
5 Main Results in Value Distribution of Mero-

morphic Functions with Their Derivatives

In this section, we will prove our main results which generalize the Theorems

mentioned in the introduction.

Clunie have already proved the result of Therom1.3 for the case n = 1. In

addition, Clunie mentioned that the same method of proof can be used to prove the

result for any case n ≥ 1. So, here we will complete the proof for the case n ≥ 2.

Theorem 5.1 If f(z) is a transcendental entire function, n ≥ 2 is a positive inte-

ger, then f ′(z)f(z)n assumes all finite values except possibly zero infinitely often.

Proof . Suppose the result is false. There exists a ∈ C\{0} such that f ′(z)fn(z)−
a = 0 has only finitely many zeros. Hence, there exists a polynomial p and a

non-constant entire function g such that

f ′fn − a = peg. (5.1)

Differentiating (5.1) twice, we obtain

f ′′fn + n(f ′)2fn−1 = (p′ + pg′)eg. (5.2)

and

f ′′′fn + 3nf ′′f ′fn−1 + n(n − 1)(f ′)3fn−2 = [(p′ + pg′)′ + g′(p′ + pg′)]eg. (5.3)

From (5.2) and (5.3), it follows that

f ′′′fn + 3nf ′′f ′fn−1 + n(n − 1)(f ′)3fn−2 = h[f ′′fn + n(f ′)2fn−1], (5.4)

where

h = g′ +
(p′ + pg′)′

(p′ + pg′)
. (5.5)
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From (5.4)
f ′′′ − hf ′′

f ′ =
nhf ′f − 3nf ′′f − n(n − 1)(f ′)2

f 2
≡ k.

So

f ′′′ − hf ′′ = kf ′, (5.6)

nhf ′f − 3nf ′′f − n(n − 1)(f ′)2 = kf 2. (5.7)

Differentiating (5.7), we have

nh′f ′f +nhf ′′f +nh(f ′)2−3nf ′′′f −3nf ′′f ′−2n(n−1)f ′′f ′ = k′f 2 +2kf ′f. (5.8)

From (5.6) and (5.8), eliminating f ′′′, we get

nh′f ′f +nhf ′′f +nh(f ′)2−3n(hf ′′+kf ′)f −3nf ′′f ′−2n(n−1)f ′′f ′ = k′f 2 +2kf ′f,

that is,

(nh′ − 3nk − 2k)f ′f + nh(f ′)2 − 2nhf ′′f − n(2n + 1)f ′′f ′ − k′f2 = 0 (5.9)

From (5.7) and (5.9), eliminating f ′′, we get

(nh′ − 3nk − 2k)f ′f + nh(f ′)2 − 2h

3
[nhf ′f − n(n − 1)(f ′)2 − kf 2]

−2n + 1

3

f ′

f
[nhf ′f − n(n − 1)(f ′)2 − kf 2] − k′f2 = 0,

that is,

n(n − 1)(2n + 1)

3

(
f ′

f

)3

+

[
nh +

2n(n − 1)

3
h − n(2n + 1)

3
h

](
f ′

f

)2

+

[
nh′ − 3nk − 2k +

2n

3
h2 +

2n + 1

3
k

](
f ′

f

)
=

(
k′ − 2

3
hk

)
. (5.10)

Claim: All functions p(z), g(z), h(z), f ′(z)
f(z)

, f ′′(z)
f ′(z)

, f ′′(z)
f(z)

, 1
f ′(z)f(z)n are small functions

of f .

Assume the claim for a moment, we complete the proof.

nT (r, f) = T (r,
1

fn
) + O(1)

≤ T

(
r,

f ′

f

)
+ T

(
r,

1

f ′fn

)
+ O(1)

= S(r, f)
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which is impossible.Therefore, Theorem 5.1 holds.

Now, to prove the claim. Since f is transcendental entire function and p is a

polynomial, so T (r, p) = S(r, f). By (5.1), we have,

eg =
f ′fn − a

p

Since T (r, g) = S(r, eg), we get

T (r, g) = S

(
r,

f ′fn − a

p

)
= S(r, f).

By (5.5), we have T (r, h) = S(r, f). By (5.6), we get k = f ′′′
f ′′ − hf ′′

f ′ .

Hence,

m(r, k) ≤ m

(
r,

f ′′′

f ′

)
+ m(r, h) + m

(
r,

f ′′

f ′

)
+ O(1)

= S(r, f).

From (5.2), the poles of k occur among the poles of h and the common zeros of f

and f ′. Consequently,

N(r, k) ≤ N(r, h) + N

(
r,

1

p′ + pg′

)

= S(r, f).

Therefore, T (r, k) = S(r, f). From (5.10), we obtain

3T

(
r,

f ′

f

)
= O(T (r, h) + T (r, k) + O(1)) (5.11)

Hence, T
(
r, f ′

f

)
= S(r, f). By (5.7),

T

(
r,

f ′′

f

)
≤ O

(
T (r, h) + T

(
r,

f ′

f

)
+ O(1)

)

= S(r, f). (5.12)

From (5.11) and (5.12), we have

T

(
r,

f ′′

f ′

)
≤ T

(
r,

f ′′

f

)
+ T

(
r,

f

f ′

)

≤ T

(
r,

f ′′

f

)
+ T

(
r,

f ′

f

)
+ O(1)

= S(r, f). (5.13)
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From (5.1) and (5.2),

f ′fn − a = p
f ′′fn + n(f ′)2fn−1

p′ + pg′ .

Hence,

a

f ′fn
= 1 −

(
p′

p
+ g′

)−1 (
f ′′fn + n(f ′)2fn−1

f ′fn

)

= 1 −
(

p′

p
+ g′

)−1 (
f ′′

f ′ + n
f ′

f

)
. (5.14)

Therefore, by (5.14),

T

(
r,

1

f ′fn

)
= T

(
r,

a

f ′fn

)
+ O(1)

= O

(
T (r, p) + T (r, g) + T

(
r,

f ′′

f ′

)
+ T

(
r,

f ′

f

))

= S(r, f).

❑

Theorem 5.2 If f(z) is a transcendental entire function, k and n are two positive

integers with 1 ≤ k ≤ n, then f (k)(z)f(z)n assumes all finite values except possibly

zero infinitely often.

Proof . If n = 1, then it follows from Theorem 1.3. Now, we assume that n ≥ 2.

Given a nonzero complex number a and consider the function

ψ(z) =
f (k)(z)f(z)n

a
.

By Nevanlinna’s second fundamental theorem,

T (r, ψ) ≤ N

(
r,

1

ψ

)
+ N

(
r,

1

ψ − 1

)
+ N (r, ψ) + S(r, ψ) (5.15)

= N

(
r,

1

ψ

)
+ N

(
r,

1

ψ − 1

)
+ S(r, ψ).
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By the definition of ψ and Lemma 3.2, we have

N

(
r,

1

ψ

)
≤ N

(
r,

1

f

)
+ N0

(
r,

1

f (k)

)

≤ (k + 1)N

(
r,

1

f

)
+ kN (r, f) + S(r, f)

≤ (k + 1)N

(
r,

1

f

)
+ S(r, f). (5.16)

At each zero of f , ψ has a zero of order at least n. Thus,

(n − 1)N

(
r,

1

f

)
≤ N

(
r,

1

ψ

)
− N

(
r,

1

ψ

)
. (5.17)

By (5.16) and (5.17), we get

N

(
r,

1

ψ

)
≤ k + 1

n − 1

[
N

(
r,

1

ψ

)
− N

(
r,

1

ψ

)]
+ S(r, f).

Hence,

N

(
r,

1

ψ

)
≤ k + 1

n + k
N

(
r,

1

ψ

)
+ S(r, f) ≤ k + 1

n + k
T (r, ψ) + S(r, f). (5.18)

Finally, from (5.15), (5.18) and Lemma 3.1, we get

n − 1

n + k
T (r, ψ) ≤ N

(
r,

1

ψ − 1

)
+ S(r, ψ) (5.19)

Therefore, ψ(z) = 1, that is, f (k)(z)f(z)n = a, has infinitely many roots. ❑

Remark. From the proof of Theorem 5.2, it is easy to see that, in the case n ≥ 2,

the condition 1 ≤ k ≤ n in Theorem 5.2 is redundant, that is, if n ≥ 2 and k

is an arbitrary positive integer, then f (k)(z)f(z)n assumes all finite values except

possibly zero infinitely often.

Theorem 5.3 If f(z) is a transcendental meromorphic function, 1 ≤ k ≤ n2−n−2

and n ≥ 3 are integers, then f (k)(z)f(z)n assume all finite values except possibly

zero infinitely often.

Proof . Given a nonzero complex number a and consider the function

ψ(z) =
f (k)(z)f(z)n

a
.
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As in the proof in Theorem 5.2, we have the following inequalities,

T (r, ψ) ≤ N

(
r,

1

ψ

)
+ N

(
r,

1

ψ − 1

)
+ N (r, ψ) + S(r, ψ), (5.20)

N

(
r,

1

ψ

)
≤ (k + 1)N

(
r,

1

f

)
+ kN (r, f) + S(r, f), (5.21)

and

(n − 1)N

(
r,

1

f

)
≤ N

(
r,

1

ψ

)
− N

(
r,

1

ψ

)
. (5.22)

At each pole of f , ψ has a pole of order at least n + k + 1. Thus,

(n + k)N (r, f) ≤ N (r, ψ) − N (r, ψ) , (5.23)

which implies that

(n + k)N (r, ψ) = (n + k)N (r, f) ≤ N (r, ψ) − N (r, ψ) .

Hence,

N (r, ψ) ≤ 1

n + k + 1
N (r, ψ) ≤ 1

n + k + 1
T (r, ψ) (5.24)

By (5.21) and (5.22), we obtain

N

(
r,

1

ψ

)
≤ k + 1

n − 1

[
N

(
r,

1

ψ

)
− N

(
r,

1

ψ

)]
+ kN (r, f) + S(r, f). (5.25)

By (5.23) and (5.25), we have

N

(
r,

1

ψ

)
≤ k + 1

n + k
N

(
r,

1

ψ

)
+

k(n − 1)

n + k
N(r, f) + S(r, f) (5.26)

≤ k + 1

n + k
N

(
r,

1

ψ

)
+

k(n − 1)

(n + k)2

[
N (r, ψ) − N (r, ψ)

]
+ S(r, f)

≤
[

k + 1

n + k
+

k(n − 1)

(n + k)2

]
T (r, ψ) − k(n − 1)

(n + k)2
N (r, ψ) + S(r, f).

Finally, from (5.20), (5.24), (5.26) and Lemma 3.1, we get

T (r, ψ) ≤
[

k + 1

n + k
+

k(n − 1)

(n + k)2

]
T (r, ψ) +

[
1 − k(n − 1)

(n + k)2

](
1

n + k + 1

)
T (r, ψ)

+ N

(
r,

1

ψ − 1

)
+ S(r, ψ),
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which implies that{[
1 − k + 1

n + k
− k(n − 1)

(n + k)2

]
− 1

n + k + 1

[
1 − k(n − 1)

(n + k)2

]}
T (r, ψ) ≤ N

(
r,

1

ψ − 1

)
+S(r, ψ).

By a simple computation, we have[
1 − k + 1

n + k
− k(n − 1)

(n + k)2

]
− 1

n + k + 1

[
1 − k(n − 1)

(n + k)2

]
> 0 ⇔ (n+k)(n2−n−1−k) > 0.

Since n ≥ 3 and 1 ≤ k ≤ n2 − n − 2, (n + k)(n2 − n − 1 − k) > 0. Therefore,

ψ(z) = 1, that is, f (k)(z)f(z)n = a, has infinitely many roots. ❑

Theorem 5.4 Let f(z) be a transcendental entire function and set

ϕ(z) = f (k)(z) − af(z)n,

where k ≥ 1, n ≥ 3 are integers and a is a nonzero complex number. Then ϕ(z)

assumes all finite values infinitely often.

Proof . Let b be an arbitrary complex number and consider the function

ψ(z) =
f (k)(z) − b

af(z)n
.

Note that S(r, ψ) = o(T (r, f)) as r → ∞ possibly outside a set of finite linear

measure. By Nevanlinna’s second fundamental theorem,

T (r, ψ) ≤ N(r, ψ) + N

(
r,

1

ψ

)
+ N

(
r,

1

ψ − 1

)
+ S(r, ψ). (5.27)

Since the poles and zeros of ψ(z) occur only at the zeros of f(z) or f (k)(z) − b. If

f (k)(z0)−b = 0, then z0 is counted in n(r, ψ)+n(r, 1
ψ
) at most once. If f (k)(z0)−b 	= 0

and f(z0) = 0, then z0 is a pole of ψ of order at least n. Thus, we have

N(r, ψ) + N

(
r,

1

ψ

)
≤ 1

n
N(r, ψ) + N

(
r,

1

f (k) − b

)
(5.28)

≤ 1

n
T (r, ψ) + T

(
r, f (k)

)
+ O(1)

=
1

n
T (r, ψ) + m

(
r, f (k)

)
+ O(1)

≤ 1

n
T (r, ψ) + m(r, f) + m

(
r,

f (k)

f

)

≤ 1

n
T (r, ψ) + T (r, f) + S(r, f).
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By (5.27) and (5.28), we get

(
1 − 1

n

)
T (r, ψ) ≤ T (r, f) + N

(
r,

1

ψ − 1

)
+ S(r, f),

which implies that

nT (r, f) = T (r, fn)

= T

(
r,

f (k) − b

aψ

)

≤ T
(
r, f (k)

)
+ T (r, ψ) + O(1)

≤ T (r, f) + m

(
r,

f (k)

f

)
+ T (r, ψ) + O(1)

= T (r, f) + T (r, ψ) + S(r, f)

≤ T (r, f) +
1

1 − 1/n
T (r, f) +

1

1 − 1/n
N

(
r,

1

ψ − 1

)
+ S(r, f).

Therefore, we obtain

[
(n − 1)2 − n

]
T (r, f) ≤ nN

(
r,

1

ψ − 1

)
+ S(r, f).

Since n ≥ 3 and (n − 1)2 − n > 0, ψ(z) = 1, that is, ϕ(z) = b, has infinitely many

roots. ❑

Theorem 5.5 Let f(z) be a transcendental meromorphic function and set

ϕ(z) = f (k)(z) − af(z)n,

where n, k are positive integers with n ≥ k + 4 and a is a nonzero complex number.

Then ϕ(z) assumes all finite values infinitely often.

Proof . Let b be a complex number and consider the function

ψ(z) =
f (k) − b

af(z)n
.

We now divide the zeros of f (k)(z)−b into four classes. Denote by n0(r) the number

of zeros of f (k)(z) − b in |z| ≤ r which are not zeros of f(z), n1(r) the number of
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zeros of f (k)(z) − b in |z| ≤ r which are zeros of f(z) and poles of ψ(z), n2(r) the

number of zeros of f (k)(z)−b in |z| ≤ r which are zeros of f(z) and are neither poles

nor zeros of ψ(z), and n3(r) the number of zeros of f (k)(z) − b in |z| ≤ r which are

zeros of both f(z) and ψ(z). Let nj(r), 0 ≤ j ≤ 3, be their corresponding reduced

counting functions and wirte

Nj(r) =

∫ r

0

nj(t)

t
dt, N j(r) =

∫ r

0

nj(t)

t
dt

for 0 ≤ j ≤ 3, where we may assume that f (k)(0) 	= b.

Claim 1 nN(r, ψ) ≤ N(r, ψ) + N1(r).

Suppose z0 is a pole of ψ(z). Since the poles of ψ(z) occur only at the zeros or

poles of f(z), if f(z) has a pole at z0 of order p, then ψ(z) has a zero at z0 of order

np− (p + k) > 0. So ψ(z) has no pole at z0. Therefore, the poles of ψ(z) arise only

from the zeros of f(z). If f(z) has a zero at z0 and f (k)(z0) − b 	= 0, then z0 is a

pole of ψ(z) of order at least n. If f(z) has a zero at z0 of order p, f (k)(z) − b has

a zero at z0 of order q and z0 is a pole of ψ(z), then np > q, z0 is counted np − q

times in n(r, ψ), and q times in n1(r). Hence, Claim 1 is proved.

Claim 2 (n− k − 1)N

(
r,

1

ψ

)
≤ N

(
r,

1

ψ

)
+ (n− k − 2)N0(r) +

n − k − 2

n
N3(r).

Suppose z0 is a zero of ψ(z). Since the zeros of ψ(z) occur only at the poles of

f(z) or the zeros of f (k)(z)− b. As we mention above, if z0 is a pole of f(z), then z0

is a zero of ψ(z) of order at least n − k − 1. If z0 is a zero of f (k)(z) − b, but not a

zero of f(z), then z0 is counted at least once in both n(r, 1
ψ
) and n0(r). If f(z) has

a zero at z0 of order p, f (k)(z)− b has a zero at z0 of order q, then q > np ≥ n, z0 is

counted q − np ≥ 1 times in n(r, 1
ψ
) and q times in n3(r). Thus, Claim 2 is proved.
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By Nevanlinna’s second fundamental theorem, Claim 1 and Claim 2, we have

T (r, ψ) ≤N(r, ψ) + N

(
r,

1

ψ

)
+ N

(
r,

1

ψ − 1

)
+ S(r, ψ)

≤ 1

n
N(r, ψ) +

1

n
N1(r) +

1

n − k − 1
N

(
r,

1

ψ

)
+

n − k − 2

n(n − k − 1)
N3(r)

+
n − k − 2

n − k − 1
N0(r) + N

(
r,

1

ψ − 1

)
+ S(r, f)

≤
(

1

n
+

1

n − k − 1

)
T (r, ψ) +

1

n
[N1(r) + N3(r)] +

n − k − 2

n − k − 1
N0(r)

+ N

(
r,

1

ψ − 1

)
+ S(r, f),

which implies that(
1 − 1

n
− 1

n − k − 1

)
T (r, ψ) ≤ 1

n
[N1(r) + N3(r)] +

n − k − 2

n − k − 1
N0(r) (5.29)

+ N

(
r,

1

ψ − 1

)
+ S(r, f).

Note that if z0 is a pole of f(z) of order p, then z0 is a zero of ψ(z) of order

np − (p + k) ≥ (n − k − 1)p. Also, if f (k)(z) − b has a zero at z0 of order p and

f(z0) 	= 0, then ψ(z) has a zero at z0 of order p and we have

(n − k − 1)N(r, f) + N0(r) ≤ N(r,
1

ψ
). (5.30)

Again, we have

nm(r, f) = m(r, fn)

= m

(
r,

afn

f (k) − b

)
+ m(r, f (k) − b) + O(1)

≤ m

(
r,

1

ψ

)
+ m(r, f (k)) + O(1)

≤ m

(
r,

1

ψ

)
+ m(r, f) + S(r, f),

which implies that

(n − 1)m(r, f) ≤ m

(
r,

1

ψ

)
+ S(r, f). (5.31)

By (5.30) and (5.31), we get

(n − k − 1)T (r, f) ≤ T (r, ψ) − N0(r) + S(r, f). (5.32)
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From (5.29) and (5.32), we have

(n − k − 1)

(
1 − 1

n
− 1

n − k − 1

)
T (r, f)

≤
(

1 − 1

n
− 1

n − k − 1

)
T (r, ψ) −

(
1 − 1

n
− 1

n − k − 1

)
N0(r) + S(r, f)

≤n − k − 2

n − k − 1
N0(r) +

1

n
[N1(r) + N3(r)] + N

(
r,

1

ψ − 1

)

−
(

1 − 1

n
− 1

n − k − 1

)
N0(r) + S(r, f)

=
1

n
[N0(r) + N1(r) + N3(r)] + N

(
r,

1

ψ − 1

)
+ S(r, f)

≤ 1

n
N(r,

1

f (k) − b
) + N

(
r,

1

ψ − 1

)
+ S(r, f)

≤ 1

n
T (r, f (k)) + N

(
r,

1

ψ − 1

)
+ S(r, f)

≤k + 1

n
T (r, f) + N

(
r,

1

ψ − 1

)
+ S(r, f).

With a simple calculation, we deduce that

(n − k − 3)T (r, f) ≤ N(r,
1

ψ − 1
) + S(r, f).

Since n ≥ k + 4, ψ(z) = 1, that is, ϕ(z) = b, has infinitely many roots. ❑

Theorem 5.6 Let f(z) be a transcendental meromorphic function and a0(z), . . . , an(z)

be small functions of f . Set

ψ(z) =
n∑

i=0

ai(z)f (i)(z).

If δ(0, f) + Θ(∞, f) > 1, then ψ(z) assumes all finite values except possibly zero

infinitely often or else ψ(z) is identically constant.

Proof . We may assume that ψ(z) is non-constant, for otherwise, the theorem is

obvious. By hypothesis,

1 < δ(0, f) + Θ(∞, f)

= 1 − lim sup
r→∞

N(r, 1
f
)

T (r, f)
+ 1 − lim sup

r→∞

N(r, f)

T (r, f)
,
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which implies that

lim sup
r→∞

N(r, 1
f
) + N(r, f)

T (r, f)
≤ lim sup

r→∞

N(r, 1
f
)

T (r, f)
+ lim sup

r→∞

N(r, f)

T (r, f)
< 1.

Given ε > 0, choose R > 0 such that, for all r ≥ R,

N

(
r,

1

f

)
+ N(r, f) < (1 − ε)T (r, f). (5.33)

By (5.33) and Theorem 3.3, we get

εT (r, f) < N

(
r,

1

ψ − 1

)
+ S(r, f).

Hence, ψ(z) = 1 has infinitely many roots. For arbitrary nonzero complex number

w, the above proof shows that ψ(z)/w = 1 has infinitely many roots, that is,

ψ(z) = w has infinitely many roots. ❑

Clearly, if δ(0, f) + δ(∞, f) > 1, then Theorem 5.6 also holds. Moreover, the

following example shows that the condition δ(0, f) + Θ(∞, f) > 1 in Theorem 5.6

is sharp.

Example 5.7 Let f(z) = ez + p(z), where p(z) = anzn + · · · + a0, an 	= 0, is

a polynomial of degree n and ψ(z) = f (n)(z). Since f is entire, Θ(∞, f) = 1.

By Theorem 2.12, the Nevanlinna’s second fundamental theorem for three small

functions, we have δ(0, f) = 0. Therefore,

δ(0, f) + Θ(∞, f) = 1,

but ψ(z) = ez + n!an does not take the value n!an, which is a non-zero finite value.
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