
Chapter 2

Second Order Ordinary

Differential Equations with

Various Boundary Conditions

2.1 Introduction

In this chapter, we shall attempt to construct an excellent existence criterion

for the boundary value problem (BV Pj)

(E) u′′ + f(t, u, u′) = 0, 0 < t < 1,

equipped with suitable boundary conditions (BCj), j = 1, 2, 3, as follows:

(BC1)

⎧⎨
⎩

αu(0) − βu′(0) = 0,

γu(1) + δu′(1) = 0,

with α, β, γ, δ ≥ 0, γβ + αγ + αδ > 0,

(BC2) u(0) = 0, u(1) −
m−2∑
i=1

kiu(ξi) = 0,
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with ki > 0 (i = 1, 2, . . . , m − 2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1,
m−2∑
i=1

kiξi < 1, and

(BC3) u(0) = cu(ξ), u(1) = bu(σ),

with 0 < ξ < σ < 1, 0 ≤ c ≤ 1
1−ξ

, cξ(1 − b) + (1 − c)(1 − bσ) > 0 and 0 ≤ b ≤ 1
σ
.

The motivation for the present work stems from many the investigations in

[1, 2, 3, 25, 56]. In fact, particular cases of the boundary value problems (BV Pj)

occur in various physical phenomena [11, 15, 16, 17, 20, 21, 25], specially such as gas

diffusion through porous media, thermal self ignition of a chemically active mixture

of gases in a vessel [17], catalysis theory [20], chemically reacting systems, as well

as adiabatic tubular reactor processes.

For the other related works, we refer to recent contributions of Agarwal and

Wong [1, 2, 3], Anuradaha, Hai and Shivaji [11], Bailey, Shampine and Waltman

[15], Erbe and Wang [25], Lee and O’Regan [44], Henderson [36], Kelevedjiev [40, 41]

and Wong, Lian, Lin and Yu [58] and the references therein.

2.2 Existence of Positive Solution for Three Kind-

s of BVP

First, we note that −u′′ = 0 with boundary condition (BCj) has Green func-

tions Gj(t, s) on [0, 1] × [0, 1], respectively. For j = 1, one can see that

G1(t, s) =
1

ρ

⎧⎨
⎩

(γ + δ − γt)(β + αs) 0 ≤ s ≤ t ≤ 1,

(β + αt)(γ + δ − γs) 0 ≤ t ≤ s ≤ 1,
(2.2.1)
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where ρ := γβ + αγ + αδ, and G1(t, s) ≥ 0 on [0, 1] × [0, 1]. For j = 2, it follows

from [46] that

G2(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(1−t)− m−2
j=1 kj(ξj−t)s+ i−1

j=1 kjξj(t−s)

1− m−2
i=1 kiξi

, if

0 ≤ t ≤ 1, ξi−1 ≤ s ≤ min{ξi, t}, i = 1, 2, . . . , m − 1;
t[(1−s)− m−2

j=i kj(ξj−s)]

1− m−2
i=1 kiξi

, if

0 ≤ t ≤ 1, max{ξi−1, t} ≤ s ≤ ξi, i = 1, 2, . . . , m − 1,

(2.2.2)

and G2(t, s) ≥ 0 on [0, 1] × [0, 1]. For j = 3, it follows from [14] that

G3(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ∈ [0, ξ] :

⎧⎨
⎩

s
ζ
[(1 − bσ) + (b − 1)t], s ≤ t,

t
ζ
[(1 − bσ) + (b − 1)s] + c(1−ξ+bξ−bσ)

ζ
, t ≤ s,

s ∈ [ξ, σ] :

⎧⎨
⎩

1
ζ
[(1 − bσ) + (b − 1)t](cξ − cs + s), s ≤ t,

1
ζ
[(1 − bσ) + (b − 1)s](cξ − ct + t), t ≤ s,

s ∈ [σ, 1] :

⎧⎨
⎩

1−s
ζ

(t − ct + cξ) + (s − t), s ≤ t,

1−s
ζ

(cξ − ct + t), t ≤ s,

(2.2.3)

where ζ := cξ(1−b)+(1−c)(1−bσ), and G3(t, s) is also nonnegative on [0, 1]×[0, 1].

Moreover, for j = 1, 2, 3, we see that

(C1)
∂
∂t

Gj(t, s) exists almost everywhere on [0, 1] × [0, 1]

and

(C2) Gj(t, ·), ∂
∂t

Gj(t, ·) ∈ L1([0, 1]) for each fixed t ∈ [0, 1]

hold, hence, define two numbers as follows:

A−1
j := max

0≤t≤1

∫ 1

0

Gj(t, s)ds, (2.2.4)

and

kj := Aj max
0≤t≤1

∫ 1

0

∣∣∣∣ ∂

∂t
Gj(t, s)

∣∣∣∣ ds. (2.2.5)

Theorem 2.2.1 Suppose

(A1) f(t, 0, 0) is not identical to zero on [0, 1]

and there exists a constant a > 0 satisfying
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(A2) f : [0, 1] × [0, a] × [−kja, kja] → [0,∞) is continuous,

(A3) sup { f(t, x, y) | (t, x, y) ∈ [0, 1] × [0, a] × [−kja, kja] } ≤ aAj.

Then (BV Pj) has at least one positive solution, for j = 1, 2, 3, respectively.

Proof . Given j ∈ {1, 2, 3}, and denote G := Gj, A := Aj, k := kj and (BV P ) :=

(BV Pj). Without loss of generality, we assume that

(A2)
′ f : [0, 1] × [0,∞) × (−∞,∞) → [0,∞) is continuous.

Next, we consider the Banach space C1[0, 1] with norm

|||u||| = max{||u||, k−1||u′||}, where ||w|| := max
t∈[0,1]

|w(t)|.

Define

C1
+[0, 1] = {u ∈ C1[0, 1] | u(t) ≥ 0, 0 ≤ t ≤ 1}.

and

T (u(t)) =

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds, u ∈ C1
+[0, 1].

By assumption (A2)
′, we know that T : C1

+[0, 1] → C1
+[0, 1] and satisfies

(T (u(t)))′ =

∫ 1

0

∂

∂t
G(t, s)f(s, u(s), u′(s))ds.

Standard applications of Arzelà-Ascoli theorem, we can prove that T : C1
+[0, 1] →

C1
+[0, 1] is completely continuous and let

Va = {u ∈ C1
+[0, 1] | |||u||| ≤ a}.

It is clear that if u ∈ Va, then

||u|| ≤ a and ||u′|| ≤ ka.

Thus, we have

0 ≤ u(t) ≤ a and − ka ≤ u′(t) ≤ ka, 0 ≤ t ≤ 1.

By our assumption (A3), we obtain

||Tu|| = max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds ≤ aA max
0≤t≤1

∫ 1

0

G(t, s)ds = aAA−1 = a
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and

||(Tu)′|| ≤ max
0≤t≤1

∫ 1

0

∣∣∣∣ ∂

∂t
G(t, s)

∣∣∣∣ f(s, u(s), u′(s))ds ≤ aA max
0≤t≤1

∫ 1

0

∣∣∣∣ ∂

∂t
G(t, s)

∣∣∣∣ ds = ka.

Therefore, we have

|||Tu||| ≤ a and T : Va → Va.

Since Va is closed, bounded and convex, then we can apply Schauder’s fixed-point

theorem [22] to obtain a u∗(t) such that

u∗(t) = (Tu∗)(t) =

∫ 1

0

G(t, s)f(s, u∗(s), (u∗)′(s))ds, 0 ≤ t ≤ 1

and u∗ satisfies the boundary condition (BC). This implies that u∗ is a solution of

the (BV P ). Furthermore, by assumption (A1), we see that the zero function is not

a solution of (BV P ) which shows that

||u∗|| ≡ u∗(c) > 0 for some c ∈ [0, 1].

Since

(u∗(t))′′ = −f(t, u∗(t), (u∗(t))′) ≤ 0 on [0, 1],

we see that u∗ is a nonnegative concave function on [0, 1]. Therefore, we can separate

the rest proof into the following:

Case1. If t ∈ [0, c], then

u∗(t) = u∗(
c − t

c
× 0 +

t

c
× c) ≥ c − t

c
u∗(0) +

t

c
u∗(c)

≥ t

c
u∗(c) =

t

c
||u∗|| ≥ t||u∗||.

Case2. If t ∈ [c, 1], then

u∗(t) = u∗(
t − c

1 − c
× 1 +

1 − t

1 − c
× c) ≥ t − c

1 − c
u∗(1) +

1 − t

1 − c
u∗(c)

≥ 1 − t

1 − c
u∗(c) =

1 − t

1 − c
||u∗|| ≥ (1 − t)||u∗||.

Thus, we have

u∗(t) ≥ ||u∗||min{ t, 1 − t } > 0, 0 < t < 1,

which implies u∗ is a positive solution and the proof is completed. ❑
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2.3 Remarks and An Example

We first give some remarks as follows. Note that Q. Yao’s result [62] is

generalized in the following.

Remark. In our proof of Theorem 2.2.1, we defined operator T on C1
+[0, 1] with

respect to (BCj), j = 1, 2, 3, respectively. Note that the complete continuity of T on

C1
+[0, 1] depends on the form of the Green’s functions Gj(t, s). We remark that for

other boundary conditions, if the corresponding Green functions are nonnegative,

satisfy (C1), (C2), moreover, and make the operator T be completely continuous on

C1
+[0, 1], Theorem 2.2.1 is still valid.

Remark. One can compute Aj and kj, for j = 1, 2, 3, respectively. For example,

for (BV P1), from (2.2.1), (2.2.4) and (2.2.5), we have

A−1
1 =

1

ρ

[
β(

γ

2
+ δ) +

α2(γ
2

+ δ)2

2ρ

]
(2.3.1)

and

k1 =

[
β(

γ

2
+ δ) +

α2(γ
2

+ δ)2

2ρ

]−1

× max{αγ

2
+ αδ,

αγ

2
+ γβ}, (2.3.2)

where ρ := γβ + αγ + αδ.

Remark. For (BV P2), in particular, it is well-known three-point boundary condi-

tion,

(BC∗
2) u(0) = 0, u(1) = ku(θ),

where k and θ are both constants satisfying 0 < θ < 1 and 0 < k < 1
θ
.

Note that from (2.2.2),

G∗
2(t, s) =

1

1 − kθ
t(1 − s) − U(t, s) − k

1 − kθ
V (t, s), 0 ≤ t, s ≤ 1, (2.3.3)

where

U(t, s) =

⎧⎨
⎩

t − s, s ≤ t,

0, t ≤ s
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and

V (t, s) =

⎧⎨
⎩

t(θ − s), s ≤ θ,

0, θ ≤ s.

So, by (2.3.3), (2.2.4) and (2.2.5), we have

A∗
2 =

⎧⎨
⎩

8( 1−kθ
1−kθ2 )

2, if kθ(2 − θ) ≤ 1,

2(1−kθ)
kθ(1−θ)

, if kθ(2 − θ) ≥ 1
(2.3.4)

and

k∗
2 =

3 − 2kθ + kθ2

2(1 − kθ)
A∗

2. (2.3.5)

and conclude that (E) − (BC∗
2) has at least one positive solution if (A1), (A2) and

(A3) hold. This also generalizes the result of Q. Yao [62] since we do not need the

“increasing property” of the source term f .

Last but not least, we afford an example to observe that giving the same one

differential equation equipped with different boundary conditions may effect the

existence of positive solutions.

Example 2.3.1 Consider

(e) u′′ + (π2 − 7)u + sin u +
1

2
= 0, 0 < t < 1,

equipped with different boundary conditions. Set

f(t, u, u′) = (π2 − 7)u + sin u +
1

2
.

If (e) is equipped with

(BC∗
2) u(0) = 0, u(

1

3
) = u(1),

from (2.3.4) and (2.3.5), we have

A∗
2 =

9

2
and k∗

2 =
5

3
.

Set a = 1, it follows from Theorem 2.2.1 that (e)− (BC∗
2) has at least one position.

However, if we assign

(BC∗
1) u′(0) = 0, u(1) = 0
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to (e), we can obtain, from (2.3.1) and (2.3.2),

A∗
1 = 2 and k∗

1 =
1

2
.

In this problem, by contradiction, it is clear that there is no a > 0 such that f

satisfying (A3). Moreover, one can compute that π2

4
is the first eigenvalue of the

linear eigenvalue problem

u′′(t) + λu(t) = 0, 0 < t < 1,

with (BC∗
1). It follows from Theorem 2 [45], that (e) − (BC∗

1) has no positive

solution.
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