Chapter 5

Nonlinear Second Order Elliptic

Equations in An Exterior Domain

5.1 Introduction

We consider the nonlinear second order elliptic equation
(PE) Au+ f(xz,u,Vu) =0. z € Ga,

in an exterior domain G4 = {z € R" | |z| > A}, where n > 3 and A > 0. We try to
prove that under quite general assumptions on function f, the equation (PFE) has a
positive solution in Gg = {x € R" | |x| > B} for some B > A, that is, there exists
a function u € C?(Gp) such that u satisfies (PE) at every point x € Gg. A lower
solution of (PE), is a function u € C*(Gp) satisfies Au + f(z,u, Vu) > 0, and an
upper solution of (PE) is a function u € C*(Gp) satisfies Au + f(x,u, Vu) < 0.

In 1997, A. Constantin [18, 19] proved the existence of the equation
(PE*) Au+ p(z,u) + q(|z])x - Vu = 0.

in the exterior domain G 4 as follows:
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Theorem 5.1.1 ([18, 19]) Assume that p is locally Hélder continuous in G4 x R
([28]) and q is of C*(RY). If

0 < pla,t) < a(lz)yuw(t), t € R, ¢ € R",

where a € C(RT,RT) and w € CH{RT,R") with w(0) = 0, then there is a positive
solution u(x) to (PE*) on G for some B > A with limyg|_.c u(x) = 0 provided q

18 bounded and

Kﬁwﬁ+mmw<m.

We shall extend Theorem 5.1.1 to a more general result in the next section.

5.2 Construction of Upper and Lower Solutions

Denote S = {z € R" | |x| = B} for B > A. In order to prove our main result,

we need the following excellent lemma, see Noussair and Swanson [55].

Lemma 5.2.1 Assume that f is locally Holder continuous in G4 x R xR™. If there
are a positive lower solution w and a positive upper solution v to (PE) in G such
that w(x) < wv(z) for allx € GgU Sg, then (PE) has a solution u in G g satisfying

w(z) <u(zx) <ov(z)in GgU S and u(x) = v(z) on Sp.
We are now in a position to state and prove our main result.

Theorem 5.2.2 Suppose that [ is locally Holder continuous in G4 X R x R™ and
satisfies

0< f(z,t,2) < k(|z|,t) + g(|z],x- 2), t e RT, 2 € R", 2z € R,

where k and g satisfy the following conditions:
(A1g) ke CRT xRY RY) with k(-,0) = 0 satisfies a Lipschitz condition with re-
spect to the second variable, that is, there exists a bounded function M; € L'(R™; (0, 00))
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such that |k(a,b)| < Mi(a)|b] on RT x RT,

(A1) g€ C(RT xR, R) with g(-,0) = 0 satisfies the following condition: there ex-
ists a bounded function My € L*(R™;(0,00)) such that g(a,b) < My(a)b on RT x R.
Then there is a positive solution u(zx) to (PE) on Gp for some B > A with
iMoo u(z) = 0 4f [ s[Mi(s) + Ma(s)]ds < oo.

Proof. Let us consider the differential equation
(") " k() + g ry) = 0, 0 > 1 (5.2.1)

where

(e.) k(a,b)  if b>0,
o\a, =
—k(a, b)) if b<O,

Clearly, ko still satisfies (A1). The change of variables

r=B(s) = (—59)7, h(s) == sy(B(s)

n—2

transforms (5.2.1) into

sy (560, )+ P (56000 200 - 70 ) <o

It follows from (A1g) and (A;;) that, for each s € RT, we have

ko (ﬁ(s), hTS))’ < My (8(s)) @ for @ <2, (5.2.2)
and
o (566100 =209 - 505 ) < anoio -2 - 2L 23y
From (5.2.1), (5.2.2) and (5.2.3), it is natural to consider
119) + 25060 ||+ araate {w o) - M} p01506) o
Let
o) — L BEIGME) | FOBMEE) |

n—2 S S



It follows from [° s[M;(s) + Ma(s)]ds < oo that

/ c(s)ds < oo and / sb(s) < oo,
1 1

/ / b(s)dsdt < 0.
1 Ji

Let Ty > max{1, (n — 2)A""2} satisfy

QXﬁ*W/‘/b@@ﬁgl
To t

which yields

Now, we will show that
h"(s) + c(s)h'(s) + b(s)h(s) =0, s > To (5.2.4)

has a solution h(s) such that |h(s) — 1] < 1 for all s > Ty and limg . h(s) =
1. Consider the Banach space X = {z € C([Ty,0),R) | x(t) is bounded} with
supremum norm. Let K = {x € X | |z(t)—1| <1, t > Ty} and define the operator
F:K — X by

(Fx)(t) =1— / els C(g)dg/ e~ I Q) 1 (r)drds, t > Ty,
t s
Since 0 < z(t) <2 for x € K and t > Tj,

OS/ efsmc(g)dg/ e_frmc(g)dgb(r)x(r)drds
t

< QeQI;SC(S)dé/ / b(r)drds
t s

<1, t>Tp.

Thus F(K) C K. Next, we prove that F' is compact. Let {x,}>°; be a sequence in
K. Denote

Fals) = el C(g)dé/ eI OLY (g, (r)dr, for s > Ty,

Then f, € L'([Ty, ), R) satisfies lim,_ fpoo |fn(s)|ds = 0 and

/ |fu(s)|ds < 262f;§0(£)d5/ / b(s)dsdr <1, n > 1.
T To

0 t
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By the Lebesgue dominated convergence theorem,

oo ps+d
lim/ / e~ I OEp(r)drds = 0
6—0 Ty s

and

lim |efors O _ o f7 (&) / b(r)drds = 0.

6—0 TO

Therefore, for any given € > 0, there is a v > 0 such that

o oo ps+d -
2¢/10 C(g)dé/ / e~ AO%p(r)drds < ; 0] <4,
To

S

and

97 cl€)ds / |55 (O _ o[ (e / b(r)drds < % 0] <.
To s

Since 0 < z,(t) < 2 for all t > Ty and n > 1, the previous choice of - enables us to
deduce that

/OO | fu(s+6) — fu(s)] Sgefﬁg c(&)d¢ /OO

To To

e [

To

eI s e _ o el / b(r)drds
<€, n>1, 9] <.

By Riesz’s theorem (see [53]), the sequence { [, }22, is compact in L*([Tp, 00), R).

It follows from

Fa,(t) =1 —/ fu(s)ds, t > Ty, n>1
t

that {Fz,}>; is compact in K. This implies that F' is a compact mapping. By
the Schauder fixed-point theorem, the mapping F' has a fixed point h € K. It
is easy to verify that h is a nonnegative solution of (5.2.4) in [T, 00) and sat-
isfies limg .o h(s) = 1. Take T} > Ty so that h(s) > 0 for s > T) and let
B = (ﬁTl)ﬁ > A. Define v(x) = y(r) = @ for r = |xz| > B, where r = [3(s).
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Since lim,_,o0 h(s) = 1, limjz|—.0c v(z) = 0. Hence, v(z) > 0 on Sp U Gp and

Av + f(a,v(z), Vo(z)) <" y) + " k(ry) + 1" g(rry)

= (3) + 5 A (B ko(8(s), )
Bt b

+ g 0(s) (0= 2 s) ~ 7o)

<h"(s) + c(s)h'(s) + b(s)h(s)

=0, r > B,

which implies v is an upper solution of (PFE) on Gg. Clearly, w(x) = 0 satisfies
Aw(z) + f(z,w(x), Vw(z)) >0, z € Gp.
By the Lemma 5.2.1 we see that (PFE) has a solution u(z) in G with w(x) <

u(z) < w(zx) for |x| > B and u(z) = v(z) for |z| = B.

Finally, we will show that u is positive. We choose a positive number k > 5%5.

For any given ¢ > 0, we define

ue = inf {u(z)} +ee ™ 2 e SpUGE,
z€SR

where u(z) is a solution of (E) in Gp. If x € Gp, then it follows from
(Au)(z) = e(4k?|z]* — 2kn)e *P
> 02> —f(z,u, Vu)

= (A(u+ ee™ ) (@),

that (A(u + ee " — u,.))(x) < 0. On the other hand, by using the fact |z| > B,
we get

u(z) + e * —u(z) >0, z € Gp.

Since u(z) > 0 on G and u.(z) is bounded on Gp, the function
ze(z) = u(z) + ee ¥ —u (), x € GpU Sk
has a finite infimum in Gg U Sg. For any C' > B,

inf z.(z) = min z.(x) on Ggec ={x € R" | B < |z| < C}.
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If there exists a xp € {z € R" | B < |z| < C} with z.(z¢) = mingeq,.{z(z)},
then (Az.)(x¢) > 0, which is a contradiction. Thus, min,cg,. z.(z) lies on {x €

R™ | |z| = B} for all C' > B. It follows from

. e
edilis, ) = fo e(0) 20

that

ue(x) < wulx) + ee’kBQ, r € GpUSE.

Letting € — 0 in the previous relation, we get

_ - B _ h((n—2)B"2)  WTy)
U(ZL‘) = :vlen.S'fB U(ZL') - :Dl€nnS'fB U(J;) N y(B) B (n - 2)Bn—2 - Tl

>0, z € Gpg,

and this shows that u(x) is positive in G. It follows from u(z) < v(z) for x| > B

and lim|;| oo v(2) = 0 that lim|; . u(x) = 0. This completes the proof. a

Remark. Let f(z,u,Vu) = p(x,u) + q(|x|)x - Vu, where p is locally Hélder con-

tinuous in G4 X R satisfying
0 < pla.?) < allal)ult), t € R, € R".

Here a € C(RT,R"), w € CY(RT,R") with w(0) = 0, ¢ is a bounded C* function
and [ s[a(s) +|q(s)|]ds < oo. Moreover, we let k(|z|,t) = a(|z|)w(t) and g(|z|,z -
z) = q(|z|)x - z, then our Theorem 5.2.2 is reduced to Theorem 5.1.1.
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