Chapter 4

On a Conjecture of C. C. Yang

4.1 Introduction

We say that two polynomials f and g share the value $a \in \mathbb{C}_{\infty}$ provided that if f(z) = a if, and only if g(z) = a. We will state whether a shared value is by CM(counting multiplicities) or by IM(ignoring multiplicities).

For the sharing value problem of polynomials, we have the following simple well-known results [35].

Theorem 4.1.1 Let f and g be non-constant polynomials and a be a finite complex number. If f and g share a CM, then there exists a non-zero constant K such that $f - a \equiv K(g - a)$.

Corollary 4.1.2 Let f and g be non-constant polynomials and a be a finite complex number. If f and g share a CM, and if there exists a point z_0 such that $f(z_0) = g(z_0) \neq a$, then $f \equiv g$.

For the case of sharing values IM, Adams-Straus[1] proved the following result.

Theorem 4.1.3 Let f and g be non-constant polynomials and a, b be distinct finite complex numbers. If f and g share a and b IM, then $f \equiv g$.

Note that the number 2 in Theorem 4.1.3 is sharp. For example, the following polynomials

$$f(z) = (z-1)(z-2)^2$$
, $g(z) = (z-1)^2(z-2)$

share 0 IM, but $f \not\equiv g$.

In [22], C. C. Yang suggested the following problem: Let p(z) and q(z) be two non-constant polynomials of the same degree satisfying

$$p(z)(p(z) - 1) = 0 \Leftrightarrow q(z)(q(z) - 1) = 0.$$

Prove (or disprove) that either $p(z) \equiv q(z)$ or $p(z) + q(z) \equiv 1$. In [35], C. C. Yang exhibited the following example to show that the problem may not be true.

Let p(z) and q(z) be polynomials defined by

$$p(z) = \frac{1}{2}z(z^2 - 3), \quad q(z) = \frac{1}{3}(2z^2 - 5).$$

Then $(p(z) + 1)(p(z) - 1) = 0 \Leftrightarrow (q(z) + 1)(q(z) - 1) = 0$. But $p(z) \neq q(z)$ and $p(z) + q(z) \not\equiv -1 + 1 = 0$.

In the above example, the degree of p(z) and q(z) are distinct, therefore, C. C. Yang [22, 36] raised the following conjecture: Let p(z) and q(z) be two non-constant polynomials of the same degree. If there are distinct finite complex numbers α and β satisfying

$$(p(z) - \alpha)(p(z) - \beta) = 0 \Leftrightarrow (q(z) - \alpha)(q(z) - \beta) = 0,$$

then $p(z) \equiv q(z)$ or $p(z) + q(z) \equiv \alpha + \beta$. We will give an elementary proof of this conjecture in section 4.3

4.2 Some Lemmas

We remark that, in [13] and [23], there are some equivalent descriptions and special cases about Yang's conjecture. In [23], Moh gave a proof of the Yang's conjecture by using algebraic method. In order to prove Yang's conjecture, we need some basic properties of polynomials.

Lemma 4.2.1 Let p(z) be a polynomial of degree n and let α be a nonzero complex number. If p(z) has k distinct zeros and $p(z) - \alpha$ has r distinct zeros, then $k + r \ge n + 1$.

Proof. Write $p(z) = a(z - u_1)^{l_1} \cdots (z - u_k)^{l_k}$ and $p(z) - \alpha = a(z - v_1)^{m_1} \cdots (z - v_r)^{m_r}$, where $u_1, \ldots, u_k, v_1, \ldots, v_r$ are distinct complex numbers and $a \neq 0$. Then u_i and v_j are distinct zeros of p'(z) of order $l_i - 1$ and $m_j - 1$, respectively. Since p'(z) is a polynomial of degree n - 1, we have

$$\sum_{i=1}^{k} (l_i - 1) + \sum_{j=1}^{r} (m_j - 1) \le n - 1.$$

Since $l_1 + \cdots + l_k = m_1 + \cdots + m_r = n$, we get $k + r \ge n + 1$.

Corollary 4.2.2 Let p(z) be a polynomial of degree n, α and β be distinct complex numbers. If $p(z) - \alpha$ has k distinct zeros and $p(z) - \beta$ has r distinct zeros, then $k + r \ge n + 1$.

Proof. By Lemma 4.2.1 and replace p(z) by $p(z) - \alpha$, we are done.

Lemma 4.2.3 Let $n \geq 2$ and $a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, c_2$ be complex numbers. If

$$\prod_{i=1}^{n} (z - a_i) = \prod_{i=1}^{n} (z - b_i) + c_1$$
(4.2.1)

and

$$\prod_{i=1}^{s} (z - a_i) \prod_{i=s+1}^{n} (z - b_i) = \prod_{i=1}^{s} (z - b_i) \prod_{i=s+1}^{n} (z - a_i) + c_2$$
 (4.2.2)

for some $1 \le s \le n - 1$, then $c_1 = c_2 = 0$.

Proof. By equalities (4.2.1) and (4.2.2), we have

$$\prod_{i=1}^{s} (z-a_i) \left[\prod_{i=s+1}^{n} (z-a_i) - \prod_{i=s+1}^{n} (z-b_i) \right] = \prod_{i=1}^{s} (z-b_i) \left[\prod_{i=s+1}^{n} (z-b_i) - \prod_{i=s+1}^{n} (z-a_i) \right] + c_1 - c_2.$$

Hence,

$$\left[\prod_{i=1}^{s} (z - a_i) + \prod_{i=1}^{s} (z - b_i)\right] \left[\prod_{i=s+1}^{n} (z - a_i) - \prod_{i=s+1}^{n} (z - b_i)\right] = c_1 - c_2,$$

which implies that

$$\prod_{i=s+1}^{n} (z - a_i) = \prod_{i=s+1}^{n} (z - b_i)$$

and $c_1 = c_2 = 0$.

By Lemma 4.2.3, we have the following consequence.

Corollary 4.2.4 Let $n \geq 2$ and $a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, c_2$ be complex numbers. If $c_1 \neq c_2$ then the two equalities

$$\prod_{i=1}^{n} (z - a_i) = \prod_{i=1}^{n} (z - b_i) + c_1$$

and

$$\prod_{i=1}^{s} (z - a_i) \prod_{i=s+1}^{n} (z - b_i) = \prod_{i=1}^{s} (z - b_i) \prod_{i=s+1}^{n} (z - a_i) + c_2$$

can not hold simultaneously.

Note that, in Lemma 4.2.3 and Corollary 4.2.4, a_1, \ldots, a_n and b_1, \ldots, b_n may not be distinct.

4.3 Main Result and Proof

Now, we can prove the C. C. Yang's conjecture.

Theorem 4.3.1 Let p(z) and q(z) be non-constant polynomials of the same degree. If there exists distinct finite complex numbers α and β satisfying

$$(p(z) - \alpha)(p(z) - \beta) = 0 \Leftrightarrow (q(z) - \alpha)(q(z) - \beta) = 0,$$

then either $p(z) \equiv q(z)$ or $p(z) + q(z) \equiv \alpha + \beta$.

Proof. Assume that $\deg(p) = \deg(q) = n$. Write $p(z) - \alpha = a \prod_{i=1}^{k} (z - u_i)^{l_i}$ and $p(z) - \beta = a \prod_{i=1}^{r} (z - v_i)^{m_i}$, where $a \neq 0, u_1, \ldots, u_k$ are the distinct roots of $p(z) - \alpha$ with multiplicities l_1, \ldots, l_k and v_1, \ldots, v_r are the distinct roots of $p(z) - \beta$ with multiplicities m_1, \ldots, m_r , respectively. We separate the proof into three cases:

Case1. $q(z) - \alpha = b \prod_{i=1}^{k} (z - u_i)^{l_i}$, where $l_i' \ge 1$ may differ from l_i and $\sum_{i=1}^{k} l_i' = n$.

In this case, we get $q(z) - \beta = b \prod_{i=1}^{r} (z - v_i)^{m'_i}$. Hence, p(z) and q(z) share α and β IM. By Theorem 4.1.3, $p(z) \equiv q(z)$.

Case2. $q(z) - \alpha = b \prod_{i=1}^{r} (z - v_i)^{m'_i}$, where $m'_i \ge 1$ may differ from m_i and $\sum_{i=1}^{r} m'_i = n$.

In this case, we get $q(z) - \beta = b \prod_{i=1}^{k} (z - u_i)^{l_i'}$. Hence, $p(z) + q(z) = \alpha + \beta$ for $z = u_1, \ldots, u_k, v_1, \ldots, v_r$. By Corollary 4.2.2, $k + r \ge n + 1$. Since p(z) + q(z) is a polynomial of degree less than or equal to n and $p(z) + q(z) = \alpha + \beta$ has at least n + 1 distinct roots, it must be the case that $p(z) + q(z) \equiv \alpha + \beta$.

Case3. $q(z) - \alpha = b \prod_{i=1}^{h} (z - u_i)^{l'_i} \prod_{i=t+1}^{r} (z - v_i)^{m'_i}$ for some $1 \le h \le k-1$ and $1 \le t \le r-1$, where $\sum_{i=1}^{h} l'_i + \sum_{i=t+1}^{r} m'_i = n$.

In this case, we get $q(z) - \beta = b \prod_{i=1}^t (z - v_i)^{m_i'} \prod_{i=h+1}^k (z - u_i)^{l_1'}$. By assumption,

$$p(z) = a \prod_{i=1}^{k} (z - u_i)^{l_i} + \alpha$$

and

$$p(z) = a \prod_{i=1}^{r} (z - v_i)^{m_i} + \beta,$$

which imply that

$$\prod_{i=1}^{k} (z - u_i)^{l_i} = \prod_{i=1}^{r} (z - v_i)^{m_i} + \frac{\beta - \alpha}{a}.$$

Similarly, we have

$$\prod_{i=1}^{h} (z - u_i)^{l_i'} \prod_{i=t+1}^{r} (z - v_i)^{m_i'} = \prod_{i=1}^{t} (z - v_i)^{m_i'} \prod_{i=h+1}^{k} (z - u_i)^{l_i'} + \frac{\beta - \alpha}{b}.$$

By Lemma 4.2.3, we get $\frac{\beta-\alpha}{a}=\frac{\beta-\alpha}{b}=0$, i.e., $\alpha=\beta$ which is impossible. \Box