
Chapter 3

Second Order Functional

Differential Equations with

Boundary Condition of

Sturm-Liouville’s Type

3.1 Introduction

In this chapter, we deal with the existence of positive solutions to the functional

differential equation

(FE) u′′(t) + F (t, ut) = 0, 0 < t < 1.

The solutions u must satisfy the initial function

u(s) = φ(s), − r ≤ s ≤ 0, for certain given φ,

and boundary condition of Sturm-Liouville’s type

(BC4)

⎧⎨
⎩

u(0) = 0,

γu(1) + δu′(1) = 0,
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where

γ, δ ≥ 0 and γ + δ > 0.

Our notations are stated as follows. We denote the set of all real numbers and

the set of all nonnegative real numbers by R and R
+ respectively. Now, fixed any

r ∈ R
+, let Cr denote the Banach space of all continuous functions ψ : [−r, 0] ≡

J → R endowed with the suprenorm ||ψ||J = sups∈J |ψ(s)|, and let

Cr,0 = {ψ ∈ Cr | ψ(0) = 0}.

The notation ut above denotes a function in Cr defined by

ut(w) = ut(w; φ) :=

⎧⎨
⎩

u(t + w) if t + w ≥ 0,

φ(t + w) if t + w ≤ 0,

here the given φ is an element of the space Cr,0.

From now on, we denote our problem mentioned in the following by (FBV P ).

Moreover, given w ∈ [−r, 0] fixed, by a solution of the (FBV P ) we mean a function

u ∈ C2[0, 1] such that u satisfies the boundary condition (BC4) and for a given φ

the relation

u′′(t) + F (t, ut(w; φ)) = 0

holds for all t ∈ [0, 1].

There has recently been an increased interest in studying boundary value prob-

lems for functional differential equations, see, e.g. the books by Hale [34], Kol-

manovskii and Myshkis [42] and Henderson [37]. Furthermore, as pointed out in

[26], these problems have arisen from problems of physics and variational problems

of control theory, as well as from much applied mathematics appeared early in the

literature [31, 32]. We refer more detailed treatment to more interesting research

[4, 5, 6, 13, 23, 35, 38, 39, 47, 54, 57, 61] and more references therein.

In next section, we state the key tool in establishing our main results, that is,

the well-known Krasnoselkii fixed-point theorem [33, 43] and give a lemma that will
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be used in defining a positive operator in a cone. Then, in some function space, we

construct a appropriate cone for applying the fixed-point theorem to our positive

operator, this yields our existence results. Moreover, some remarks in section 3.3

will imply several corollaries of existence of multiple positive solutions, including the

reduction to general ordinary differential equations with the boundary condition.

Finally, one can see an example as applications.

3.2 Preliminaries and Existence Results

In order to abbreviate our discussion, throughout this chapter, we observe

(C3) k(t, s) is the Green’s function of the differential equation⎧⎨
⎩

u′′ = 0,

(BC4),

that is,

k(t, s) =
1

γ + δ

⎧⎨
⎩

(γ + δ − γt)s 0 ≤ s ≤ t ≤ 1,

(γ + δ − γs)t 0 ≤ t ≤ s ≤ 1,
(3.2.1)

and suppose the following assumption hold:

(C4) F : [0, 1] × Cr → R
+ is a continuous functional.

We now state the Krasnoselkii fixed-point theorem [33, 43] and a useful lemma

which are required for the main result.

Theorem 3.2.1 ([33, 43]) Let E be a Banach space, and let K ⊂ E be a cone in

E. Assume Ω1, Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

(i) ||Au|| ≤ ||u||, u ∈ K ∩ ∂Ω1 and ||Au|| ≥ ||u||, u ∈ K ∩ ∂Ω2; or

(ii) ||Au|| ≥ ||u||, u ∈ K ∩ ∂Ω1 and ||Au|| ≤ ||u||, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).
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Lemma 3.2.2 Suppose that k(t, s) is defined as in (3.2.1). Then, for any p1, p2

with 0 ≤ p1 < p2 ≤ 1, we have the following results:⎧⎨
⎩

k(t,s)
k(s,s)

≤ 1, for t ∈ [0, 1] and s ∈ [0, 1],

k(t,s)
k(s,s)

≥ min{ (1−p2)γ+δ
γ+δ

, p1}, for t ∈ [p1, p2] and s ∈ [0, 1].

Proof . From (3.2.1), we have

k(t, s)

k(s, s)
=

⎧⎨
⎩

γ+δ−γt
γ+δ−γs

, 0 ≤ s ≤ t ≤ 1,

t
s
, 0 ≤ t ≤ s ≤ 1.

Hence, we obtain the desired results:

k(t, s)

k(s, s)
≤ 1 for t ∈ [0, 1], s ∈ [0, 1],

and

k(t, s)

k(s, s)
≥

⎧⎨
⎩

(1−p2)γ+δ
γ+δ

, 0 ≤ s ≤ t ≤ p2,

p1, p1 ≤ t ≤ s ≤ 1.

❑

From Lemma 3.2.1, we define a number

M = M(p1, p2) := min{(1 − p2)γ + δ

γ + δ
, p1}

and next, state and prove our main results.

Theorem 3.2.3 (Existence result for −1 < w ≤ 0) Suppose the following hypothe-

ses hold:

(H1) there exists a positive constant λ such that, for any t ∈ [0, 1] and any ψ ∈ Cr

with ||ψ||J ≤ λ,

F (t, ψ) ≤ λ

(∫ 1

0

k(s, s)ds

)−1

,

and

(H2) there exist p1, p2 with 0 ≤ −w ≤ p1 < p2 ≤ 1 and a positive constant η 	= λ

such that, for any t ∈ [p1, p2] and any ψ ∈ Cr with Mη ≤ ||ψ||J ≤ η,

F (t, ψ) ≥ η

(∫ p2

p1

k(
p1 + p2

2
, s)ds

)−1

.
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Then for any given φ ∈ Cr,0 with ||φ||J ≤ λ, (FBV P ) has at least one positive

solution u such that ||u|| between λ and η.

Proof . Without loss of generality, we assume λ < η. It is clear that (FBV P ) has

a solution u = u(t) if and only if u is the solution of the operator equation

u(t) =

∫ 1

0

k(t, s)F (s, us(w; φ))ds := Aφu(t), u ∈ C[0, 1].

Let K be a cone in C0[0, 1] := {u ∈ C[0, 1] | u(0) = 0} defined by

K = {u ∈ C0[0, 1] | u(t) ≥ 0, min
t∈[p1,p2]

u(t) ≥ M ||u||}.

Following from the definition of K and Lemma 3.2.2 we have

min
t∈[p1,p2]

(Aφu)(t) = min
t∈[p1,p2]

∫ 1

0

k(t, s)F (s, us(w; φ))ds

≥M

∫ 1

0

k(s, s)F (s, us(w; φ))ds

≥M

∫ 1

0

k(t, s)F (s, us(w; φ))ds.

Thus, mint∈[p1,p2](Aφu)(t) ≥ M ||Au||, which implies AφK ⊂ K. Furthermore, it is

easy to check Aφ : K → K is completely continuous. To complete the proof, we

separate the rest of our proof into the following two steps:

Step 1. Let Ω1 = {u ∈ K | ||u|| < λ}. It follows from (H1) and Lemma 3.2.2

that for u ∈ ∂Ω1,

(Aφu)(t) =

∫ 1

0

k(t, s)F (s, us(w; φ))ds

≤
∫ 1

0

k(s, s)F (s, us(w; φ))ds

≤λ

(∫ 1

0

k(s, s)ds

)−1 (∫ 1

0

k(s, s)ds

) ||u||
λ

=||u||.

Hence,

||Aφu|| ≤ ||u|| for u ∈ ∂Ω1 ∩ K.
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Step 2. Let Ω2 = {u ∈ K | ||u|| < η}. It follows from the definitions of ||u|| and

K that ⎧⎨
⎩

u(t) ≤ ||u|| = η for t ∈ [0, 1],

u(t) ≥ min
t∈[p1,p2]

u(t) ≥ M ||u|| = Mη for t ∈ [p1, p2],

for u ∈ ∂Ω2, which implies

Mη ≤ u(t) ≤ η for t ∈ [p1, p2].

Moreover, it follows from 0 ≤ −w ≤ p1 < p2 ≤ 1 that s + w ≥ 0 for s ∈ [p1, p2].

This implies us(w; φ) = u(s + w) for s ∈ [p1, p2]. Hence,

(Aφu)(
p1 + p2

2
) =

∫ 1

0

k(
p1 + p2

2
, s)F (s; us(w, φ))ds

≥
∫ p2

p1

k(
p1 + p2

2
, s)F (s; us(w, φ))ds

≥η

(∫ p2

p1

k(
p1 + p2

2
, s)ds

)−1 (∫ p2

p1

k(
p1 + p2

2
, s)ds

) ||u||
η

=||u||,

which implies

||Aφu|| ≥ ||u|| for u ∈ ∂Ω2.

Therefore, by Theorem 3.2.1, we complete this proof. ❑

Note this given w may not belong to (−1, 0], hence, we conclude the following

result.

Theorem 3.2.4 (Existence result for −r ≤ w ≤ 0) Suppose the following hypothe-

ses hold:

(H1) there exists a positive constant λ such that, for any t ∈ [0, 1] and any ψ ∈ Cr

with ||ψ||J ≤ λ,

F (t, ψ) ≤ λ

(∫ 1

0

k(s, s)ds

)−1

,

and

(H3) there exist p1, p2 with 0 ≤ p1 < p2 ≤ 1 and a positive constant η 	= λ such
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that, for any t ∈ [p1, p2] and ψ ∈ Cr with ||ψ||J ≤ η,

F (t, ψ) ≥ η

(∫ p2

p1

k(
p1 + p2

2
, s)ds

)−1

.

Then for any given φ ∈ Cr,0 with ||φ||J ≤ min{λ, η}, (FBV P ) has at least one

positive solution u such that ||u|| between λ and η.

Proof . This proof follows in similar fashion to that of Theorem 3.2.3. One just

need to modify Step 2 in the process of the demonstration of Theorem 3.2.3 as the

following:

Step 2. Let Ω2 := {u ∈ K | ||u|| < η}. It follows from the definitions of ||u|| and

K that ⎧⎨
⎩

u(t) ≤ ||u|| = η for t ∈ [0, 1],

u(t) ≥ min
t∈[p1,p2]

u(t) ≥ M ||u|| = Mη for t ∈ [p1, p2],

for u ∈ ∂Ω2, which implies

Mη ≤ u(t) ≤ η for t ∈ [p1, p2].

Moreover, for s ∈ [p1, p2],

us(w; φ) :=

⎧⎨
⎩

u(s + w) if s + w ≥ 0,

φ(s + w) if s + w ≤ 0,

This implies, for s ∈ [p1, p2],

||us(w; φ)|| ≤ η.

Hence,

(Aφu)(
p1 + p2

2
) =

∫ 1

0

k(
p1 + p2

2
, s)F (s; us(w, φ))ds

≥
∫ p2

p1

k(
p1 + p2

2
, s)F (s; us(w, φ))ds

≥η

(∫ p2

p1

k(
p1 + p2

2
, s)ds

)−1 (∫ p2

p1

k(
p1 + p2

2
, s)ds

) ||u||
η

=||u||,

which implies

||Aφu|| ≥ ||u|| for u ∈ ∂Ω2.

❑
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3.3 Applications

Remark. Assume that F (t, ψ) satisfies the following property P:

If max
t∈[0,1]

F (t, ψ) is unbounded, then there exists a φ with ||φ||J large enough such that

for any ψ ∈ Cr with ||ψ||J ≤ ||φ||J , we have max
t∈[0,1]

F (t, ψ) ≤ max
t∈[0,1]

F (t, φ).

Given p1, p2 with 0 ≤ p1 < p2 ≤ 1 and let

max F0 := lim
||ψ||J→0

max
t∈[0,1]

F (t, ψ)

||ψ||J ,

min F0 := lim
||ψ||J→0

min
t∈[p1,p2]

F (t, ψ)

||ψ||J ,

max F∞ := lim
||ψ||J→∞

max
t∈[0,1]

F (t, ψ)

||ψ||J ,

and

min F∞ := lim
||ψ||J→∞

min
t∈[p1,p2]

F (t, ψ)

||ψ||J .

Since (∫ 1

0

k(s, s)ds

)−1

:= A =
6(γ + δ)

γ + 3δ
, (3.3.1)

and (∫ p2

p1

k(
p1 + p2

2
, s)ds

)−1

:= B =
16(γ + δ)

(p2 − p1)(L1L2 + L3L4)
, (3.3.2)

where

L1 = p2 + 3p1, L2 = 2γ − p1γ − p2γ + 2δ,

L3 = 4γ + 4δ − 3γp2 − γp1, L4 = p1 + p2,

we have the following results:

Suppose that max F0 = C1 ∈ [0, A). Taking ε = A − C1, there exists a λ1 > 0

(λ1 can be chosen small arbitrary) such that for any ψ ∈ Cr with ||ψ||J ≤ λ1, we

have

max
t∈[0,1]

F (t, ψ)

||ψ||J ≤ ε + C1 = A.

Hence, for t ∈ [0, 1] and ψ ∈ Cr with ||ψ||J ∈ [0, λ1],

F (t, ψ) ≤ A||ψ||J ≤ Aλ1,
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which satisfies the hypothesis (H1) of Theorem 3.2.3.

Suppose that min F∞ = C2 ∈ ( B
M

,∞]. Taking ε = C2 − B
M

> 0, there exists an

η1 > 0 (η1 can be chosen large arbitrary) such that for any ψ ∈ Cr with ||ψ||J ≥
Mη1, we have

min
t∈[p1,p2]

F (t, ψ)

||ψ||J ≥ −ε + C2 =
B

M
.

Hence, for t ∈ [p1, p2] and ψ ∈ Cr with ||ψ||J ∈ [Mη1, η1],

F (t, ψ) ≥ M

B
||ψ||J ≥ B

M
Mη1 = Bη1,

which satisfies the hypothesis (H2) of Theorem 3.2.3.

Suppose that min F0 = C3 ∈ ( B
M

,∞]. Taking ε = C3 − B
M

> 0, there exists an

η2 > 0 (η2 can be chosen small enough) such that for any ψ ∈ Cr with ||ψ||J ≤ η2,

we have

min
t∈[p1,p2]

F (t, ψ)

||ψ||J ≥ −ε + C3 =
B

M
.

Hence, for any t ∈ [p1, p2] and ψ ∈ Cr with ||ψ||J ∈ [Mη2, η2],

F (t, ψ) ≥ B

M
||ψ||J ≥ B

M
Mη2 = Bη2,

which satisfies the hypothesis (H2) of Theorem 3.2.3.

Suppose that max F∞ = C4 ∈ [0, A). Taking ε = A − C4 > 0, there exists a

θ > 0 (θ can be chosen large arbitrary) such that for any ψ ∈ Cr with ||ψ||J ≥ θ,

we have

max
t∈[0,1]

F (t, ψ)

||ψ||J ≤ ε + C4 = A. (3.3.3)

Now we have the following two cases:

Case 1. Assume that maxt∈[0,1] F (t, ψ) is bounded, that is, there exists a constant

L > 0 such that

F (t, ψ) ≤ L, for t ∈ [0, 1] and ψ ∈ Cr.

Taking λ2 = L
A
, hence, for t ∈ [0, 1] and ψ ∈ Cr with ||ψ||J ∈ [0, λ2],

F (t, ψ) ≤ L = Aλ2.
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Case 2. Assume that maxt∈[0,1] F (t, ψ) := Gt(ψ) is unbounded. Then, by P, there

exists a φ with ||φ||J := λ2 ≥ θ such that for any ψ ∈ Cr with ||ψ||J ≤ λ2, we have

max
t∈[0,1]

F (t, ψ) = Gt(ψ) ≤ Gt(φ) = max
t∈[0,1]

F (t, φ).

This implies that there exists some t0 ∈ [0, 1] such that,

F (t, ψ) ≤ F (t0, φ), for t ∈ [0, 1] and ψ ∈ Cr with ||ψ||J ≤ λ2.

It follows from λ2 ≥ θ and (3.3.3) that, for t ∈ [0, 1] and ψ ∈ Cr with ||ψ||J ∈ [0, λ2],

F (t, ψ) ≤ F (t0, φ) ≤ A||φ||J = Aλ2.

By Case 1 and 2, the hypothesis (H1) of Theorem 3.2.3 is satisfied.

It follows from the above Remark that the following corollaries hold.

Corollary 3.3.1 Assume that F satisfies P and suppose there exist p1 and p2 with

0 ≤ −w ≤ p1 < p2 ≤ 1, A and B are defined as (3.3.1) and (3.3.2) respectively.

Then in the case

(H4) max F0 = C1 ∈ [0, A) and min F∞ = C2 ∈ ( B
M

,∞], or

(H5) min F0 = C3 ∈ ( B
M

,∞] and max F∞ = C4 ∈ [0, A),

we have following corresponding results (i) and (ii) respectively.

(i) For any given φ ∈ Cr,0 with ||φ||J small enough, (FBV P ) has at least one

positive solution.

(ii) For any given φ ∈ Cr,0, (FBV P ) has at least one positive solution.

Proof . It follows from our Remark and Theorem 3.2.3 that the desired result

holds, immediately. ❑

Corollary 3.3.2 Assume that F satisfies P and suppose there exist p1 and p2 with

0 ≤ −w ≤ p1 < p2 ≤ 1, A and B are defined as (3.3.1) and (3.3.2) respectively. If

the following hypotheses hold:
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(H6) min F∞ = C2, min F0 = C3 ∈ ( B
M

,∞],

(H7) there exists λ∗ > 0 such that

F (t, ψ) ≤ Aλ∗, for t ∈ [0, 1] and ψ ∈ Cr with ||ψ||J ∈ [0, λ∗],

then, for any given φ ∈ Cr,0 with ||φ||J ≤ λ∗, (FBV P ) has at least two positive

solutions u1 and u2 such that 0 < ||u1|| < λ∗ < ||u2||.

Proof . It follows from our Remark that there exist two real numbers η1 and η2

satisfying

0 < η2 < λ∗ < η1,

F (t, ψ) ≥ Bη1, for t ∈ [p1, p2] and ψ ∈ Cr with ||ψ||J ∈ [Mη1, η1],

and

F (t, ψ) ≥ Bη2, for t ∈ [p1, p2] and ψ ∈ Cr with ||ψ||J ∈ [Mη2, η2].

Thus, by Theorem 3.2.3, we see for any given φ ∈ Cr,0 with ||φ||J ∈ [0, λ∗], (FBV P )

has two positive solutions u1 and u2 such that η2 < ||u1|| < λ∗ < ||u2|| < η1. Hence,

we complete this proof. ❑

Corollary 3.3.3 Assume that F satisfies P and suppose there exist p1 and p2 with

0 ≤ −w ≤ p1 < p2 ≤ 1, A and B are defined as (3.3.1) and (3.3.2) respectively. If

the following hypotheses hold:

(H8) max F0 = C1, max F∞ = C4 ∈ [0, A),

(H9) there exists η∗ > 0 such that

F (t, ψ) ≥ Bη∗, for t ∈ [p1, p2] and ψ ∈ Cr with ||ψ||J ∈ [Mη∗, η∗],

then, for any given φ ∈ Cr,0 with ||φ||J small enough, (FBV P ) has at least two

positive solutions u1 and u2 such that 0 < ||u1|| < η∗ < ||u2||.

Proof . It follows from our Remark that there exist two real numbers λ1 and λ2

satisfying

0 < λ1 < η∗ < λ2,
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F (t, ψ) ≤ Aλ1, for t ∈ [0, 1] and ψ ∈ Cr with ||ψ||J ∈ [0, λ1],

F (t, ψ) ≤ Aλ2, for t ∈ [0, 1] and ψ ∈ Cr with ||ψ||J ∈ [0, λ2].

Thus, by Theorem 3.2.3, we see for any given φ ∈ Cr,0 with ||φ||J ∈ [0, λ1], (FBV P )

has two positive solutions u1 and u2 such that λ1 < ||u1|| < η∗ < ||u2|| < λ2. Hence,

we complete this proof. ❑

Remark. We note that in the limiting case r = 0, Cr is reduced to R. Then

(FBV P ) can be reduced to a general boundary value problem as follows:

(BV P4)

⎧⎨
⎩

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

(BC4)

where f : R × R → R
+ is continuous. It is easy to check that our Theorems

can appropriately apply on (BV P4). Furthermore, in this case, P automatically

holds for this function f(t, u) on [0, 1] × [0,∞). Hence, all corollaries are ap-

plicable to (BV P4). Note that for many source terms, we can easily compute

corresponding “max f0, min f0, max f∞, min f∞” in appropriate ranges, for exam-

ple, f(t, u) := eu−1
1+t2

(max f0 = 1 and min f0 = 1
2
), f(t, u) := u + t2e−u(max f0 =

∞, min f0 = max f∞ = min f∞ = 1).

To illustrate the usage of our results, we present the following example.

Example 3.3.4 Consider the boundary value problem

u′′(t) + p(t)

√
u(t − 1

3
) + C = 0, t ∈ [0, 1],

and ⎧⎨
⎩

u(t) = φ(t), t ∈ [−1
3
, 0]

(BC4),

where p(t) is a positive continuous function on [0, 1], C > 0, φ ∈ C([−1
3
, 0], R+)

with φ(0) = 0 is arbitrarily given. Then, we have

F (t, ψ) := p(t)

√
ψ(−1

3
) + C,
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which implies F satisfies P. One can compute

max F∞ = 0

and for any p1 and p2 with 0 ≤ −1
3
≤ p1 < p2 ≤ 1,

min F0 = ∞.

Applying Corollary 3.3.1 to this example, we can conclude that there is at least one

positive solution to this boundary value problem.
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