Chapter 4

On a Conjecture of C. C. Yang

4.1 Introduction

We say that two polynomials f and g share the value a € C,, provided that
if f(z) = a if, and only if g(z) = a. We will state whether a shared value is by
CM(counting multiplicities) or by IM(ignoring multiplicities).

For the sharing value problem of polynomials, we have the following simple

well-known results [35].

Theorem 4.1.1 Let f and g be non-constant polynomaials and a be a finite complex

number. If f and g share a CM, then there exists a non-zero constant K such that

f—a=K(g—a).

Corollary 4.1.2 Let f and g be non-constant polynomials and a be a finite com-

plex number. If f and g share a CM, and if there exists a point zy such that

f(20) = g(2) # a, then f = g.
For the case of sharing values IM, Adams-Straus[1] proved the following result.
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Theorem 4.1.3 Let f and g be non-constant polynomials and a, b be distinct finite
complex numbers. If f and g share a and b IM, then f = g.

Note that the number 2 in Theorem 4.1.3 is sharp. For example, the following

polynomials
f2)=(-1(=-2? g(z)=(2-1)°(z~-2)

share 0 IM, but f # g¢.

In [22], C. C. Yang suggested the following problem: Let p(z) and ¢(z) be two

non-constant polynomials of the same degree satisfying

p(2)(p(z) = 1) =0 < q(2)(q(z) —1) = 0.

Prove (or disprove) that either p(z) = ¢q(2) or p(2) + ¢(z) = 1. In [35], C. C. Yang

exhibited the following example to show that the problem may not be true.

Let p(z) and ¢(z) be polynomials defined by

1

p(z) = §z(22 -3), q(z) = %(232 —5).

Then (p(z) + 1)(p(2) — 1) = 0 < (q(z) + 1)(q(2) — 1) = 0. But p(z) # ¢(2) and
p(z) +q(z) #-1+1=0.

In the above example, the degree of p(z) and ¢(z) are distinct, therefore, C. C.
Yang [22, 36] raised the following conjecture: Let p(2) and ¢(z) be two non-constant
polynomials of the same degree. If there are distinct finite complex numbers o and

[ satisfying

then p(z) = q(z) or p(z) + ¢(z) = a+ F. We will give an elementary proof of this

conjecture in section 4.3

23



4.2 Some Lemmas

We remark that, in [13] and [23], there are some equivalent descriptions and
special cases about Yang’s conjecture. In [23], Moh gave a proof of the Yang’s
conjecture by using algebraic method. In order to prove Yang’s conjecture, we need

some basic properties of polynomials.

Lemma 4.2.1 Let p(2) be a polynomial of degree n and let o be a nonzero complex
number. If p(z) has k distinct zeros and p(z) — « has r distinct zeros, then k+1r >

n+1.

Proof. Write p(z) = a(z —uy)" -+ (2 — up)™ and p(z) —a =a(z —vy)™ - (2 —

mpy

v.)™, where u, ..., ug,vq,...,0, are distinct complex numbers and a # 0. Then
w; and v; are distinct zeros of p/(z) of order [; — 1 and m; — 1, respectively. Since
P'(2) is a polynomial of degree n — 1, we have

Z(zi—1)+i(mj—1)gn_1.

i=

Sincely +---+ly=my+---+m, =n,weget k+r>n+1. O

Corollary 4.2.2 Let p(z) be a polynomial of degree n, & and 3 be distinct complex

numbers. If p(z) — « has k distinct zeros and p(z) — § has r distinct zeros, then

k+r>n+1.
Proof. By Lemma 4.2.1 and replace p(z) by p(z) — a, we are done. O
Lemma 4.2.3 Letn > 2 and ay,...,a,,b1,...,b,, c1,co be complex numbers. If
[[G=a)=]]z=b)+a (4.2.1)
i=1 i=1
and
[[G=a) [T G=b)=]]¢z=0) J] (z— ) +ca (4.2.2)
i=1 i=s+1 i=1 i=s+1

for some 1 <s<n-—1, then ¢c; = c3 = 0.
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Proof. By equalities (4.2.1) and (4.2.2), we have

[1(z—a) [ [[Ge—a) -] - bz‘)] =[] [ [IGE-0)— ][ G—a)

=1 i=s5+1 =541 i=1 =541 =541

“+c1—cCo.

Hence,

[H(z —a;) + H(z — bl)] [H (z —a;) — H (z — bz)] = ¢ — Co,

i=1 =1

which implies that

and ¢; = ¢ = 0. O

By Lemma 4.2.3, we have the following consequence.

Corollary 4.2.4 Let n > 2 and aq,...,a,,b1,...,b,, c1,co be complex numbers.

If ¢q # ¢y then the two equalities

and
H(z — a;) H (z—b;) = H(z— b;) 'H (2 —a;) + ¢

can not hold simultaneously.

Note that, in Lemma 4.2.3 and Corollary 4.2.4, a4,...,a, and by,...,b, may

not be distinct.

4.3 Main Result and Proof

Now, we can prove the C. C. Yang’s conjecture.
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Theorem 4.3.1 Let p(z) and q(z) be non-constant polynomials of the same degree.

If there exists distinct finite complexr numbers o and (8 satisfying

then either p(z) = q(2) or p(z) + q(2) = a+ (.

Proof. Assume that deg(p) = deg(q) = n. Write p(z) — o = aHle(z — ;)
and p(z) — B = a[]_,(# — v;)™, where a # 0, uy,...,u; are the distinct roots of
p(z) — a with multiplicities Iy, ..., [y and vy, ..., v, are the distinct roots of p(z) — (3

with multiplicities mq, ..., m,, respectively. We separate the proof into three cases:

Casel. q(z)—a = b][\,(z—u,;)%, where I! > 1 may differ from [; and 3% I/ = n.

1=1"

In this case, we get q(z) — 8 = b[]/_,( — v;)™. Hence, p(z) and ¢(z) share a
and # IM. By Theorem 4.1.3, p(z) = q(2).

Case2. ¢(z) —a = b[[_,(z — v;)™i, where m} > 1 may differ from m; and

D iy M =M.

In this case, we get q(2) — 3 = bezl(z —u;)%. Hence, p(2) 4+ q(z) = a+ 3 for
Z=1Up,...,UgV1,...,0.. By Corollary 4.2.2, k+r > n+ 1. Since p(z) + ¢(z) is a
polynomial of degree less than or equal to n and p(z) + g(z) = a + [ has at least
n + 1 distinct roots, it must be the case that p(z) + q(2) = a + .

Case3. q(z) —a = b[[\_ (2 — ) [T, (= — v;)™ for some 1 < h < k—1 and
1<t<r—1,where Y0 IL+30 . m =n.
In this case, we get ¢(2)—3 = b[[\_,(z—v;)™ Hf:hﬂ(z—u,-)l/l. By assumption,

k

a H(z —u)l +a

=

—
I\

~—
I

and



which imply that

By Lemma 4.2.3, we get %

B—a

=0, i.e., a = # which is impossible.
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