Chapter 3

Markov Modulated Bernoulli Process of Arrivals of VBR Cells

We assume VBR traffic is modeled by MMBP. We give a short review of MMBP [11]. Let $p\left(s_{k}\right)$ denote the probability that s_{k} changes at the end of the k th frame given that at the beginning of the k th frame it is in status s_{k}. Since the VBR cell arrival process is an MMBP, $\left\{s_{k}=0,1\right\}$ is a two state Markov chain. Then described is the diagram in Figure 3.1.

Figure 3.1: An MMBP process

It can be written from the definition of $p\left(s_{k}\right)$ that

$$
\begin{array}{ll}
\operatorname{Pr}\left\{s_{k+1}=1 \mid s_{k}=0\right\}=p(0) ; & \operatorname{Pr}\left\{s_{k+1}=0 \mid s_{k}=0\right\}=1-p(0) ; \\
\operatorname{Pr}\left\{s_{k+1}=0 \mid s_{k}=1\right\}=p(1) ; & \operatorname{Pr}\left\{s_{k+1}=1 \mid s_{k}=1\right\}=1-p(1) .
\end{array}
$$

Let $y\left(s_{k}\right)$ be the stationary probability of MMBP of VBR in status $s_{k}, s_{k}=0$ or 1 . Then the stationary probability of MMBP is

$$
\begin{equation*}
y(0)=\frac{p(1)}{p(0)+p(1)}, \quad y(1)=\frac{p(0)}{p(0)+p(1)} . \tag{3.1}
\end{equation*}
$$

where it satisfies,

$$
\begin{gather*}
(y(0), y(1))\left[\begin{array}{cc}
1-p(0) & p(0) \\
p(1) & 1-p(1)
\end{array}\right]=(y(0), y(1)) \tag{3.2}\\
y(0)+y(1)=1 \tag{3.3}
\end{gather*}
$$

The results of (3.1) is computed by (3.2) and (3.3). Assume the transmission on line has a constant rate. Notice there is only a cell difference of the buffer size of VBR which we consider it implicitly in the modeling. Let $v\left(s_{k}\right)$ represent the probability of VBR arrives in one slot in status s_{k}. We can derive the probability of VBR occurring at one slot that is

$$
\begin{aligned}
v(0) & =\operatorname{Pr}\left\{\mathrm{VBR} \text { arrives in one slot in status } s_{k}=0\right\} \\
& =\operatorname{Pr}\left\{\mathrm{VBR} \text { arrives in one slot } \mid s_{k}=0\right\} \operatorname{Pr}\left\{s_{k}=0\right\} \\
& =r(0) y(0)
\end{aligned}
$$

similarly,

$$
\begin{aligned}
v(1) & =\operatorname{Pr}\left\{\mathrm{VBR} \text { arrives in one slot in status } s_{k}=1\right\} \\
& =\operatorname{Pr}\left\{\mathrm{VBR} \text { arrives in one slot } \mid s_{k}=1\right\} \operatorname{Pr}\left\{s_{k}=1\right\} \\
& =r(1) y(1) .
\end{aligned}
$$

Let $\phi\left(s_{k}\right)$ be the probability of the status is in s_{k} given that a VBR cell arrives. We have

$$
\begin{aligned}
\phi(0) & =\operatorname{Pr}\left\{\text { the status is in } s_{k}=0, \text { given that a VBR cell arrives }\right\} \\
& =\frac{\operatorname{Pr}\left\{\text { a VBR cell arrives in a slot and is in } s_{k}=0\right\}}{\operatorname{Pr}\{\text { a VBR cell arrives in a slot }\}} \\
& =\frac{r(0) y(0)}{r(0) y(0)+r(1) y(1)} \\
& =\frac{r(0) p(1)}{r(0) p(1)+r(1) p(0)} .
\end{aligned}
$$

Similarly, it gives

$$
\begin{aligned}
\phi(1) & =\operatorname{Pr}\left\{\text { the status is in } s_{k}=1, \text { given that } \mathrm{VBR} \text { cell arrives }\right\} \\
& =\frac{\operatorname{Pr}\left\{\mathrm{VBR} \text { cell arrives in a slot and is in } s_{k}=1\right\}}{\operatorname{Pr}\{\mathrm{VBR} \text { cell arrives in a slot }\}} \\
& =\frac{r(1) y(1)}{r(0) y(0)+r(1) y(1)} \\
& =\frac{r(1) p(0)}{r(0) p(1)+r(1) p(0)} .
\end{aligned}
$$

Next, we study inter-arrival time of VBR cells. Let N be the inter-arrival time of a VBR cell, the time interval to next arrival and $N_{s_{k}}$ be that given the MMBP is in s_{k}. We have

$$
N_{0}= \begin{cases}1, & \text { with probability }(1-p(0)) r(0)+p(0) r(1) \\ 1+N_{0}, & \text { with probability }(1-p(0))(1-r(0)) \\ 1+N_{1}, & \text { with probability } p(0)(1-r(1))\end{cases}
$$

and

$$
N_{1}= \begin{cases}1, & \text { with probability }(1-p(1)) r(1)+p(1) r(0) \\ 1+N_{1}, & \text { with probability }(1-p(1))(1-r(1)) \\ 1+N_{0}, & \text { with probability } p(1)(1-r(0))\end{cases}
$$

After some manipulations, the z-transform of N_{0} and N_{1} are

$$
N_{0}(z)=\frac{(1-r(1)) r(0)(p(0)+p(1)-1) z^{2}+[(1-p(0)) r(0)+p(0) r(1)] z}{(1-r(1))(1-r(0))(3-p(0)-p(1)) z^{2}-[(1-p(1))(1-r(1))+(1-p(0))(1-r(0))] z+1}
$$

and

$$
N_{1}(z)=\frac{(1-r(0)) r(1)(p(0)+p(1)-1) z^{2}+[(1-p(1)) r(1)+p(1) r(0)] z}{(1-r(1))(1-r(0))(3-p(0)-p(1)) z^{2}-[(1-p(1))(1-r(1))+(1-p(0))(1-r(0))] z+1}
$$

Because

$$
\operatorname{Pr}\{N=n\}=\operatorname{Pr}\{N=n \mid s=0\} \operatorname{Pr}\{s=0\}+\operatorname{Pr}\{N=n \mid s=1\} \operatorname{Pr}\{s=1\},
$$

it gives

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\{N=n\} z^{n}=\sum_{n=1}^{\infty} \operatorname{Pr}\{N=n \mid s=0\} z^{n} \operatorname{Pr}\{s=0\}+\sum_{n=1}^{\infty} \operatorname{Pr}\{N=n \mid s=1\} z^{n} \operatorname{Pr}\{s=1\}
$$

and

$$
\begin{aligned}
N(z) & =N_{0}(z) \operatorname{Pr}\{s=0\}+N_{1}(z) \operatorname{Pr}\{s=1\} \\
& =N_{0}(z) \phi(0)+N_{1}(z) \phi(1) \\
& =\frac{b_{4} z^{2}+b_{3} z}{b_{2} z^{2}+b_{1} z+b_{0}}
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{0}=r(0) p(1)+r(1) p(0), \\
& b_{1}=-[(1-p(1))(1-r(1))+(1-p(0))(1-r(0))](r(0) p(1)+r(1) p(0)), \\
& b_{2}=(1-r(1))(1-r(0))(3-p(0)-p(1))(r(0) p(1)+r(1) p(0)), \\
& b_{3}=r^{2}(0) p(1)+r^{2}(1) p(0)-\left[r^{2}(0)+r^{2}(1)\right] p(0) p(1)+2 p(1) p(0) r(1) r(0), \\
& b_{4}=(p(0)+p(1)-1)\left[r^{2}(0) p(1)(1-r(1))+r^{2}(1) p(0)(1-r(0))\right] .
\end{aligned}
$$

Thus, we have

$$
E[N]=\left.\frac{d N(z)}{d z}\right|_{z=1}=\frac{p(0)+p(1)}{p(1) r(0)+p(0) r(1)}
$$

and

$$
E\left[N^{2}\right]=\left.\frac{d^{2} N(z)}{d z^{2}}\right|_{z=1}+\left.\frac{d N(z)}{d z}\right|_{z=1} .
$$

Then the squared coefficient of variation is $c_{s q}^{2}=\frac{2\left[(p(0)+p(1))^{2}+(p(0) r(0)+p(1) r(1))(1-p(0)-p(1))\right]}{E[N](p(0)+p(1))[p(1) r(0)+p(0) r(1)+r(0) r(1)(1-p(0)-p(1))]}-\frac{1}{E[N]}-1$.

Since

$$
c_{s q}^{2}=\frac{V[N]}{E^{2}[N]},
$$

then we have

$$
V[N]=c_{s q}^{2} E^{2}[N] .
$$

