## 4 Value Distribution of Meromorphic Functions in class $\mathcal{A}$ with Their Derivatives

In this section, we review the basic properties of meromorphic functions of class $\mathcal{A}$ and prove some results on the value distribution of such functions and their derivatives.

Definition 10 A meromorphic function $f$ is of class $\mathcal{A}$ if it satisfies

$$
\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f) .
$$

Remark. Meromorphic functions $f$ of class $\mathcal{A}$ contain all meromorphic functions $f$ satisfying either $\delta(0, f)=\delta(\infty, f)=1$ or $\Theta(0, f)=\Theta(\infty, f)=1$.

Lemma 4.1 Let $f \in \mathcal{A}$ and $k \in \mathbb{N}$. Then
(i) $T\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)$.
(ii) $T\left(r, f^{(k)}\right)=T(r, f)+S(r . f)$.
(iii) $f^{(k)} \in \mathcal{A}$.

Proof. Since $f(z) \in \mathcal{A}$, we have $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$ and $\bar{N}(r, f)=S(r, f)$.
Obviously,

$$
\begin{aligned}
T\left(r, \frac{f^{(k)}}{f}\right) & =N\left(r, \frac{f^{(k)}}{f}\right)+m\left(r, \frac{f^{(k)}}{f}\right) \\
& \leq k\left\{\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right\}+S(r, f) \\
& =S(r, f)
\end{aligned}
$$

So, (i) holds. Note that

$$
T\left(r, f^{(k)}\right) \leq T\left(r, \frac{f^{(k)}}{f}\right)+T(r, f) \leq T(r, f)+S(r, f)
$$

and

$$
\begin{aligned}
T(r, f) & \leq T\left(r, f^{(k)}\right)+T\left(r, \frac{f}{f^{(k)}}\right) \\
& =T\left(r, f^{(k)}\right)+T\left(r, \frac{f^{(k)}}{f}\right)+O(1) \\
& =T\left(r, f^{(k)}\right)+S(r, f)
\end{aligned}
$$

We get $T\left(r, f^{(k)}\right)=T(r, f)+S(r, f)$. Hence, (ii) holds. Finally, since

$$
\begin{aligned}
\bar{N}\left(r, f^{(k)}\right) & =\bar{N}(r, f)=S(r, f)=S\left(r, f^{(k)}\right), \\
\bar{N}\left(r, \frac{1}{f^{(k)}}\right) & \leq \bar{N}\left(r, \frac{f}{f^{(k)}}\right)+\bar{N}\left(r, \frac{1}{f}\right) \\
& \leq T\left(r, \frac{f}{f^{(k)}}\right)+S(r, f) \\
& =S(r, f)=S\left(r, f^{(k)}\right),
\end{aligned}
$$

We obtain $\bar{N}\left(r, f^{(k)}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)=S\left(r, f^{(k)}\right)$. That is (iii)
Now, we can generalize Theorem 1.3 through Theorem 1.6 to the case of meromorphic functions of class $\mathcal{A}$ as follows.

Theorem 4.2 If $f(z)$ is a transcendental entire function of class $\mathcal{A}, k$ and $n$ are two positive integers, then $f^{(k)}(z) f(z)^{n}$ assumes all finite values except possibly zero infinitely often.

Proof. Given a nonzero complex number $a$ and consider the function

$$
\psi(z)=\frac{f^{(k)}(z) f(z)^{n}}{a}
$$

By Nevanlinna's second fundamental theorem,

$$
\begin{align*}
T(r, \psi) & \leq \bar{N}\left(r, \frac{1}{\psi}\right)+\bar{N}\left(r, \frac{1}{\psi-1}\right)+\bar{N}(r, \psi)+S(r, \psi)  \tag{4.1}\\
& =\bar{N}\left(r, \frac{1}{\psi}\right)+\bar{N}\left(r, \frac{1}{\psi-1}\right)+S(r, \psi)
\end{align*}
$$

By the definition of $\psi$ and lemma 4.1, we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{\psi}\right) & \leq \bar{N}\left(r, \frac{1}{f}\right)+N_{0}\left(r, \frac{1}{f^{(k)}}\right)  \tag{4.2}\\
& \leq N_{0}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \\
& \leq S(r, f)
\end{align*}
$$

Therefore, $\psi(z)=1$, that is, $f^{(k)}(z) f(z)^{n}=a$, has infinitely many roots.

Theorem 4.3 If $f(z)$ is a transcendental meromorphic function of class $\mathcal{A}, k$ and $n$ are two positive integers, then $f^{(k)}(z) f(z)^{n}$ assume all finite values except possibly zero infinitely often.

Proof. Given a nonzero complex number $a$ and consider the function

$$
\psi(z)=\frac{f^{(k)}(z) f(z)^{n}}{a}
$$

As in the proof in Theorem 4.2, we have the following inequalities,

$$
\begin{align*}
T(r, \psi) \leq \bar{N}\left(r, \frac{1}{\psi}\right) & +\bar{N}\left(r, \frac{1}{\psi-1}\right)+\bar{N}(r, \psi)+S(r, \psi),  \tag{4.3}\\
\bar{N}\left(r, \frac{1}{\psi}\right) & \leq \bar{N}\left(r, \frac{1}{f}\right)+N_{0}\left(r, \frac{1}{f^{(k)}}\right)  \tag{4.4}\\
& \leq S(r, f) .
\end{align*}
$$

By the definition of class $\mathcal{A}$,

$$
\bar{N}(r, \psi)=\bar{N}(r, f)=S(r, f)
$$

Therefore, $\psi(z)=1$, that is, $f^{(k)}(z) f(z)^{n}=a$, has infinitely many roots.

Theorem 4.4 Let $f(z)$ be a transcendental meromorphic function of class $\mathcal{A}$ and set

$$
\varphi(z)=f^{(k)}(z)-a f(z)^{n},
$$

where $k, n \geq 3$ are integers and $a$ is a nonzero complex number, Then $\varphi(z)$ assumes all finite values infinitely often.

Proof. Let $b$ be an arbitrary complex number and consider the function

$$
\psi(z)=\frac{f^{(k)}-b}{a f(z)^{n}} .
$$

Note that $S(r, \psi)=o(T(r, f))$ as $r \rightarrow \infty$ possibly outside a set of finite linear measure.

Since the poles and zeros of $\psi(z)$ occur only at the zeros of $f^{(k)}(z)-b$ up to $S(r, f)$. If $f^{(k)}\left(z_{0}\right)-b=0$, then $z_{0}$ is counted in $\bar{n}(r, \psi)+\bar{n}\left(r, \frac{1}{\psi}\right)$ at most once. By lemma 4.1 and the definition of class $\mathcal{A}$, we have

$$
\begin{align*}
\bar{N}(r, \psi)+\bar{N}\left(r, \frac{1}{\psi}\right) & \leq \bar{N}\left(r, \frac{1}{f^{(k)}-b}\right)+S(r, f) \\
& \leq T\left(r, f^{(k)}\right)+S(r, f) \\
& =T(r, f)+S(r, f) . \tag{4.5}
\end{align*}
$$

Then By Nevanlinna's second fundamental theorem and (4.5),

$$
\begin{align*}
T(r, \psi) & \leq \bar{N}(r, \psi)+\bar{N}\left(r, \frac{1}{\psi}\right)+\bar{N}\left(r, \frac{1}{\psi-1}\right)+S(r, \psi) \\
& \leq T(r, f)+S(r, f)+\bar{N}\left(r, \frac{1}{\psi-1}\right)+S(r, \psi) . \tag{4.6}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
n T(r, f) & =T\left(r, f^{n}\right) \\
& =T\left(r, \frac{f^{(k)}-b}{a \psi}\right) \\
& \leq T\left(r, f^{(k)}\right)+T(r, \psi)+O(1) \\
& \leq T(r, f)+T(r, \psi)+O(1) \\
& =2 T(r, f)+\bar{N}\left(r, \frac{1}{\psi-1}\right)+S(r, f) .
\end{aligned}
$$

Therefore, we obtain

$$
(n-2) T(r, f) \leq \bar{N}\left(r, \frac{1}{\psi-1}\right)+S(r, f) .
$$

Since $n \geq 3, \psi(z)=1$, that is, $\varphi(z)=b$, has infinitely many roots.

Theorem 4.5 Let $f(z)$ be a transcendental meromorphic function of class $\mathcal{A}$ and $a_{0}(z), \ldots, a_{n}(z)$ be small functions of $f$. Set

$$
\psi(z)=\sum_{i=0}^{n} a_{i}(z) f^{(i)}(z) .
$$

If $\delta(0, f)+\Theta(\infty, f)>1$, then $\psi(z)$ assumes all finite values except possibly zero infinitely often or else $\psi(z)$ is identically constant.

Proof. Since $f$ is a meromorphic function of class $\mathcal{A}$, we have

$$
\begin{equation*}
N\left(r, \frac{1}{f}\right)+\bar{N}(r, f)=S(r, f) . \tag{4.7}
\end{equation*}
$$

By Theorem 3.3, we get

$$
\begin{aligned}
T(r, f) & <\bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{\psi-1}\right)-N_{0}\left(r, \frac{1}{\psi^{\prime}}\right)+S(r, f) \\
& <\bar{N}\left(r, \frac{1}{\psi-1}\right)+S(r, f) .
\end{aligned}
$$

Hence, $\psi(z)=1$ has infinitely many roots. For arbitrary nonzero complex number $w$, the above proof shows that $\psi(z) / w=1$ has infinitely many roots, that is, $\psi(z)=w$ has infinitely many roots.

