{i}\right)+S\left(r, f_{j}\right) \\
& \leq N\left(r, \Delta_{i j}\right)+S\left(r, f_{i}\right)+S\left(r, f_{j}\right) \\
& \leq \bar{N}\left(r, \frac{1}{f_{i}-1}\right)-\bar{N}_{0}\left(r, 1, f_{i}, f_{j}\right)+\bar{N}\left(r, \frac{1}{f_{j}-1}\right)-\bar{N}_{0}\left(r, 1, f_{i}, f_{j}\right)+S\left(r, f_{i}\right)+S\left(r, f_{j}\right) \\
& \leq T\left(r, f_{i}\right)+T\left(r, f_{j}\right)-2 \bar{N}_{0}\left(r, 1, f_{i}, f_{j}\right)+S\left(r, f_{i}\right)+S\left(r, f_{j}\right) .
\end{aligned}
$$

Therefore,

$$
3 \bar{N}_{0}(r, 1) \leq 3 \bar{N}_{0}\left(r, 1, f_{i}, f_{j}\right) \leq T\left(r, f_{i}\right)+T\left(r, f_{j}\right)+S\left(r, f_{i}\right)+S\left(r, f_{j}\right)
$$

Now, assume that $q=2 n$ is even. If $\Delta_{i j} \equiv 0$ and $\Delta_{i k} \equiv 0$ for $j \neq k$, then, by Lemma 3.2.3, we get $f_{j} \equiv f_{k}$ which is impossible by assumption. Therefore,
there are at most $n$ of $\Delta_{i j}$ which are identically zero and we may assume that only $\Delta_{12}, \Delta_{34}, \ldots, \Delta_{(q-1) q}$ may be identically zero. Apply the above inequality to all $\Delta_{i j}$ which are nonzero and add together, we obtain

$$
\left(\binom{q}{2}-\frac{q}{2}\right) 3 \bar{N}_{0}(r, 1) \leq(q-2) \sum_{j=1}^{q} T\left(r, f_{j}\right)+\sum_{j=1}^{q} S\left(r, f_{j}\right)
$$

Hence,

$$
\tau \leq \frac{2 n-2}{3[n(2 n-1)-n]}=\frac{1}{3 n}=\frac{2}{3 q}
$$

Finally, we assume that $q=2 n+1$ is odd. By the same argument as above, we may assume that only $\Delta_{12}, \Delta_{34}, \ldots, \Delta_{(q-2)(q-1)}$ may be identically zero and obtain the following inequality

$$
\left(\binom{q}{2}-\frac{q-1}{2}\right) 3 \bar{N}_{0}(r, 1) \leq(q-2) \sum_{j=1}^{q-1} T\left(r, f_{j}\right)+(q-1) T\left(r, f_{q}\right)+\sum_{j=1}^{q} S\left(r, f_{j}\right)
$$

Since

$$
\bar{N}_{0}(r, 1) \leq \bar{N}\left(r, \frac{1}{f_{j}-1}\right) \leq T\left(r, f_{j}\right)+O(1), 1 \leq j \leq q-1
$$

we have

$$
(q-1) \bar{N}_{0}(r, 1) \leq \sum_{j=1}^{q-1} T\left(r, f_{j}\right)+O(1)
$$

Combine these inequalities, we have

$$
\left\{3\left(\binom{q}{2}-\frac{q-1}{2}\right)+(q-1)\right\} \bar{N}_{0}(r, 1) \leq(q-1) \sum_{j=1}^{q} T\left(r, f_{j}\right)+\sum_{j=1}^{q} S\left(r, f_{j}\right) .
$$

Therefore,

$$
\tau \leq \frac{2 n}{3[n(2 n+1)-n]+2 n}=\frac{1}{3 n+1}=\frac{2}{3 q-1}
$$

Obviously, Theorem 3.1.3 generalizes Theorem 3.1.2. An easy consequence of Theorem 3.1.3 is the following corollary.

Corollary 3.3.1 Let $f_{j} \in \mathcal{A}, 1 \leq j \leq q$, be distinct, where $q \geq 3$. If $\tau>\frac{2}{3 q}$ when $q$ is even or $\tau>\frac{2}{3 q-1}$ when $q$ is odd, then at least two of $f_{j}$ are the same.

The inequality in the main theorem is sharp for $q=3,4$. When $q=3$, the example can be found in [14]. When $q=4$, let $f_{1}, f_{2}, f_{3}, f_{4}$ be the following functions

$$
\begin{equation*}
f_{1}(z)=e^{z}, f_{2}(z)=e^{-z}, f_{3}(z)=e^{2 z}, \text { and } f_{4}(z)=e^{-2 z} \tag{3.3.1}
\end{equation*}
$$

Clearly, they are meromorphic functions of class $\mathcal{A}$ and we have

$$
\bar{N}_{0}(r, 1)=\bar{N}\left(r, \frac{1}{f_{1}-1}\right)=T\left(r, f_{1}\right)+S\left(r, f_{1}\right)
$$

where the first equality follows from the definition of $f_{j}, 1 \leq j \leq 4$, and the second one follows from Lemma 3.2.2. Moreover,
$T\left(r, f_{2}\right)=T\left(r, f_{1}\right)+O(1), T\left(r, f_{3}\right)=2 T\left(r, f_{1}\right)+O(1)$, and $T\left(r, f_{4}\right)=2 T\left(r, f_{1}\right)+O(1)$.

Therefore,

$$
\tau=\limsup _{\substack{r \notin \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1)}{\sum_{j=1}^{4} T\left(r, f_{j}\right)}=\lim _{r \rightarrow \infty} \frac{T\left(r, f_{1}\right)+S\left(r, f_{1}\right)}{6 T\left(r, f_{1}\right)+O(1)}=\frac{1}{6}
$$

### 3.4 A Conjecture

Our main result Theorem 3.1.3 says that any $q$ distinct meromorphic functions of class $\mathcal{A}$ must satisfies

$$
\begin{cases}\tau \leq \frac{2}{3 q} & \text { if } q \text { is even } \\ \tau \leq \frac{2}{3 q-1} & \text { if } q \text { is odd }\end{cases}
$$

For $q=3,4$, this result is sharp. But for $q \geq 5$, we don't know whether it is sharp or not. As the construction of the example (3.3.1), we can follow exact the same pattern to construct the following examples for $q \geq 5$ :

$$
f_{1}(z)=e^{z}, f_{2}(z)=e^{-z}, \ldots, f_{2 n-1}(z)=e^{n z}, f_{2 n}(z)=e^{-n z} \text { if } q=2 n
$$

and

$$
f_{1}(z)=e^{z}, f_{2}(z)=e^{-z}, \ldots, f_{2 n}(z)=e^{-n z}, f_{2 n+1}=e^{(n+1) z} \text { if } q=2 n+1
$$

Apply the same arguments as above, we obtain that

$$
\tau= \begin{cases}\frac{4}{q(q+2)} & \text { if } q \text { is even } \\ \frac{4}{(q+1)^{2}} & \text { if } q \text { is odd }\end{cases}
$$

The numbers $\tau$ match Theorem 3.1.3 in the cases $q=3,4$, but less than the numbers there. Therefore, it is reasonable to conjecture that the examples actually provide the sharp conditions.

Conjecture. Let $f_{1}, f_{2}, \ldots, f_{q}$ be $q$ distinct meromorphic functions of class $\mathcal{A}$, where $q \geq 3$. Then

$$
\tau=\limsup _{\substack{r \rightarrow \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1)}{\sum_{j=1}^{q} T\left(r, f_{j}\right)} \leq \frac{4}{q(q+2)}
$$

when $q$ is even, and

$$
\tau=\limsup _{\substack{r \not a \infty \\ r \notin E}} \frac{\bar{N}_{0}(r, 1)}{\sum_{j=1}^{q} T\left(r, f_{j}\right)} \leq \frac{4}{(q+1)^{2}}
$$

when $q$ is odd.

