Chapter 5

Nonlinear Second Order Elliptic Equations in An Exterior Domain

5.1 Introduction

We consider the nonlinear second order elliptic equation

$$
(P E) \Delta u+f(x, u, \nabla u)=0 . x \in G_{A},
$$

in an exterior domain $G_{A}=\left\{x \in \mathbb{R}^{n}| | x \mid>A\right\}$, where $n \geq 3$ and $A>0$. We try to prove that under quite general assumptions on function f, the equation $(P E)$ has a positive solution in $G_{B}=\left\{x \in \mathbb{R}^{n}| | x \mid>B\right\}$ for some $B \geq A$, that is, there exists a function $u \in C^{2}\left(G_{B}\right)$ such that u satisfies $(P E)$ at every point $x \in G_{B}$. A lower solution of $(P E)$, is a function $u \in C^{2}\left(G_{B}\right)$ satisfies $\Delta u+f(x, u, \nabla u) \geq 0$, and an upper solution of (PE) is a function $u \in C^{2}\left(G_{B}\right)$ satisfies $\Delta u+f(x, u, \nabla u) \leq 0$.

In 1997, A. Constantin [18, 19] proved the existence of the equation

$$
\left(P E^{*}\right) \Delta u+p(x, u)+q(|x|) x \cdot \nabla u=0 .
$$

in the exterior domain G_{A} as follows:

Theorem 5.1.1 ($[18,19]$) Assume that p is locally Hölder continuous in $G_{A} \times \mathbb{R}$ ([28]) and q is of $C^{1}\left(\mathbb{R}^{+}\right)$. If

$$
0 \leq p(x, t) \leq a(|x|) w(t), t \in \mathbb{R}^{+}, x \in \mathbb{R}^{n}
$$

where $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$and $w \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$with $w(0)=0$, then there is a positive solution $u(x)$ to $\left(P E^{*}\right)$ on G_{B} for some $B \geq A$ with $\lim _{|x| \rightarrow \infty} u(x)=0$ provided q is bounded and

$$
\int_{0}^{\infty} s[a(s)+|q(s)|] d s<\infty
$$

We shall extend Theorem 5.1.1 to a more general result in the next section.

5.2 Construction of Upper and Lower Solutions

Denote $S_{B}=\left\{x \in \mathbb{R}^{n}| | x \mid=B\right\}$ for $B \geq A$. In order to prove our main result, we need the following excellent lemma, see Noussair and Swanson [55].

Lemma 5.2.1 Assume that f is locally Hölder continuous in $G_{A} \times \mathbb{R} \times \mathbb{R}^{n}$. If there are a positive lower solution w and a positive upper solution v to $(P E)$ in G_{B} such that $w(x) \leq v(x)$ for all $x \in G_{B} \cup S_{B}$, then $(P E)$ has a solution u in G_{B} satisfying $w(x) \leq u(x) \leq v(x)$ in $G_{B} \cup S_{B}$ and $u(x)=v(x)$ on S_{B}.

We are now in a position to state and prove our main result.

Theorem 5.2.2 Suppose that f is locally Hölder continuous in $G_{A} \times \mathbb{R} \times \mathbb{R}^{n}$ and satisfies

$$
0 \leq f(x, t, z) \leq k(|x|, t)+g(|x|, x \cdot z), t \in \mathbb{R}^{+}, x \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}
$$

where k and g satisfy the following conditions:
$\left(A_{10}\right) \quad k \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right)$with $k(\cdot, 0)=0$ satisfies a Lipschitz condition with respect to the second variable, that is, there exists a bounded function $M_{1} \in L^{1}\left(\mathbb{R}^{+} ;(0, \infty)\right)$
such that $|k(a, b)| \leq M_{1}(a)|b|$ on $\mathbb{R}^{+} \times \mathbb{R}^{+}$,
$\left(A_{11}\right) \quad g \in C\left(\mathbb{R}^{+} \times \mathbb{R}, \mathbb{R}\right)$ with $g(\cdot, 0)=0$ satisfies the following condition: there exists a bounded function $M_{2} \in L^{1}\left(\mathbb{R}^{+} ;(0, \infty)\right)$ such that $g(a, b) \leq M_{2}(a) b$ on $\mathbb{R}^{+} \times \mathbb{R}$. Then there is a positive solution $u(x)$ to $(P E)$ on G_{B} for some $B \geq A$ with $\lim _{|x| \rightarrow \infty} u(x)=0$ if $\int_{0}^{\infty} s\left[M_{1}(s)+M_{2}(s)\right] d s<\infty$.

Proof. Let us consider the differential equation

$$
\begin{equation*}
\left(r^{n-1} y^{\prime}\right)^{\prime}+r^{n-1} k_{0}(r, y)+r^{n-1} g\left(r, r y^{\prime}\right)=0, r>1, \tag{5.2.1}
\end{equation*}
$$

where

$$
k_{0}(a, b):= \begin{cases}k(a, b) & \text { if } \quad b>0 \\ -k(a,|b|) & \text { if } \quad b \leq 0\end{cases}
$$

Clearly, k_{0} still satisfies $\left(A_{10}\right)$. The change of variables

$$
r=\beta(s):=\left(\frac{1}{n-2} s\right)^{\frac{1}{n-2}}, h(s):=s y(\beta(s))
$$

transforms (5.2.1) into
$h^{\prime \prime}(s)+\frac{1}{n-2} \beta^{\prime}(s) \beta(s) k_{0}\left(\beta(s), \frac{h(s)}{s}\right)+\frac{\beta(s)^{2}}{(n-2)^{2} s} g\left(\beta(s),(n-2) h^{\prime}(s)-\frac{h(s)}{\beta(s)^{n-2}}\right)=0$.
It follows from $\left(A_{10}\right)$ and $\left(A_{11}\right)$ that, for each $s \in \mathbb{R}^{+}$, we have

$$
\begin{equation*}
\left|k_{0}\left(\beta(s), \frac{h(s)}{s}\right)\right| \leq M_{1}(\beta(s))\left|\frac{h(s)}{s}\right| \text { for }\left|\frac{h(s)}{s}\right| \leq 2 \tag{5.2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\beta(s),(n-2) h^{\prime}(s)-\frac{h(s)}{\beta(s)^{n-2}}\right) \leq M_{2}(\beta(s))\left\{(n-2) h^{\prime}(s)-\frac{h(s)}{\beta(s)^{n-2}}\right\} \tag{5.2.3}
\end{equation*}
$$

From (5.2.1), (5.2.2) and (5.2.3), it is natural to consider

$$
h^{\prime \prime}(s)+\frac{1}{n-2} \beta^{\prime}(s) \beta(s) M_{1}(\beta(s))\left|\frac{h(s)}{s}\right|+M_{2}(\beta(s))\left\{h^{\prime}(s)-\frac{h(s)}{s}\right\} \beta^{\prime}(s) \beta(s)=0 .
$$

Let

$$
\begin{gathered}
b(s)=\frac{1}{n-2} \frac{\beta^{\prime}(s) \beta(s) M_{1}(\beta(s))}{s}+\frac{\beta^{\prime}(s) \beta(s) M_{2}(\beta(s))}{s}, s \geq 1, \\
c(s)=\beta^{\prime}(s) \beta(s) M_{2}(\beta(s)), s \geq 1 .
\end{gathered}
$$

It follows from $\int_{0}^{\infty} s\left[M_{1}(s)+M_{2}(s)\right] d s<\infty$ that

$$
\int_{1}^{\infty} c(s) d s<\infty \text { and } \int_{1}^{\infty} s b(s)<\infty
$$

which yields

$$
\int_{1}^{\infty} \int_{t}^{\infty} b(s) d s d t<\infty
$$

Let $T_{0} \geq \max \left\{1,(n-2) A^{n-2}\right\}$ satisfy

$$
2 e^{2 \int_{T_{0}}^{\infty} c(\xi) d \xi} \int_{T_{0}}^{\infty} \int_{t}^{\infty} b(s) d s d t \leq 1
$$

Now, we will show that

$$
\begin{equation*}
h^{\prime \prime}(s)+c(s) h^{\prime}(s)+b(s) h(s)=0, s \geq T_{0} \tag{5.2.4}
\end{equation*}
$$

has a solution $h(s)$ such that $|h(s)-1| \leq 1$ for all $s \geq T_{0}$ and $\lim _{s \rightarrow \infty} h(s)=$ 1. Consider the Banach space $X=\left\{x \in C\left(\left[T_{0}, \infty\right), \mathbb{R}\right) \mid x(t)\right.$ is bounded $\}$ with supremum norm. Let $K=\left\{x \in X| | x(t)-1 \mid \leq 1, t \geq T_{0}\right\}$ and define the operator $F: K \rightarrow X$ by

$$
(F x)(t)=1-\int_{t}^{\infty} e^{\int_{s}^{\infty} c(\xi) d \xi} \int_{s}^{\infty} e^{-\int_{r}^{\infty} c(\xi) d \xi} b(r) x(r) d r d s, t \geq T_{0}
$$

Since $0 \leq x(t) \leq 2$ for $x \in K$ and $t \geq T_{0}$,

$$
\begin{aligned}
0 & \leq \int_{t}^{\infty} e^{\int_{s}^{\infty} c(\xi) d \xi} \int_{s}^{\infty} e^{-\int_{r}^{\infty} c(\xi) d \xi} b(r) x(r) d r d s \\
& \leq 2 e^{2 \int_{T_{0}}^{\infty} c(\xi) d \xi} \int_{t}^{\infty} \int_{s}^{\infty} b(r) d r d s \\
& \leq 1, t \geq T_{0} .
\end{aligned}
$$

Thus $F(K) \subseteq K$. Next, we prove that F is compact. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in K. Denote

$$
f_{n}(s)=e^{\int_{s}^{\infty} c(\xi) d \xi} \int_{s}^{\infty} e^{-\int_{r}^{\infty} c(\xi) d \xi} b(r) x_{n}(r) d r, \text { for } s \geq T_{0}
$$

Then $f_{n} \in L^{1}\left(\left[T_{0}, \infty\right), \mathbb{R}\right)$ satisfies $\lim _{p \rightarrow \infty} \int_{p}^{\infty}\left|f_{n}(s)\right| d s=0$ and

$$
\int_{T_{0}}^{\infty}\left|f_{n}(s)\right| d s \leq 2 e^{2 \int_{T_{0}}^{\infty} c(\xi) d \xi} \int_{T_{0}}^{\infty} \int_{t}^{\infty} b(s) d s d r \leq 1, n \geq 1
$$

By the Lebesgue dominated convergence theorem,

$$
\lim _{\delta \rightarrow 0} \int_{T_{0}}^{\infty} \int_{s}^{s+\delta} e^{-\int_{r}^{\infty} c(\xi) d \xi} b(r) d r d s=0
$$

and

$$
\lim _{\delta \rightarrow 0} \int_{T_{0}}^{\infty}\left|e^{\int_{s+\delta}^{\infty} c(\xi) d \xi}-e^{\int_{s}^{\infty} c(\xi) d \xi}\right| \int_{s}^{\infty} b(r) d r d s=0
$$

Therefore, for any given $\epsilon>0$, there is a $\gamma>0$ such that

$$
2 e^{\int_{T_{0}}^{\infty} c(\xi) d \xi} \int_{T_{0}}^{\infty} \int_{s}^{s+\delta} e^{-\int_{r}^{\infty} c(\xi) d \xi} b(r) d r d s<\frac{\epsilon}{2},|\delta| \leq \gamma
$$

and

$$
2 e^{\int_{T_{0}}^{\infty} c(\xi) d \xi} \int_{T_{0}}^{\infty}\left|e^{\int_{s+\delta}^{\infty} c(\xi) d \xi}-e^{\int_{s}^{\infty} c(\xi) d \xi}\right| \int_{s}^{\infty} b(r) d r d s<\frac{\epsilon}{2},|\delta| \leq \gamma .
$$

Since $0 \leq x_{n}(t) \leq 2$ for all $t \geq T_{0}$ and $n>1$, the previous choice of γ enables us to deduce that

$$
\begin{aligned}
\int_{T_{0}}^{\infty}\left|f_{n}(s+\delta)-f_{n}(s)\right| \leq & 2 e^{\int_{T_{0}}^{\infty} c(\xi) d \xi} \int_{T_{0}}^{\infty}\left|e^{\int_{s+\delta}^{\infty} c(\xi) d \xi}-e^{\int_{s}^{\infty} c(\xi) d \xi}\right| \int_{s}^{\infty} b(r) d r d s \\
& +2 e^{\int_{T_{0}}^{\infty} c(\xi) d \xi} \int_{T_{0}}^{\infty}\left|e^{\int_{s+\delta}^{\infty} c(\xi) d \xi}-e^{\int_{s}^{\infty} c(\xi) d \xi}\right| \int_{s}^{\infty} b(r) d r d s \\
< & <\epsilon, n \geq 1,|\delta|<\gamma
\end{aligned}
$$

By Riesz's theorem (see [53]), the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ is compact in $L^{1}\left(\left[T_{0}, \infty\right), \mathbb{R}\right)$. It follows from

$$
F x_{n}(t)=1-\int_{t}^{\infty} f_{n}(s) d s, t \geq T_{0}, n \geq 1
$$

that $\left\{F x_{n}\right\}_{n=1}^{\infty}$ is compact in K. This implies that F is a compact mapping. By the Schauder fixed-point theorem, the mapping F has a fixed point $h \in K$. It is easy to verify that h is a nonnegative solution of (5.2.4) in $\left[T_{0}, \infty\right)$ and satisfies $\lim _{s \rightarrow \infty} h(s)=1$. Take $T_{1}>T_{0}$ so that $h(s)>0$ for $s \geq T_{1}$ and let $B=\left(\frac{1}{n-2} T_{1}\right)^{\frac{1}{n-2}} \geq A$. Define $v(x)=y(r)=\frac{h(s)}{s}$ for $r=|x| \geq B$, where $r=\beta(s)$.

Since $\lim _{s \rightarrow \infty} h(s)=1, \lim _{|x| \rightarrow \infty} v(x)=0$. Hence, $v(x)>0$ on $S_{B} \cup G_{B}$ and

$$
\begin{aligned}
\Delta v+f(x, v(x), \nabla v(x)) & \leq\left(r^{n-1} y^{\prime}\right)^{\prime}+r^{n-1} k(r, y)+r^{n-1} g\left(r, r y^{\prime}\right) \\
& =h^{\prime \prime}(s)+\frac{1}{n-2} \beta^{\prime}(s) \beta(s) k_{0}\left(\beta(s), \frac{h(s)}{s}\right) \\
& +\frac{\beta(s)^{2}}{(n-2)^{2} s} g\left(\beta(s),(n-2) h^{\prime}(s)-\frac{h(s)}{\beta(s)^{n-2}}\right) \\
& \leq h^{\prime \prime}(s)+c(s) h^{\prime}(s)+b(s) h(s) \\
& =0, r \geq B,
\end{aligned}
$$

which implies v is an upper solution of $(P E)$ on G_{B}. Clearly, $w(x) \equiv 0$ satisfies

$$
\Delta w(x)+f(x, w(x), \nabla w(x)) \geq 0, x \in G_{B}
$$

By the Lemma 5.2.1 we see that $(P E)$ has a solution $u(x)$ in G_{B} with $w(x) \leq$ $u(x) \leq v(x)$ for $|x|>B$ and $u(x)=v(x)$ for $|x|=B$.

Finally, we will show that u is positive. We choose a positive number $k>\frac{n}{2 B^{2}}$. For any given $\epsilon>0$, we define

$$
u_{\epsilon}=\inf _{x \in S_{B}}\{u(x)\}+\epsilon e^{-k|x|^{2}}, x \in S_{B} \cup G_{B},
$$

where $u(x)$ is a solution of (E) in G_{B}. If $x \in G_{B}$, then it follows from

$$
\begin{aligned}
\left(\Delta u_{\epsilon}\right)(x) & =\epsilon\left(4 k^{2}|x|^{2}-2 k n\right) e^{-k|x|^{2}} \\
& >0 \geq-f(x, u, \nabla u) \\
& =\left(\Delta\left(u+\epsilon e^{-k B^{2}}\right)\right)(x),
\end{aligned}
$$

that $\left(\Delta\left(u+\epsilon e^{-k B^{2}}-u_{\epsilon}\right)\right)(x)<0$. On the other hand, by using the fact $|x| \geq B$, we get

$$
u(x)+\epsilon e^{-k B^{2}}-u_{\epsilon}(x) \geq 0, x \in G_{B} .
$$

Since $u(x) \geq 0$ on G_{B} and $u_{\epsilon}(x)$ is bounded on G_{B}, the function

$$
z_{\epsilon}(x)=u(x)+\epsilon e^{-k B^{2}}-u_{\epsilon}(x), x \in G_{B} \cup S_{B}
$$

has a finite infimum in $G_{B} \cup S_{B}$. For any $C>B$,

$$
\inf z_{\epsilon}(x)=\min z_{\epsilon}(x) \text { on } G_{B C}=\left\{x \in \mathbb{R}^{n}|B \leq|x| \leq C\} .\right.
$$

If there exists a $x_{0} \in\left\{x \in \mathbb{R}^{n}|B<|x| \leq C\}\right.$ with $z_{\epsilon}\left(x_{0}\right)=\min _{x \in G_{B C}}\left\{z_{\epsilon}(x)\right\}$, then $\left(\Delta z_{\epsilon}\right)\left(x_{0}\right) \geq 0$, which is a contradiction. Thus, $\min _{x \in G_{B C}} z_{\epsilon}(x)$ lies on $\{x \in$ $\left.\mathbb{R}^{n}| | x \mid=B\right\}$ for all $C>B$. It follows from

$$
\inf _{x \in G_{B} \cup S_{B}} z_{\epsilon}(x)=\min _{x \in S_{B}} z_{\epsilon}(x) \geq 0
$$

that

$$
u_{\epsilon}(x) \leq u(x)+\epsilon e^{-k B^{2}}, x \in G_{B} \cup S_{B} .
$$

Letting $\epsilon \rightarrow 0$ in the previous relation, we get

$$
u(x) \geq \inf _{x \in S_{B}} u(x)=\inf _{x \in S_{B}} v(x)=y(B)=\frac{h\left((n-2) B^{n-2}\right)}{(n-2) B^{n-2}}=\frac{h\left(T_{1}\right)}{T_{1}}>0, x \in G_{B}
$$

and this shows that $u(x)$ is positive in G_{B}. It follows from $u(x) \leq v(x)$ for $|x| \geq B$ and $\lim _{|x| \rightarrow \infty} v(x)=0$ that $\lim _{|x| \rightarrow \infty} u(x)=0$. This completes the proof.

Remark. Let $f(x, u, \nabla u)=p(x, u)+q(|x|) x \cdot \nabla u$, where p is locally Hölder continuous in $G_{A} \times \mathbb{R}$ satisfying

$$
0 \leq p(x, t) \leq a(|x|) w(t), t \in \mathbb{R}^{+}, x \in \mathbb{R}^{n}
$$

Here $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), w \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$with $w(0)=0, q$ is a bounded C^{1} function and $\int_{0}^{\infty} s[a(s)+|q(s)|] d s<\infty$. Moreover, we let $k(|x|, t)=a(|x|) w(t)$ and $g(|x|, x$. $z)=q(|x|) x \cdot z$, then our Theorem 5.2.2 is reduced to Theorem 5.1.1.

