
Chapter 5

Nonlinear Second Order Elliptic

Equations in An Exterior Domain

5.1 Introduction

We consider the nonlinear second order elliptic equation

(PE) Δu + f(x, u,∇u) = 0. x ∈ GA,

in an exterior domain GA = {x ∈ R
n | |x| > A}, where n ≥ 3 and A > 0. We try to

prove that under quite general assumptions on function f , the equation (PE) has a

positive solution in GB = {x ∈ R
n | |x| > B} for some B ≥ A, that is, there exists

a function u ∈ C2(GB) such that u satisfies (PE) at every point x ∈ GB. A lower

solution of (PE), is a function u ∈ C2(GB) satisfies Δu + f(x, u,∇u) ≥ 0, and an

upper solution of (PE) is a function u ∈ C2(GB) satisfies Δu + f(x, u,∇u) ≤ 0.

In 1997, A. Constantin [18, 19] proved the existence of the equation

(PE∗) Δu + p(x, u) + q(|x|)x · ∇u = 0.

in the exterior domain GA as follows:
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Theorem 5.1.1 ([18, 19]) Assume that p is locally Hölder continuous in GA ×R

([28]) and q is of C1(R+). If

0 ≤ p(x, t) ≤ a(|x|)w(t), t ∈ R
+, x ∈ R

n,

where a ∈ C(R+, R+) and w ∈ C1(R+, R+) with w(0) = 0, then there is a positive

solution u(x) to (PE∗) on GB for some B ≥ A with lim|x|→∞ u(x) = 0 provided q

is bounded and ∫ ∞

0

s[a(s) + |q(s)|]ds < ∞.

We shall extend Theorem 5.1.1 to a more general result in the next section.

5.2 Construction of Upper and Lower Solutions

Denote SB = {x ∈ R
n | |x| = B} for B ≥ A. In order to prove our main result,

we need the following excellent lemma, see Noussair and Swanson [55].

Lemma 5.2.1 Assume that f is locally Hölder continuous in GA×R×R
n. If there

are a positive lower solution w and a positive upper solution v to (PE) in GB such

that w(x) ≤ v(x) for all x ∈ GB ∪ SB, then (PE) has a solution u in GB satisfying

w(x) ≤ u(x) ≤ v(x) in GB ∪ SB and u(x) = v(x) on SB.

We are now in a position to state and prove our main result.

Theorem 5.2.2 Suppose that f is locally Hölder continuous in GA × R × R
n and

satisfies

0 ≤ f(x, t, z) ≤ k(|x|, t) + g(|x|, x · z), t ∈ R
+, x ∈ R

n, z ∈ R
n,

where k and g satisfy the following conditions:

(A10) k ∈ C(R+ ×R
+, R+) with k(·, 0) = 0 satisfies a Lipschitz condition with re-

spect to the second variable, that is, there exists a bounded function M1 ∈ L1(R+; (0,∞))
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such that |k(a, b)| ≤ M1(a)|b| on R
+ × R

+,

(A11) g ∈ C(R+×R, R) with g(·, 0) = 0 satisfies the following condition: there ex-

ists a bounded function M2 ∈ L1(R+; (0,∞)) such that g(a, b) ≤ M2(a)b on R
+×R.

Then there is a positive solution u(x) to (PE) on GB for some B ≥ A with

lim|x|→∞ u(x) = 0 if
∫ ∞

0
s[M1(s) + M2(s)]ds < ∞.

Proof . Let us consider the differential equation

(rn−1y′)′ + rn−1k0(r, y) + rn−1g(r, ry′) = 0, r > 1, (5.2.1)

where

k0(a, b) :=

⎧⎨
⎩

k(a, b) if b > 0,

−k(a, |b|) if b ≤ 0,

Clearly, k0 still satisfies (A10). The change of variables

r = β(s) := (
1

n − 2
s)

1
n−2 , h(s) := sy(β(s))

transforms (5.2.1) into

h′′(s)+
1

n − 2
β′(s)β(s)k0

(
β(s),

h(s)

s

)
+

β(s)2

(n − 2)2s
g

(
β(s), (n − 2)h′(s) − h(s)

β(s)n−2

)
= 0.

It follows from (A10) and (A11) that, for each s ∈ R
+, we have

∣∣∣∣k0

(
β(s),

h(s)

s

)∣∣∣∣ ≤ M1(β(s))

∣∣∣∣h(s)

s

∣∣∣∣ for

∣∣∣∣h(s)

s

∣∣∣∣ ≤ 2, (5.2.2)

and

g

(
β(s), (n − 2)h′(s) − h(s)

β(s)n−2

)
≤ M2(β(s))

{
(n − 2)h′(s) − h(s)

β(s)n−2

}
. (5.2.3)

From (5.2.1), (5.2.2) and (5.2.3), it is natural to consider

h′′(s) +
1

n − 2
β′(s)β(s)M1(β(s))

∣∣∣∣h(s)

s

∣∣∣∣ + M2(β(s))

{
h′(s) − h(s)

s

}
β′(s)β(s) = 0.

Let

b(s) =
1

n − 2

β′(s)β(s)M1(β(s))

s
+

β′(s)β(s)M2(β(s))

s
, s ≥ 1,

c(s) = β′(s)β(s)M2(β(s)), s ≥ 1.
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It follows from
∫ ∞

0
s[M1(s) + M2(s)]ds < ∞ that

∫ ∞

1

c(s)ds < ∞ and

∫ ∞

1

sb(s) < ∞,

which yields ∫ ∞

1

∫ ∞

t

b(s)dsdt < ∞.

Let T0 ≥ max{1, (n − 2)An−2} satisfy

2e
2 ∞

T0
c(ξ)dξ

∫ ∞

T0

∫ ∞

t

b(s)dsdt ≤ 1.

Now, we will show that

h′′(s) + c(s)h′(s) + b(s)h(s) = 0, s ≥ T0 (5.2.4)

has a solution h(s) such that |h(s) − 1| ≤ 1 for all s ≥ T0 and lims→∞ h(s) =

1. Consider the Banach space X = {x ∈ C([T0,∞), R) | x(t) is bounded} with

supremum norm. Let K = {x ∈ X | |x(t)−1| ≤ 1, t ≥ T0} and define the operator

F : K → X by

(Fx)(t) = 1 −
∫ ∞

t

e
∞
s c(ξ)dξ

∫ ∞

s

e−
∞
r c(ξ)dξb(r)x(r)drds, t ≥ T0.

Since 0 ≤ x(t) ≤ 2 for x ∈ K and t ≥ T0,

0 ≤
∫ ∞

t

e
∞
s c(ξ)dξ

∫ ∞

s

e−
∞
r c(ξ)dξb(r)x(r)drds

≤ 2e
2 ∞

T0
c(ξ)dξ

∫ ∞

t

∫ ∞

s

b(r)drds

≤ 1, t ≥ T0.

Thus F (K) ⊆ K. Next, we prove that F is compact. Let {xn}∞n=1 be a sequence in

K. Denote

fn(s) = e
∞
s c(ξ)dξ

∫ ∞

s

e−
∞
r c(ξ)dξb(r)xn(r)dr, for s ≥ T0.

Then fn ∈ L1([T0,∞), R) satisfies limp→∞
∫ ∞

p
|fn(s)|ds = 0 and

∫ ∞

T0

|fn(s)|ds ≤ 2e
2 ∞

T0
c(ξ)dξ

∫ ∞

T0

∫ ∞

t

b(s)dsdr ≤ 1, n ≥ 1.
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By the Lebesgue dominated convergence theorem,

lim
δ→0

∫ ∞

T0

∫ s+δ

s

e−
∞
r c(ξ)dξb(r)drds = 0

and

lim
δ→0

∫ ∞

T0

|e ∞
s+δ c(ξ)dξ − e

∞
s c(ξ)dξ|

∫ ∞

s

b(r)drds = 0.

Therefore, for any given ε > 0, there is a γ > 0 such that

2e
∞
T0

c(ξ)dξ

∫ ∞

T0

∫ s+δ

s

e−
∞
r c(ξ)dξb(r)drds <

ε

2
, |δ| ≤ γ,

and

2e
∞
T0

c(ξ)dξ

∫ ∞

T0

|e ∞
s+δ c(ξ)dξ − e

∞
s c(ξ)dξ|

∫ ∞

s

b(r)drds <
ε

2
, |δ| ≤ γ.

Since 0 ≤ xn(t) ≤ 2 for all t ≥ T0 and n > 1, the previous choice of γ enables us to

deduce that

∫ ∞

T0

|fn(s + δ) − fn(s)| ≤2e
∞
T0

c(ξ)dξ

∫ ∞

T0

|e ∞
s+δ c(ξ)dξ − e

∞
s c(ξ)dξ|

∫ ∞

s

b(r)drds

+ 2e
∞
T0

c(ξ)dξ

∫ ∞

T0

|e ∞
s+δ c(ξ)dξ − e

∞
s c(ξ)dξ|

∫ ∞

s

b(r)drds

<ε, n ≥ 1, |δ| < γ.

By Riesz’s theorem (see [53]), the sequence {fn}∞n=1 is compact in L1([T0,∞), R).

It follows from

Fxn(t) = 1 −
∫ ∞

t

fn(s)ds, t ≥ T0, n ≥ 1

that {Fxn}∞n=1 is compact in K. This implies that F is a compact mapping. By

the Schauder fixed-point theorem, the mapping F has a fixed point h ∈ K. It

is easy to verify that h is a nonnegative solution of (5.2.4) in [T0,∞) and sat-

isfies lims→∞ h(s) = 1. Take T1 > T0 so that h(s) > 0 for s ≥ T1 and let

B = ( 1
n−2

T1)
1

n−2 ≥ A. Define v(x) = y(r) = h(s)
s

for r = |x| ≥ B, where r = β(s).
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Since lims→∞ h(s) = 1, lim|x|→∞ v(x) = 0. Hence, v(x) > 0 on SB ∪ GB and

Δv + f(x, v(x),∇v(x)) ≤(rn−1y′)′ + rn−1k(r, y) + rn−1g(r, ry′)

=h′′(s) +
1

n − 2
β′(s)β(s)k0(β(s),

h(s)

s
)

+
β(s)2

(n − 2)2s
g(β(s), (n − 2)h′(s) − h(s)

β(s)n−2
)

≤h′′(s) + c(s)h′(s) + b(s)h(s)

=0, r ≥ B,

which implies v is an upper solution of (PE) on GB. Clearly, w(x) ≡ 0 satisfies

Δw(x) + f(x,w(x),∇w(x)) ≥ 0, x ∈ GB.

By the Lemma 5.2.1 we see that (PE) has a solution u(x) in GB with w(x) ≤
u(x) ≤ v(x) for |x| > B and u(x) = v(x) for |x| = B.

Finally, we will show that u is positive. We choose a positive number k > n
2B2 .

For any given ε > 0, we define

uε = inf
x∈SB

{u(x)} + εe−k|x|2 , x ∈ SB ∪ GB,

where u(x) is a solution of (E) in GB. If x ∈ GB, then it follows from

(Δuε)(x) = ε(4k2|x|2 − 2kn)e−k|x|2

> 0 ≥ −f(x, u,∇u)

= (Δ(u + εe−kB2

))(x),

that (Δ(u + εe−kB2 − uε))(x) < 0. On the other hand, by using the fact |x| ≥ B,

we get

u(x) + εe−kB2 − uε(x) ≥ 0, x ∈ GB.

Since u(x) ≥ 0 on GB and uε(x) is bounded on GB, the function

zε(x) = u(x) + εe−kB2 − uε(x), x ∈ GB ∪ SB

has a finite infimum in GB ∪ SB. For any C > B,

inf zε(x) = min zε(x) on GBC = {x ∈ R
n | B ≤ |x| ≤ C}.
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If there exists a x0 ∈ {x ∈ R
n | B < |x| ≤ C} with zε(x0) = minx∈GBC

{zε(x)},
then (Δzε)(x0) ≥ 0, which is a contradiction. Thus, minx∈GBC

zε(x) lies on {x ∈
R

n | |x| = B} for all C > B. It follows from

inf
x∈GB∪SB

zε(x) = min
x∈SB

zε(x) ≥ 0

that

uε(x) ≤ u(x) + εe−kB2

, x ∈ GB ∪ SB.

Letting ε → 0 in the previous relation, we get

u(x) ≥ inf
x∈SB

u(x) = inf
x∈SB

v(x) = y(B) =
h((n − 2)Bn−2)

(n − 2)Bn−2
=

h(T1)

T1

> 0, x ∈ GB,

and this shows that u(x) is positive in GB. It follows from u(x) ≤ v(x) for |x| ≥ B

and lim|x|→∞ v(x) = 0 that lim|x|→∞ u(x) = 0. This completes the proof. ❑

Remark. Let f(x, u,∇u) = p(x, u) + q(|x|)x · ∇u, where p is locally Hölder con-

tinuous in GA × R satisfying

0 ≤ p(x, t) ≤ a(|x|)w(t), t ∈ R
+, x ∈ R

n.

Here a ∈ C(R+, R+), w ∈ C1(R+, R+) with w(0) = 0, q is a bounded C1 function

and
∫ ∞

0
s[a(s) + |q(s)|]ds < ∞. Moreover, we let k(|x|, t) = a(|x|)w(t) and g(|x|, x ·

z) = q(|x|)x · z, then our Theorem 5.2.2 is reduced to Theorem 5.1.1.
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