Chapter 4

High Order Ordinary Differential
Equation Equipped with A Kind

of Three-Point Boundary
Condtion

4.1 Introduction

In the last thirty years, a great deal of works has been done to study the positive
solutions of two point boundary value problem for differential equations which are
used to describe a number of physical, biological and chemical phenomena. For
additional background and results, we refer the reader to the monograph by Agarwal
and Wong [2, 3, 7, 8, 9], Agarwal, O'Regan and Wong [10] as well as the recent
contributions by [12, 24, 29, 30, 50, 51, 59, 60, 52, 63].

Boundary value problems for higher order differential equations can arise, es-
pecially for fourth order equations. Recently, three point or multi-point boundary

value problem of the differential equations were presented and studied by many
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authors, see [48, 49, 59, 60].

In this chapter, we attempt to establish some existence theorems of positive

solutions for the following n + 2t order nonlinear boundary value problem:

(

(HE) [gzﬁf(u(")(t))]” = f(t,ut),u®(t), -
‘ on—3,

(HBVP)
(BCs)

\

Lu (1))

where f : (0,1) x R"™ — [0, +00) is a continuous function; u,v > 0,€ # 1,9 #

1,0<d <1,n>2and ¢,(z) = |z[P~2z for p > 1.

In 2006, Ma and Ge [52] has studied this topic for

(

(HE3) [%p(u"(t))]" = a(t) f(u(t))
u(0) = gu(l),
(HBV F5) (BC:) u'(1) = nu'(0),
u'(0) = " (5),
\ \ u’(1) = vu”(9).

They applied a fixed-point theorem to establish the

positive solutions of (HBV P:). Now, we consider the

boundary value problem:

existence of at least three

more general case (HBVP)

and hope to obtain some extension of the excellent results of Ma and Ge [52].

4.2 Preliminaries

In order to abbreviate our discussion, we need the following observations and

lemmas.

Throughout this chapter, we assume that

(Cs5) ¢ is a constant and satisfies }—17 + é =1;
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and observe that

(Cs) (¢p)_1(2> = ¢q(2) = |Z|q_2z

Definition 4.2.1 Let X be a real Banach space and P be a cone of X. A map
Y P —[0,400) is called a nonnegative continuous concave functional map if ¥ is

nonnegative, continuous and satisfies for all x,y € P and t € [0, 1],

Ytz + (1 —t)y) > t(x) + (1 — 1)Y(y).

Definition 4.2.2 Let X be a real Banach space and P be a cone of X. A map
B : P —[0,+00) is called a nonnegative continuous convex functional map if B is

nonnegative, continuous and satisfies for all z,y € P and t € [0, 1],

Blte + (1 —t)y) < tB(x) + (1 —1)B(y).

Let v, 3 and 6 be nonnegative continuous convex functionals on P, and let «
and ¢ be nonnegative continuous concave functionals on P. For given nonnegative

numbers h, a, b, d and ¢, we define the following sets:

P(y,c)={z € P [~(z) <c},
P(v,a,a,¢) ={x € P|a<az),y(z) <c},

(
(
Q(v,8,d,c) ={x e P | f(x) <d~(z) < C}
P(v,0,a,a,b,¢c) ={x € P | a < afz),0(z) < ()SC},
(

Q(v, 8.4 h.d,c) ={z € P | h <¥(x), B(x) < d,(x) < c}.

In order to obtain multiple positive solutions of (H BV P), the following fixed-
point theorem due to Avery which is a generalization of Leggett-Willliams fixed-

point theorem will be fundamental.

Lemma 4.2.3 ([12], Theorem 2.4) Let X be a real Banach space and P be a

cone of X. Suppose vy, 3 and 0 are three nonnegative continuous convez functionals
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on P and a,v are two nonnegative continuous concave functionals on P such that

there are ¢, L € (0,00) satisfying

a(r) < f(x), ||z < Ly(x)

for x € P(v,c). Suppose further that

T: P(y,¢) — P(v,c)

15 completely continuous and there exist h,d,a,b > 0 with 0 < d < a such that each

of the following is satisfied:

(i) {z € P(v,0,a,a,b,¢) | a(x) >a} #0 and o(Tz) > a forx € P(~,0,,a,b,c),

(i) {r€ QB0 hdc)|Blz) < d} #0and B(T) < d forz € Q(y, B4, h,dc),
(i) a(Tz) > a forxz € P(y,a,a,c) with §(Tx) > b,

(iv) B(Tx) <d for x € Q(~, 5,d,c) with p(Tx) < h.

Then, T has at least three fived points x1, 2,3 € P(v,¢) such that 5(z1) < d,

a < ary), d < [(xs) with a(xs) < a.

Lemma 4.2.4 ([52]) Suppose that H is continuous on [0,1], then the unique so-

lution of boundary value problem

{ —y = H(t) in (0, 1) e
y(0) = &y (9), y(1) = dp(v)y(d),
o0 =5 [ ate.om)as
where
M =1~ ¢p(p) = (¢p(v) — dp(p))d # 0 (4.2.2)
and
([ s(1— 1)+ ¢,(V)s(t—6), 0<s<t<d<lor0<s<s<t<l,
ey = | L= 0w = 0) £ 6,01 —0)(s 1), D P < <h <
S(1— )+ 6,03t — 5) + ()1 — )6 —5), 0<F<s <1,
(1= 8)(t — dp(p)t + dp(p)d), 0<<t<s<1lor0<t<s<s<l
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Lemma 4.2.5 ([52]) Suppose that H is continuous on [0, 1], then the unique so-

lution of boundary value problem

—y" = H(t) in (0,1), (4.2.3)

18

o) = 5 [0
where
My= (-0 ) #0
and
L R IO

Lemma 4.2.6 ([52]) Suppose that 0 < &, n < 1,0 <t; <ty <1 and, 6 € (0,1).
Then, for all s € [0,1],

h(tl, S) tl
> = 424
h(tg,S) - t2 ( )
and
h(l,s) 1
< = 2.
o) =5 (4:2:5)
hold.

Lemma 4.2.7 ([52]) Suppose that {, n>1,0<t; <ty <1 andd € (0,1). Then,

for all s € 10, 1],
h(tQ,S) > 1— tg

4.2.
h(tl,S) - 1- tl ( 6)
and
h(0, s) 1
< 4.2.
hos) 1= (4:2.7)
hold.

29



4.3 Three Positive solutions

Here, we consider the classical Banach space X = C™(|0, 1]) which is equipped

with the usual norm. The cones P; and P, C X are defined as follows:
= {u € X | u™?(t) is nonnegative concave and nondecreasing on [0, 1]}

and

Py = {u e X | u"?(t) is nonnegative concave and nonincreasing on [0, 1]}.

Next, let t1,ts,t3 € (0,1) with ¢; < ty be fixed. Moreover, we shall define the
nonnegative continuous concave functionals «, 9 and nonnegative convex function-

als 3,60,v on P; by

v(z) = max 2" (t) = 2" D (t3), 2 € P,
te[0,t3]

Y(z) = min 22 (t) = 27D (6), x € Py,
te[d,1]

B(xr) = max x(”_z)(t) = x("_Q)(l), r € P,
te(d,1]

a(z) = min 2 (t) = 22D (t)),x € Py,
tE[tLtQ]

0(z) = max "2 (t) = 2" V(ty),z € Py.
teft,to]

Theorem 4.3.1 Suppose that M > 0 and the following assumptions hold:
(Ag)  f:(0,1) x R"2 — [0, 00) is continuous,

(A5) & me(0,1) and a,b,c € (0,00) satisfying 0 < a <b< Eb<c

and

(Ag) there are three positive constants ki, ko, ks satisfy the following conditions:

(1°) flt, g1, Yng2) > kigp(L
for (£, y1, -+ Ynt2) € [t1, ta]
(2°) f(tyrs - ynt2) < kagy(
for (tyr, -+, yns2) €(0,1]

(

]

)
x [Tiz2[otn* k,t b]x]R3
)

(30) f<t7 Yi, 7yn+2) < k3¢p
fOT (t7y17 T 7yn+2) € [07 1



where A, B and C' are defined as follows:

M% 575 Jo Blts, )l fy ks - g(s,r)drds
= WM) fo (t1,5)dq] :12 ki - g(s,r)dr]ds,
¢= M1¢>q fo 1 S)qu[fol ko - 9(3’ T)dr]ds-

Then, the boundary value problem (HBV P) has at least three positive solutions.

Proof. By Lemma 4.2.4, we obtain

u(™ (t) = —

st ([ s V(s ).

Moreover, it follows from Lemma 4.2.5, we see that

uA(t) = W /01 h(t, s)o, (/Olg(S,T>f(T,U(T), e ,u("+1)(7'))d7') ds.

Inspired by the above-mentioned result, we can define a completely continuous

operator T : P, — X via

(Tu) =2 (1) = m /0 Wt )6, ( /0 o) fru(r), - ,u<"+l>(r)>dr) ds.

It is clear that u is a positive solution of (HBV P) if and only if u is a fixed point
of T on cone P;. Since M and M; > 0,

(Tu)™=2 >0 for u € P.
Furthermore,

(@0 210) =5t [0 ([ oo mr . a0 )ar ) ds

n
# [ ([ oo ot a0, D) s

>0
and

W) D)) = — ! 1 P wlr), D), - a0 ))dr
(Tu)™2 (1) )%(Ag&)ﬂ,(% o <Dd>§&

Pq(M
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which imply TP, C P;. Follows from u € P;, we see that

v(u) = u(”_Q)(tg) = u(”_Q)(tg X 1+ (1—1t3) x0)

> tau™ 2 (1) 4 (1 — t3)u""2(0) > t3 x max [u"D(t)].

t€[0,1]
Therefore, for u € P(7,c), we have
(n—2) (n—2) 1 1
0<u (t) < max |u )] < —v(u) < —c
t€[0,1] t3 3

on [0, 1] which implies

1
0§u<k>(t)§t—con 0,1), k=0,--- ,n —2.
3

This and (A4g) — (3°) imply

1((Tw)) = tgggg](TU)(”_Q) (t)

1 1
:—M1¢q(M)/O h<t3,8)¢q

<

_ % {m/ol h(ts, s)o, (/01 ey g(s,r)dr) ds} —c

Therefore, we obtain that T': Py(v,¢) — Pi(v, ¢). Next, we separate the rest proof

I
—~
-
<
~
—
i
Y
—
—~
~
w
~

into the following steps:

Step 1 For some ¢; € (0, i—fb —b), let
W) = b+ e,
then,
w € Pi(v,6,0,b, i—ib, )= {x e P |b<al) 6(z) < 2b, ~(z) < c}.

This means that u; € {u € Pi(7,0,,b,2b,¢) | a(u) > b} # 0 is well-defined.
Moreover, we have

um () > u" () = a(u) > b
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and

t
u(n—?)(t) < u? (t2) = O(u) < t_2b
1
on [t1, ts], which implies, for u € Py(v, 0, «, b, i—fb, c),

tnflfk
bt 2k < W) < 2

bon [ty,ts], k=0,...n—2.
t

This and (A4g) — (1°) imply

a(Tw)) = min (Tu)*2 (1) = (Tu)" (k)

te[tl,tQ}
1 1
— | hity,9)é
M1¢q<M>/o (11, 5)9,

(
>z ), e (]

_ % {m /01 h(t1, 5)6, (/tt ” ~g(3,'r’)dr> ds} b,

Step 2 For some ¢5 € (0,a — da), let

W) = a — e,

then,

uz € Q1(7, 0,9, 0a,a,¢) = {x € P | da < ¢(x), B(x) < a,7(z) < c}.
This means that us € {u € Q1(v,5,¢,da,a,¢c) | B(u) < a} # 0 is well-defined.
Moreover, we have 0 < v 2(t) < w2 (1) = B(u) <
for u € Ql(’y,ﬁ,q/J,CSG,G,C),

a on [0, 1], which implies,

0<u®(t)<aon[0,1], k=0,---,n—2.
This and (Ag) — (2°) imply

B((Tw)) = max (Tu)" 2 (t) = (Tu)"* (1)

teld,1]
_ m /01 h(1,5)6, </01g(5,r)f(r,u(r),u(l)(r), . ,u("H)(T))dr) ds
< o [ Hen ([ e atonn) - ) s

- % {m /01 h(1,s)d, /01 sy - g(s,r)dr) ds} = a.
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Step 3 Foru € Pi(y,a,b,c) ={z € P, | b<a(x),y(z) < c} with 0(Tu) > i—fb, it

follows from Lemma 4.2.6 that

o((Tw)) = min (Tu)"2(t) = (Tu)"? (t,)

tE€[t1,ta]
:; ! 1 . ol - u(n+1) r 7”) s
M1¢q(M)/o h(thS)(bq (/0 9(57 )f( ) ( )7 ) ( ))d d

B 1 L h(ty, s)
B M¢q(M) /0 h(ts, s)

> 2Lt [ attasion ([ st sty D) as)

= HEW" ()} = 2 max @0 ()

to te[t1,ta]

S~

Step 4 For u € Q1(7,B,a,¢c) ={z € P, | B(z) < a,vy(z) < ¢} with ¥(Tu) < da,
it follows from Lemma 4.2.6 that

B((Tw)) = max(Tu) "2 (t) = (Tu) "~ (1)

te(s,1]

Therefore, the hypotheses of Lemma 4.2.3 are fulfilled. Thus, there exist three

positive solutions wuy, us, ug for (HBV P). a

Let t1,t9,t3 € (0,1) with ¢; < t5 fixed. Moreover, we shall define the nonnega-

tive continuous concave functionals a, ¢ and nonnegative convex functionals 3,8,y
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on P, by

v(z) = max "2 (t) = 2D (t3), z € Py,

te(ts,1]

Y(x) = min 2" (t) = 2"2(6), z € P,
te[0,d]

B(z) = max "2 (t) = 2"2(0), x € Py,
te[0,0]

a(z) = min 22 () =2 D(ty), z € Py,
tE[tl,tQ}

0(z) = max "2 (t) = 2" D(ty), z € P,.
te[tl,tz}

Theorem 4.3.2 Suppose that M > 0 and the following assumptions hold:
(A7) f:(0,1) x R"2 — [0, 00) is continuous,

(As) &me(1,00) and a,b,c € (0,00) satisfying 0 < a < b < }:—gb <c,

and

(Ag)  there are three positive constants ki, ko, ks satisfy (2°),(3°), and

4°) fty, s Yng2) > k’lcbp(%);

(t oy, Yna2) € [t te] x [y bt 7F, }:—gt’;*%kb] x R3.

Then, the boundary value problem (HBV P) has at least three positive solutions.

Proof. By Lemma 4.2.4, we obtain

1
u0) =~ ([ ) o)l 9)as).
Moreover, it follows from Lemma 4.2.5, we see that
(n-2) 1 ' ' (n+1)
W00 = 5 [ e ([ s s ) s

Inspired by the above-mentioned result, we can define a completely continuous

operator T': P, — X via

()2 (1) = m / hit, )6, ( / s ) () ,u<”+1><r>>dr) ds.

It is clear that u is a positive solution of (H BV P) if and only if v is a fixed point
of T on cone P,. Since M and M; > 0,

(Tu)™2 >0 for u € P;.
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Furthermore,

M11¢;(§ {n ¢ (/ g(s, r>f<r,u<r>,u<1><r>,---,u<"ﬂ><r>>d7“) o

/ < / u(r), u(r), - -- ,u<"+1>(7~))dr) ds}

Y

(Tw) "2 (2)Y

<0

and
W) (1)) = b 1 P wr), D), - a0 ) ) dr
(020" == ([ st st a0, D )ar) <o,

which imply TP, C P,. Follows from u € P, we see that

v(u) = u(”_Q)(tg) = u("_Q)(tg X 14+ (1—1t3) x0)

> tau™ (1) + (1~ t5)ul""2(0) > t5 telon) [u™2(2)].

Therefore, we have

1
0<u" 2)(t) < max |u(" 2)(t)| < —v(u) <

1
t€[0,1] 2 3

on [0,1], which implies, for u € Py(7, ),

Ogu(k)(t) < %con 0,1], k=0,---,n—2.
This and (Ay) — (3°) imply
Y(Tw)) = max (Tu)" (): (Tw) ") (t3)

te(ts,1]

! 1 wlr). uP () Y ) dr s
~ Mg (M) ) /09 su(r),ut(r), -, ())d)d

)
o

—Mlczsi( iy J, ") (/o kag(5,7)6,( g )d )ds
s)

- i [ s ([ )}

Therefore, we obtain that T': Py(v,¢) — Ps(7,¢). Next, we separate the rest proof

t37

into the following steps:

Step 1 For some ¢; € (0, }:gb —b), let

W) = b e,
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then,

1-— 1 —
u; € Py(7,0,a,b, 1—7;117, c)={zeP|b<a),lz)< 1 ilb,y(x) < c}.
— 12 — 19

This means that u; € {u € Py(v,0,,b, }:2 b,c) | a(u) > b} # 0 is well-defined.

Moreover, we have
um () > w2 (L) = a(u) > b
and

1-%
11—t

W (1) < w2 (11) = 0(u) <

on [t1,t], which implies, for u € Py(7v, 0, «, b, tgb, c),

1—1
brlz—Q—k S u(k)<t) S : tl t727,—2—kb on [tth]’ k = O7 S n — 2.
— L2

This and (Ay) — (4°) imply

a((Tw)) = min (Tu)" 2 (t) = (Tu)" 2 (t2)

tE[tl,tQ}

1 1
= M1¢q(M)/O h(t278)¢‘1

(
> ot [ st ([t engar)

_ % {W /01 h(ts, 5)6, (/tt k1 .g(s,r)dr> ds} s

Step 2 For some €3 € (0,a — (1 — §)a), let

g(s, ) f(ryu(r),uM(r), - ,u<n+1>(r))dr) ds

ugn_Q) (t) :=a — e,
then
us € Py(v, 8,1, (1 — 8)a,a,c) ={x € P,y | (1 —8)a < ¢(x),B(x) < a,v(x) <c}.

This means that us € {u € Qa2(7, 3,¢, (1—10)a,a,c) | B(u) < a} # 0 is well-defined.

Moreover, we have

0 <u () <u"(0) = f(u) <a
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on [0, 1], which implies, for u € Q2(v, 8,v, (1 — d)a, a, c),
0<u®(t)<aon[0,1], k=0,---,n—2.
This and (Ag) — (2°) imply

3((Tw)) = max (T) "2 (1) = (Tu) " (0)

M1¢(11( )/1 h(0, ), /019(877’)1”(7%(7"),--- ,u(”“)(r))dr> ds
J

1
Ml¢q( )

- % {m /01 10, 5) g (/01 iy - g(s,r)dr) ds} = a.

Step 3 For u e Py(v,a,b,¢c) ={x € P | b < a(z),y(x) < c} with 6(Tu)

it follows from Lemma 4.2.7 that

1—t1
> 1—to b’

a(Tu) = min (Tu)" 2 (t) = (Tu) "D (ty)

e[ty ta)

= m /1 h(ta, s)o, (/01 (s,7)f(r,u(r),- - ,u("“)(r))dr) ds

)
= o | e e g, ([ atosr)sratr) D) as

> o o [htsion ([ atsnsat.eee a0 ear ) as)

1—1, 1-—

= T (n— 2) — T (n72)t
T )} = T (T2 ()
1—1t, 1—1ts 1—1t

= 0(Tu) > X b=nb.
T, 0T > T X T

Step 4 For Qu(y, B,a,¢) = {a € Py | Bx) < a,y(x) < ¢} with ¢(Tu) < (1 - d)a,
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it follows from Lemma 4.2.7 that

§(Tu) = max (T)" (1) = (T)"2(0)

_ m /0 10, 5)6, ( /0 (s, f(ru(r), - ,u("H)(r))dr) ds

- Mlgbi(M) /01 Zgg Sih(é, )64 (/Olg(s,r)f(r,u(r),--- ,u<n+1>(r))dr) s

< s Lo | 60, ([ otsnstauto) - a0 s

= ! u)™=2) = 1 min (Tu)"2
= T ) = s i (1))
1 1

Therefore, the hypotheses of Lemma 4.2.3 are fulfilled and there exist three positive
solutions wuy, us, ug for (HBV P). a
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