4 Value Distribution of Meromorphic Functions

in class A with Their Derivatives

In this section, we review the basic properties of meromorphic functions of
class A and prove some results on the value distribution of such functions and their

derivatives.

Definition 10 A meromorphic function f is of class A if it satisfies

Nr f) + N(r, %) —S(r, f).

Remark. Meromorphic functions f of class A contain all meromorphic functions

f satisfying either §(0, f) = d(co, f) =1 or ©(0, f) = O(o0, f) = 1.

Lemma 4.1 Let f € A and k € N. Then
(i) T(r, £7) = S(r, f).

(i) T(r, ) = T(r, f) + S(r.f).

(iii) f® € A.

Proof. Since f(z) € A, we have N(r, %) = S(r, f) and N(r, f) = S(r, f).

() () e ()

<k {N(r, fI+N (7", %)} +S(r, f)

Obviously,

So, (i) holds. Note that

NnNUSTQi?)+Hnﬁ§Tmﬁ+smﬁ,
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and
T(r, f) < T(r. f¥) + T ( %)

=T, fPY+T (r, —) +O(1)
=T(r, f) +5(r, f).

We get T(r, f®) = T(r, f) + S(r, f). Hence, (ii) holds. Finally, since

We obtain N(r, f®)) + N (7", ﬁ) = S(r, f®). That is (iii) a

Now, we can generalize Theorem 1.3 through Theorem 1.6 to the case of mero-

morphic functions of class A as follows.

Theorem 4.2 If f(z) is a transcendental entire function of class A, k and n are

n

two positive integers, then f*)(2)f(2)" assumes all finite values except possibly zero

infinitely often.

Proof. Given a nonzero complex number a and consider the function

_ e

a

¥(2)

By Nevanlinna’s second fundamental theorem,

T(r,0) <N (r, %) +N (r,

:N(r,%) +N(r,¢il> +5(r, ¢).
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By the definition of v and lemma 4.1, we have

N <r, %) <N (r, %) + Ny (r, %) (4.2)

Therefore, 1(z) = 1, that is, f*)(2)f(2)" = a, has infinitely many roots. a

Theorem 4.3 If f(z) is a transcendental meromorphic function of class A, k and
n are two positive integers, then f(k)(z)f(z)" assume all finite values except possibly

zero infinitely often.

Proof. Given a nonzero complex number a and consider the function

_ e

a

¥(2)

As in the proof in Theorem 4.2, we have the following inequalities,

T(r¢) <N (r, i) Y (r, ﬁ) N (r0) + S(r, 1), (4.3)
N (r, i) <N (r, %) + Ny (7’, %) (4.4)
< S(r, f).

By the definition of class A,

N(r,¢) =N(r,f) = S(r,f)

Therefore, ¥(z) = 1, that is, f*)(2)f(2)" = a, has infinitely many roots. a

Theorem 4.4 Let f(z) be a transcendental meromorphic function of class A and

set
p(z) = fP(z) —af(2)",
where k, n > 3 are integers and a is a nonzero complex number, Then p(z) assumes

all finite values infinitely often.
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Proof. Let b be an arbitrary complex number and consider the function

B fR) —p
Coaf(x)m

Note that S(r,v) = o(T'(r, f)) as r — oo possibly outside a set of finite linear

¥(2)

measure.

Since the poles and zeros of ¥(z) occur only at the zeros of f*®)(z) — b up to

S(r, f). If f®)(z5) —b =0, then z is counted in 7(r, ¥) + 7 (r, i) at most once. By

lemma 4.1 and the definition of class A, we have

N(r, 1) +N(fr, %}) <N (r, ﬁ) + S(r, f)
< T (r, fM) +S(r, f)

=T(r, f)+ S(r, f). (4.5)

Then By Nevanlinna’s second fundamental theorem and (4.5),

ﬁ) + S(r, )

<T@, f)+S(r f)+ N (r, ﬁ) + S(r, ). (4.6)

T(r,4) < N(r,yp) + N <7", %) +N (7",

On the other hand,

nT(r, f)=T(r, f")
B . f(kr) b
- ( - )
<T(r, f?)+T(r,¢) +0(1)
<T(r,f)+T(r,v) +0Q)

Y esten

=2T(r,f) + N (T,

Therefore, we obtain

(n—2)T(r, ) <N ( ﬁ) S0 ).

Since n > 3 ,1(z) = 1, that is, p(z) = b, has infinitely many roots. a
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Theorem 4.5 Let f(z) be a transcendental meromorphic function of class A and
ao(2),...,an(z) be small functions of f. Set

V() = 2wl

If 6(0, f) + O(o0, f) > 1, then ¥ (2) assumes all finite values except possibly zero

infinitely often or else 1(z) is identically constant.

Proof. Since f is a meromorphic function of class A , we have

N (7", %) N f) = S(r, f). (@)

By Theorem 3.3, we get

T(r,f) < N(r,f)+ N (r, %) + N (r, ! ) - Ny (r, i,) +S(r, f)

(7", ﬁ) +8(r, f).

=

<
Hence, ¥(z) = 1 has infinitely many roots. For arbitrary nonzero complex

number w, the above proof shows that ¢ (z)/w = 1 has infinitely many roots, that

is, ¥(z) = w has infinitely many roots. a
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