Chapter 4

High Order Ordinary Differential Equation Equipped with A Kind of Three-Point Boundary
 Condtion

4.1 Introduction

In the last thirty years, a great deal of works has been done to study the positive solutions of two point boundary value problem for differential equations which are used to describe a number of physical, biological and chemical phenomena. For additional background and results, we refer the reader to the monograph by Agarwal and Wong $[2,3,7,8,9]$, Agarwal, O'Regan and Wong [10] as well as the recent contributions by $[12,24,29,30,50,51,59,60,52,63]$.

Boundary value problems for higher order differential equations can arise, especially for fourth order equations. Recently, three point or multi-point boundary value problem of the differential equations were presented and studied by many
authors, see [48, 49, 59, 60].
In this chapter, we attempt to establish some existence theorems of positive solutions for the following $n+2^{\text {th }}$ order nonlinear boundary value problem:
$\left(\begin{array}{c}(H E)\left[\phi_{p}\left(u^{(n)}(t)\right)\right]^{\prime \prime}=f\left(t, u(t), u^{(1)}(t), \cdots, u^{(n+1)}(t)\right), ~(0) ~\end{array}\right.$
$(H B V P)\left\{\begin{array}{l}u^{(i)}(0)=0, i=0,1,2, \ldots n-3, \\ u^{(n-2)}(0)=\xi u^{(n-2)}(1), \\ u^{(n-1)}(1)=\eta u^{(n-1)}(0), \\ u^{(n)}(0)=\mu u^{(n)}(\delta), \\ u^{(n)}(1)=\nu u^{(n)}(\delta),\end{array}\right.$
where $f:(0,1) \times \mathbb{R}^{n+2} \rightarrow[0,+\infty)$ is a continuous function; $\mu, \nu \geq 0, \xi \neq 1, \eta \neq$ $1,0<\delta<1, n \geq 2$ and $\phi_{p}(z)=|z|^{p-2} z$ for $p>1$.

In 2006, Ma and Ge [52] has studied this topic for boundary value problem:
$\left(H B V P_{5}^{*}\right)\left\{\begin{array}{l}\left(H E_{5}^{*}\right)\left[\phi_{p}\left(u^{\prime \prime}(t)\right)\right]^{\prime \prime}=a(t) f(u(t)) \\ \left(B C_{5}^{*}\right)\left\{\begin{array}{l}u(0)=\xi u(1), \\ u^{\prime}(1)=\eta u^{\prime}(0), \\ u^{\prime \prime}(0)=\mu u^{\prime \prime}(\delta), \\ u^{\prime \prime}(1)=\nu u^{\prime \prime}(\delta) .\end{array}\right.\end{array}\right.$
They applied a fixed-point theorem to establish the existence of at least three positive solutions of $\left(H B V P_{5}^{*}\right)$. Now, we consider the more general case (HBVP) and hope to obtain some extension of the excellent results of Ma and Ge [52].

4.2 Preliminaries

In order to abbreviate our discussion, we need the following observations and lemmas.

Throughout this chapter, we assume that $\left(C_{5}\right) \quad q$ is a constant and satisfies $\frac{1}{p}+\frac{1}{q}=1$;
and observe that
$\left(C_{6}\right) \quad\left(\phi_{p}\right)^{-1}(z):=\phi_{q}(z)=|z|^{q-2} z$

Definition 4.2.1 Let X be a real Banach space and P be a cone of X. A map $\psi: P \rightarrow[0,+\infty)$ is called a nonnegative continuous concave functional map if ψ is nonnegative, continuous and satisfies for all $x, y \in P$ and $t \in[0,1]$,

$$
\psi(t x+(1-t) y) \geq t \psi(x)+(1-t) \psi(y) .
$$

Definition 4.2.2 Let X be a real Banach space and P be a cone of X. A map $\beta: P \rightarrow[0,+\infty)$ is called a nonnegative continuous convex functional map if β is nonnegative, continuous and satisfies for all $x, y \in P$ and $t \in[0,1]$,

$$
\beta(t x+(1-t) y) \leq t \beta(x)+(1-t) \beta(y) .
$$

Let γ, β and θ be nonnegative continuous convex functionals on P, and let α and ψ be nonnegative continuous concave functionals on P. For given nonnegative numbers h, a, b, d and c, we define the following sets:

$$
\begin{aligned}
& P(\gamma, c)=\{x \in P \mid \gamma(x)<c\}, \\
& P(\gamma, \alpha, a, c)=\{x \in P \mid a \leq \alpha(x), \gamma(x) \leq c\}, \\
& Q(\gamma, \beta, d, c)=\{x \in P \mid \beta(x) \leq d, \gamma(x) \leq c\}, \\
& P(\gamma, \theta, \alpha, a, b, c)=\{x \in P \mid a \leq \alpha(x), \theta(x) \leq b, \gamma(x) \leq c\}, \\
& Q(\gamma, \beta, \psi, h, d, c)=\{x \in P \mid h \leq \psi(x), \beta(x) \leq d, \gamma(x) \leq c\} .
\end{aligned}
$$

In order to obtain multiple positive solutions of $(H B V P)$, the following fixedpoint theorem due to Avery which is a generalization of Leggett-Willliams fixedpoint theorem will be fundamental.

Lemma 4.2.3 ([12], Theorem 2.4) Let X be a real Banach space and P be a cone of X. Suppose γ, β and θ are three nonnegative continuous convex functionals
on P and α, ψ are two nonnegative continuous concave functionals on P such that there are $c, L \in(0, \infty)$ satisfying

$$
\alpha(x) \leq \beta(x), \quad\|x\| \leq L \gamma(x)
$$

for $x \in \overline{P(\gamma, c)}$. Suppose further that

$$
T: \overline{P(\gamma, c)} \rightarrow \overline{P(\gamma, c)}
$$

is completely continuous and there exist $h, d, a, b \geq 0$ with $0<d<a$ such that each of the following is satisfied:
(i) $\{x \in P(\gamma, \theta, \alpha, a, b, c) \mid \alpha(x)>a\} \neq \emptyset$ and $\alpha(T x)>a$ for $x \in P(\gamma, \theta, \alpha, a, b, c)$,
(ii) $\{x \in Q(\gamma, \beta, \psi, h, d, c) \mid \beta(x)<d\} \neq \emptyset$ and $\beta(T x)<d$ for $x \in Q(\gamma, \beta, \psi, h, d, c)$,
(iii) $\alpha(T x)>a$ for $x \in P(\gamma, \alpha, a, c)$ with $\theta(T x)>b$,
(iv) $\beta(T x)<d$ for $x \in Q(\gamma, \beta, d, c)$ with $\psi(T x)<h$.

Then, T has at least three fixed points $x_{1}, x_{2}, x_{3} \in \overline{P(\gamma, c)}$ such that $\beta\left(x_{1}\right)<d$, $a<\alpha\left(x_{2}\right), d<\beta\left(x_{3}\right)$ with $\alpha\left(x_{3}\right)<a$.

Lemma 4.2.4 ([52]) Suppose that H is continuous on $[0,1]$, then the unique solution of boundary value problem

$$
\left\{\begin{array}{l}
-y^{\prime \prime}=H(t) \text { in }(0,1) \tag{4.2.1}\\
y(0)=\phi_{p}(\mu) y(\delta), y(1)=\phi_{p}(\nu) y(\delta)
\end{array}\right.
$$

is

$$
y(t)=\frac{1}{M} \int_{0}^{1} g(t, s) H(s) d s
$$

where

$$
\begin{equation*}
M:=1-\phi_{p}(\mu)-\left(\phi_{p}(\nu)-\phi_{p}(\mu)\right) \delta \neq 0 \tag{4.2.2}
\end{equation*}
$$

and
$g(t, s)=\left\{\begin{array}{l}s(1-t)+\phi_{p}(\nu) s(t-\delta), 0 \leq s \leq t<\delta<1 \text { or } 0 \leq s \leq \delta \leq t \leq 1, \\ t(1-s)+\phi_{p}(\nu) t(s-\delta)+\phi_{p}(\mu)(1-\delta)(s-t), 0 \leq t \leq s \leq \delta<1, \\ s(1-t)+\phi_{p}(\nu) \delta(t-s)+\phi_{p}(\mu)(1-t)(\delta-s), 0 \leq \delta \leq s \leq t \leq 1, \\ (1-s)\left(t-\phi_{p}(\mu) t+\phi_{p}(\mu) \delta\right), 0<\delta \leq t \leq s \leq 1 \text { or } 0 \leq t<\delta \leq s \leq 1 .\end{array}\right.$

Lemma 4.2.5 ([52]) Suppose that H is continuous on $[0,1]$, then the unique solution of boundary value problem

$$
\left\{\begin{array}{l}
-y^{\prime \prime}=H(t) \text { in }(0,1) \tag{4.2.3}\\
y(0)=\xi y(1), y^{\prime}(1)=\eta y^{\prime}(0)
\end{array}\right.
$$

is

$$
y(t)=\frac{1}{M_{1}} \int_{0}^{1} h(t, s) H(s) d s
$$

where

$$
M_{1}=(1-\xi)(1-\eta) \neq 0
$$

and

$$
h(t, s)=\left\{\begin{array}{l}
s+\eta(t-s)+\xi \eta(1-t), 0 \leq s \leq t \leq 1, \\
t+\xi(s-t)+\xi \eta(1-s), 0 \leq t \leq s \leq 1 .
\end{array}\right.
$$

Lemma 4.2.6 ([52]) Suppose that $0 \leq \xi, \eta<1,0<t_{1}<t_{2}<1$ and, $\delta \in(0,1)$. Then, for all $s \in[0,1]$,

$$
\begin{equation*}
\frac{h\left(t_{1}, s\right)}{h\left(t_{2}, s\right)} \geq \frac{t_{1}}{t_{2}} \tag{4.2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{h(1, s)}{h(\delta, s)} \leq \frac{1}{\delta} \tag{4.2.5}
\end{equation*}
$$

hold.

Lemma 4.2.7 ([52]) Suppose that $\xi, \eta>1,0<t_{1}<t_{2}<1$ and $\delta \in(0,1)$. Then, for all $s \in[0,1]$,

$$
\begin{equation*}
\frac{h\left(t_{2}, s\right)}{h\left(t_{1}, s\right)} \geq \frac{1-t_{2}}{1-t_{1}} \tag{4.2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{h(0, s)}{h(\delta, s)} \leq \frac{1}{1-\delta} \tag{4.2.7}
\end{equation*}
$$

hold.

4.3 Three Positive solutions

Here, we consider the classical Banach space $X=C^{n}([0,1])$ which is equipped with the usual norm. The cones P_{1} and $P_{2} \subset X$ are defined as follows:

$$
P_{1}=\left\{u \in X \mid u^{(n-2)}(t) \text { is nonnegative concave and nondecreasing on }[0,1]\right\}
$$ and

$$
P_{2}=\left\{u \in X \mid u^{(n-2)}(t) \text { is nonnegative concave and nonincreasing on }[0,1]\right\} .
$$

Next, let $t_{1}, t_{2}, t_{3} \in(0,1)$ with $t_{1}<t_{2}$ be fixed. Moreover, we shall define the nonnegative continuous concave functionals α, ψ and nonnegative convex functionals β, θ, γ on P_{1} by

$$
\begin{aligned}
& \gamma(x)=\max _{t \in\left[0, t_{3}\right]} x^{(n-2)}(t)=x^{(n-2)}\left(t_{3}\right), x \in P_{1}, \\
& \psi(x)=\min _{t \in[\delta, 1]} x^{(n-2)}(t)=x^{(n-2)}(\delta), x \in P_{1}, \\
& \beta(x)=\max _{t \in[\delta, 1]} x^{(n-2)}(t)=x^{(n-2)}(1), x \in P_{1}, \\
& \alpha(x)=\min _{t \in\left[t_{1}, t_{2}\right]} x^{(n-2)}(t)=x^{(n-2)}\left(t_{1}\right), x \in P_{1}, \\
& \theta(x)=\max _{t \in\left[t_{1}, t_{2}\right]} x^{(n-2)}(t)=x^{(n-2)}\left(t_{2}\right), x \in P_{1} .
\end{aligned}
$$

Theorem 4.3.1 Suppose that $M>0$ and the following assumptions hold:
$\left(A_{4}\right) \quad f:(0,1) \times \mathbb{R}^{n+2} \rightarrow[0, \infty)$ is continuous,
$\left(A_{5}\right) \quad \xi, \eta \in[0,1)$ and $a, b, c \in(0, \infty)$ satisfying $0<a<b<\frac{t_{2}}{t_{1}} b \leq c$
and
$\left(A_{6}\right)$ there are three positive constants k_{1}, k_{2}, k_{3} satisfy the following conditions:
(1ㅇ) $f\left(t, y_{1}, \cdots, y_{n+2}\right)>k_{1} \phi_{p}\left(\frac{b}{B}\right)$,
for $\left(t, y_{1}, \cdots, y_{n+2}\right) \in\left[t_{1}, t_{2}\right] \times \prod_{k=0}^{n-2}\left[b t_{1}^{n-2-k}, \frac{t_{2}^{n-1-k}}{t_{1}} b\right] \times \mathbb{R}^{3}$,
$\left(2^{\circ}\right) \quad f\left(t, y_{1}, \cdots, y_{n+2}\right)<k_{2} \phi_{p}\left(\frac{a}{C}\right)$,
for $\left(t, y_{1}, \cdots, y_{n+2}\right) \in[0,1] \times[0, a]^{n-1} \times \mathbb{R}^{3}$,
(3) $\quad f\left(t, y_{1}, \cdots, y_{n+2}\right) \leq k_{3} \phi_{p}\left(\frac{c}{A}\right)$,

$$
\text { for }\left(t, y_{1}, \cdots, y_{n+2}\right) \in[0,1] \times\left[0, \frac{1}{t_{3}} c\right]^{n-1} \times \mathbb{R}^{3},
$$

where A, B and C are defined as follows:

$$
\begin{aligned}
& A=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left[\int_{0}^{1} k_{3} \cdot g(s, r) d r\right] d s, \\
& B=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left[\int_{t_{1}}^{t_{2}} k_{1} \cdot g(s, r) d r\right] d s, \\
& C=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s) \phi_{q}\left[\int_{0}^{1} k_{2} \cdot g(s, r) d r\right] d s .
\end{aligned}
$$

Then, the boundary value problem (HBVP) has at least three positive solutions.

Proof. By Lemma 4.2.4, we obtain

$$
u^{(n)}(t)=-\frac{1}{\phi_{q}(M)} \phi_{q}\left(\int_{0}^{1} g(t, s) f\left(s, u(s), \cdots, u^{(n+1)}(s)\right) d s\right) .
$$

Moreover, it follows from Lemma 4.2.5, we see that

$$
u^{(n-2)}(t)=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(t, s) \phi_{q}\left(\int_{0}^{1} g(s, \tau) f\left(\tau, u(\tau), \cdots, u^{(n+1)}(\tau)\right) d \tau\right) d s
$$

Inspired by the above-mentioned result, we can define a completely continuous operator $T: P_{1} \rightarrow X$ via

$$
(T u)^{(n-2)}(t)=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(t, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s
$$

It is clear that u is a positive solution of $(H B V P)$ if and only if u is a fixed point of T on cone P_{1}. Since M and $M_{1}>0$,

$$
(T u)^{(n-2)} \geq 0 \text { for } u \in P_{1} .
$$

Furthermore,

$$
\begin{aligned}
&\left((T u)^{(n-2)}(t)\right)^{\prime}= \frac{1-\xi}{M_{1} \phi_{q}(M)}\left\{\eta \int_{0}^{t} \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s\right. \\
&\left.+\int_{t}^{1} \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s\right\} \\
& \geq 0
\end{aligned}
$$

and

$$
\left((T u)^{(n-2)}(t)\right)^{\prime \prime}=-\frac{1}{\phi_{q}(M)} \phi_{q}\left(\int_{0}^{1} g(t, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) \leq 0
$$

which imply $T P_{1} \subset P_{1}$. Follows from $u \in P_{1}$, we see that

$$
\begin{aligned}
\gamma(u)=u^{(n-2)}\left(t_{3}\right) & =u^{(n-2)}\left(t_{3} \times 1+\left(1-t_{3}\right) \times 0\right) \\
& \geq t_{3} u^{(n-2)}(1)+\left(1-t_{3}\right) u^{(n-2)}(0) \geq t_{3} \times \max _{t \in[0,1]}\left|u^{(n-2)}(t)\right| .
\end{aligned}
$$

Therefore, for $u \in \overline{P_{1}(\gamma, c)}$, we have

$$
0 \leq u^{(n-2)}(t) \leq \max _{t \in[0,1]}\left|u^{(n-2)}(t)\right| \leq \frac{1}{t_{3}} \gamma(u) \leq \frac{1}{t_{3}} c
$$

on $[0,1]$ which implies

$$
0 \leq u^{(k)}(t) \leq \frac{1}{t_{3}} c \text { on }[0,1], k=0, \cdots, n-2 .
$$

This and $\left(A_{6}\right)-\left(3^{\circ}\right)$ imply

$$
\begin{aligned}
\gamma((T u)) & =\max _{t \in\left[0, t_{3}\right]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}\left(t_{3}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& \leq \frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} k_{3} \cdot g(s, r) \cdot \phi_{p}\left(\frac{c}{A}\right) d r\right) d s \\
& =\frac{c}{A}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} k_{3} \cdot g(s, r) d r\right) d s\right\}=c .
\end{aligned}
$$

Therefore, we obtain that $T: \overline{P_{1}(\gamma, c)} \rightarrow \overline{P_{1}(\gamma, c)}$. Next, we separate the rest proof into the following steps:
Step 1 For some $\varepsilon_{1} \in\left(0, \frac{t_{2}}{t_{1}} b-b\right)$, let

$$
u_{1}^{(n-2)}(t):=b+\varepsilon_{1},
$$

then,

$$
u_{1} \in P_{1}\left(\gamma, \theta, \alpha, b, \frac{t_{2}}{t_{1}} b, c\right)=\left\{x \in P_{1} \mid b \leq \alpha(x), \theta(x) \leq \frac{t_{2}}{t_{1}} b, \gamma(x) \leq c\right\} .
$$

This means that $u_{1} \in\left\{\left.u \in P_{1}\left(\gamma, \theta, \alpha, b, \frac{t_{2}}{t_{1}} b, c\right) \right\rvert\, \alpha(u)>b\right\} \neq \emptyset$ is well-defined.
Moreover, we have

$$
u^{(n-2)}(t) \geq u^{(n-2)}\left(t_{1}\right)=\alpha(u) \geq b
$$

and

$$
u^{(n-2)}(t) \leq u^{(n-2)}\left(t_{2}\right)=\theta(u) \leq \frac{t_{2}}{t_{1}} b
$$

on $\left[t_{1}, t_{2}\right]$, which implies, for $u \in P_{1}\left(\gamma, \theta, \alpha, b, \frac{t_{2}}{t_{1}} b, c\right)$,

$$
b t_{1}^{n-2-k} \leq u^{(k)}(t) \leq \frac{t_{2}^{n-1-k}}{t_{1}} b \text { on }\left[t_{1}, t_{2}\right], k=0, \ldots n-2 .
$$

This and $\left(A_{6}\right)-\left(1^{\circ}\right)$ imply

$$
\begin{aligned}
\alpha((T u)) & =\min _{t \in\left[t_{1}, t_{2}\right]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}\left(t_{1}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& >\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} k_{1} \cdot g(s, r) \cdot \phi_{p}\left(\frac{b}{B}\right) d r\right) d s \\
& =\frac{b}{B}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} k_{1} \cdot g(s, r) d r\right) d s\right\}=b .
\end{aligned}
$$

Step 2 For some $\varepsilon_{2} \in(0, a-\delta a)$, let

$$
u_{2}^{(n-2)}(t):=a-\varepsilon_{2},
$$

then,

$$
u_{2} \in Q_{1}(\gamma, \beta, \psi, \delta a, a, c)=\left\{x \in P_{1} \mid \delta a \leq \psi(x), \beta(x) \leq a, \gamma(x) \leq c\right\}
$$

This means that $u_{2} \in\left\{u \in Q_{1}(\gamma, \beta, \psi, \delta a, a, c) \mid \beta(u)<a\right\} \neq \emptyset$ is well-defined.
Moreover, we have $0 \leq u^{(n-2)}(t) \leq u^{(n-2)}(1)=\beta(u) \leq a$ on $[0,1]$, which implies, for $u \in Q_{1}(\gamma, \beta, \psi, \delta a, a, c)$,

$$
0 \leq u^{(k)}(t) \leq a \text { on }[0,1], k=0, \cdots, n-2 .
$$

This and $\left(A_{6}\right)-\left(2^{\circ}\right)$ imply

$$
\begin{aligned}
\beta((T u)) & =\max _{t \in[\delta, 1]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}(1) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& <\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s) \phi_{q}\left(\int_{0}^{1} k_{2} \cdot g(s, r) \cdot \phi_{p}\left(\frac{a}{C}\right) d r\right) d s \\
& =\frac{a}{C}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s) \phi_{q}\left(\int_{0}^{1} k_{2} \cdot g(s, r) d r\right) d s\right\}=a .
\end{aligned}
$$

Step 3 For $u \in P_{1}(\gamma, \alpha, b, c)=\left\{x \in P_{1} \mid b \leq \alpha(x), \gamma(x) \leq c\right\}$ with $\theta(T u)>\frac{t_{2}}{t_{1}} b$, it follows from Lemma 4.2.6 that

$$
\begin{aligned}
\alpha((T u)) & =\min _{t \in\left[t_{1}, t_{2}\right]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}\left(t_{1}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{1}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} \frac{h\left(t_{1}, s\right)}{h\left(t_{2}, s\right)} h\left(t_{2}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& \geq \frac{t_{1}}{t_{2}}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s\right\} \\
& =\frac{t_{1}}{t_{2}}\left\{(T u)^{(n-2)}\left(t_{2}\right)\right\}=\frac{t_{1}}{t_{2}} \max _{t \in\left[t_{1}, t_{2}\right]}(T u)^{(n-2)}(t) \\
& =\frac{t_{1}}{t_{2}} \theta(T u)>\frac{t_{1}}{t_{2}} \frac{t_{2}}{t_{1}} b=b .
\end{aligned}
$$

Step 4 For $u \in Q_{1}(\gamma, \beta, a, c)=\left\{x \in P_{1} \mid \beta(x) \leq a, \gamma(x) \leq c\right\}$ with $\psi(T u)<\delta a$, it follows from Lemma 4.2 .6 that

$$
\begin{aligned}
\beta((T u)) & =\max _{t \in[\delta, 1]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}(1) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(1, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} \frac{h(1, s)}{h(\delta, s)} h(\delta, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& \leq \frac{1}{\delta}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(\delta, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s\right\} \\
& =\frac{1}{\delta}\left\{(T u)^{(n-2)}(\delta)\right\}=\frac{1}{\delta} \min _{t \in[\delta, 1]}(T u)^{(n-2)}(t) \\
& =\frac{1}{\delta} \psi(T u)<\frac{1}{\delta} \delta a=a .
\end{aligned}
$$

Therefore, the hypotheses of Lemma 4.2.3 are fulfilled. Thus, there exist three positive solutions u_{1}, u_{2}, u_{3} for ($H B V P$).

Let $t_{1}, t_{2}, t_{3} \in(0,1)$ with $t_{1}<t_{2}$ fixed. Moreover, we shall define the nonnegative continuous concave functionals α, ψ and nonnegative convex functionals β, θ, γ
on P_{2} by

$$
\begin{aligned}
& \gamma(x)=\max _{t \in\left[t_{3}, 1\right]} x^{(n-2)}(t)=x^{(n-2)}\left(t_{3}\right), x \in P_{2}, \\
& \psi(x)=\min _{t \in[0, \delta]} x^{(n-2)}(t)=x^{(n-2)}(\delta), x \in P_{2}, \\
& \beta(x)=\max _{t \in[0, \delta]} x^{(n-2)}(t)=x^{(n-2)}(0), x \in P_{2}, \\
& \alpha(x)=\min _{t \in\left[t_{1}, t_{2}\right]} x^{(n-2)}(t)=x^{(n-2)}\left(t_{2}\right), x \in P_{2}, \\
& \theta(x)=\max _{t \in\left[t_{1}, t_{2}\right]} x^{(n-2)}(t)=x^{(n-2)}\left(t_{1}\right), x \in P_{2} .
\end{aligned}
$$

Theorem 4.3.2 Suppose that $M>0$ and the following assumptions hold:
$\left(A_{7}\right) \quad f:(0,1) \times \mathbb{R}^{n+2} \rightarrow[0, \infty)$ is continuous,
$\left(A_{8}\right) \quad \xi, \eta \in(1, \infty)$ and $a, b, c \in(0, \infty)$ satisfying $0<a<b<\frac{1-t_{1}}{1-t_{2}} b \leq c$, and
$\left(A_{9}\right) \quad$ there are three positive constants k_{1}, k_{2}, k_{3} satisfy $\left(2^{\circ}\right),\left(3^{\circ}\right)$, and

$$
\begin{aligned}
& \text { (4) } \quad f\left(t, y_{1}, \cdots, y_{n+2}\right)>k_{1} \phi_{p}\left(\frac{b}{B}\right), \\
& \quad\left(t, y_{1}, \cdots, y_{n+2}\right) \in\left[t_{1}, t_{2}\right] \times \prod_{k=0}^{n-2}\left[b t_{1}^{n-2-k}, \frac{1-t_{1}}{1-t_{2}} t_{2}^{n-2-k} b\right] \times \mathbb{R}^{3} .
\end{aligned}
$$

Then, the boundary value problem (HBVP) has at least three positive solutions.

Proof. By Lemma 4.2.4, we obtain

$$
u^{(n)}(t)=-\frac{1}{\phi_{q}(M)} \phi_{q}\left(\int_{0}^{1} g(t, s) f\left(s, u(s), \cdots, u^{(n+1)}(s)\right) d s\right) .
$$

Moreover, it follows from Lemma 4.2.5, we see that

$$
u^{(n-2)}(t)=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(t, s) \phi_{q}\left(\int_{0}^{1} g(s, \tau) f\left(\tau, u(\tau), \cdots, u^{(n+1)}(\tau)\right) d \tau\right) d s
$$

Inspired by the above-mentioned result, we can define a completely continuous operator $T: P_{2} \rightarrow X$ via

$$
(T u)^{(n-2)}(t)=\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(t, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s
$$

It is clear that u is a positive solution of $(H B V P)$ if and only if u is a fixed point of T on cone P_{2}. Since M and $M_{1}>0$,

$$
(T u)^{(n-2)} \geq 0 \text { for } u \in P_{2} .
$$

Furthermore,

$$
\begin{aligned}
\left((T u)^{(n-2)}(t)\right)^{\prime}= & \frac{1-\xi}{M_{1} \phi_{q}(M)}\left\{\eta \int_{0}^{t} \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s\right. \\
& \left.+\int_{t}^{1} \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s\right\} \\
\leq & 0
\end{aligned}
$$

and

$$
\left((T u)^{(n-2)}(t)\right)^{\prime \prime}=-\frac{1}{\phi_{q}(M)} \phi_{q}\left(\int_{0}^{1} g(t, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) \leq 0,
$$

which imply $T P_{2} \subset P_{2}$. Follows from $u \in P_{2}$, we see that

$$
\begin{aligned}
\gamma(u)=u^{(n-2)}\left(t_{3}\right) & =u^{(n-2)}\left(t_{3} \times 1+\left(1-t_{3}\right) \times 0\right) \\
& \geq t_{3} u^{(n-2)}(1)+\left(1-t_{3}\right) u^{(n-2)}(0) \geq t_{3} \times \max _{t \in[0,1]}\left|u^{(n-2)}(t)\right| .
\end{aligned}
$$

Therefore, we have

$$
0 \leq u^{(n-2)}(t) \leq \max _{t \in[0,1]}\left|u^{(n-2)}(t)\right| \leq \frac{1}{t_{3}} \gamma(u) \leq \frac{1}{t_{3}} c
$$

on [0, 1], which implies, for $u \in \overline{P_{2}(\gamma, c)}$,

$$
0 \leq u^{(k)}(t) \leq \frac{1}{t_{3}} c \text { on }[0,1], k=0, \cdots, n-2 .
$$

This and $\left(A_{9}\right)-\left(3^{\circ}\right)$ imply

$$
\begin{aligned}
\gamma((T u)) & =\max _{t \in\left[t_{3}, 1\right]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}\left(t_{3}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& \leq \frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} k_{3} g(s, r) \phi_{p}\left(\frac{c}{A}\right) d r\right) d s \\
& =\frac{c}{A}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{3}, s\right) \phi_{q}\left(\int_{0}^{1} k_{3} g(s, r) d r\right) d s\right\}=c .
\end{aligned}
$$

Therefore, we obtain that $T: \overline{P_{2}(\gamma, c)} \rightarrow \overline{P_{2}(\gamma, c)}$. Next, we separate the rest proof into the following steps:
Step 1 For some $\varepsilon_{1} \in\left(0, \frac{1-t_{1}}{1-t_{2}} b-b\right)$, let

$$
u_{1}^{(n-2)}(t):=b+\varepsilon_{1},
$$

then,

$$
u_{1} \in P_{2}\left(\gamma, \theta, \alpha, b, \frac{1-t_{1}}{1-t_{2}} b, c\right)=\left\{x \in P_{2} \mid b \leq \alpha(x), \theta(x) \leq \frac{1-t_{1}}{1-t_{2}} b, \gamma(x) \leq c\right\} .
$$

This means that $u_{1} \in\left\{\left.u \in P_{2}\left(\gamma, \theta, \alpha, b, \frac{1-t_{1}}{1-t_{2}} b, c\right) \right\rvert\, \alpha(u)>b\right\} \neq \emptyset$ is well-defined.
Moreover, we have

$$
u^{(n-2)}(t) \geq u^{(n-2)}\left(t_{2}\right)=\alpha(u) \geq b
$$

and

$$
u^{(n-2)}(t) \leq u^{(n-2)}\left(t_{1}\right)=\theta(u) \leq \frac{1-t_{1}}{1-t_{2}} b
$$

on $\left[t_{1}, t_{2}\right]$, which implies, for $u \in P_{2}\left(\gamma, \theta, \alpha, b, \frac{1-t_{1}}{1-t_{2}} b, c\right)$,

$$
b_{1}^{n-2-k} \leq u^{(k)}(t) \leq \frac{1-t_{1}}{1-t_{2}} t_{2}^{n-2-k} b \text { on }\left[t_{1}, t_{2}\right], k=0, \cdots, n-2 .
$$

This and $\left(A_{9}\right)-\left(4^{\circ}\right)$ imply

$$
\begin{aligned}
\alpha((T u)) & =\min _{t \in\left[t_{1}, t_{2}\right]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}\left(t_{2}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), u^{(1)}(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& >\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} k_{1} \cdot g(s, r) \cdot \phi_{p}\left(\frac{b}{B}\right) d r\right) d s \\
& =\frac{b}{B}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{t_{1}}^{t_{2}} k_{1} \cdot g(s, r) d r\right) d s\right\}=b .
\end{aligned}
$$

Step 2 For some $\varepsilon_{2} \in(0, a-(1-\delta) a)$, let

$$
u_{2}^{(n-2)}(t):=a-\varepsilon_{2},
$$

then

$$
u_{2} \in P_{2}(\gamma, \beta, \psi,(1-\delta) a, a, c)=\left\{x \in P_{2} \mid(1-\delta) a \leq \psi(x), \beta(x) \leq a, \gamma(x) \leq c\right\} .
$$

This means that $u_{2} \in\left\{u \in Q_{2}(\gamma, \beta, \psi,(1-\delta) a, a, c) \mid \beta(u)<a\right\} \neq \emptyset$ is well-defined.
Moreover, we have

$$
0 \leq u^{(n-2)}(t) \leq u^{(n-2)}(0)=\beta(u) \leq a
$$

on $[0,1]$, which implies, for $u \in Q_{2}(\gamma, \beta, \psi,(1-\delta) a, a, c)$,

$$
0 \leq u^{(k)}(t) \leq a \text { on }[0,1], k=0, \cdots, n-2 .
$$

This and $\left(A_{9}\right)-\left(2^{\circ}\right)$ imply

$$
\begin{aligned}
\beta((T u)) & =\max _{t \in[0, \delta]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}(0) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& <\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} k_{2} \cdot g(s, r) \cdot \phi_{p}\left(\frac{a}{C}\right) d r\right) d s \\
& =\frac{a}{C}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} k_{2} \cdot g(s, r) d r\right) d s\right\}=a .
\end{aligned}
$$

Step 3 For $u \in P_{2}(\gamma, \alpha, b, c)=\left\{x \in P_{2} \mid b \leq \alpha(x), \gamma(x) \leq c\right\}$ with $\theta(T u)>\frac{1-t_{1}}{1-t_{2}} b$, it follows from Lemma 4.2.7 that

$$
\begin{aligned}
\alpha(T u) & =\min _{t \in\left[t_{1}, t_{2}\right]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}\left(t_{2}\right) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} \frac{h\left(t_{2}, s\right)}{h\left(t_{1}, s\right)} h\left(t_{1}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& \geq \frac{1-t_{2}}{1-t_{1}}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h\left(t_{2}, s\right) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s\right\} \\
& =\frac{1-t_{2}}{1-t_{1}}\left\{(T u)^{(n-2)}\left(t_{1}\right)\right\}=\frac{1-t_{2}}{1-t_{1}} \max _{t \in\left[t_{1}, t_{2}\right]}(T u)^{(n-2)}(t) \\
& =\frac{1-t_{2}}{1-t_{1}} \theta(T u)>\frac{1-t_{2}}{1-t_{1}} \times \frac{1-t_{1}}{1-t_{2}} b=b .
\end{aligned}
$$

Step 4 For $Q_{2}(\gamma, \beta, a, c)=\left\{x \in P_{2} \mid \beta(x) \leq a, \gamma(x) \leq c\right\}$ with $\psi(T u)<(1-\delta) a$,
it follows from Lemma 4.2.7 that

$$
\begin{aligned}
\beta(T u) & =\max _{t \in[0, \delta]}(T u)^{(n-2)}(t)=(T u)^{(n-2)}(0) \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(0, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& =\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} \frac{h(0, s)}{h(\delta, s)} h(\delta, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s \\
& \leq \frac{1}{(1-\delta)}\left\{\frac{1}{M_{1} \phi_{q}(M)} \int_{0}^{1} h(\delta, s) \phi_{q}\left(\int_{0}^{1} g(s, r) f\left(r, u(r), \cdots, u^{(n+1)}(r)\right) d r\right) d s\right\} \\
& =\frac{1}{(1-\delta)}\left\{(T u)^{(n-2)}(\delta)\right\}=\frac{1}{(1-\delta)} \min _{t \in[0, \delta]}(T u)^{(n-2)}(t) \\
& =\frac{1}{(1-\delta)} \psi(T u)<\frac{1}{(1-\delta)}(1-\delta) a=a .
\end{aligned}
$$

Therefore, the hypotheses of Lemma 4.2.3 are fulfilled and there exist three positive solutions u_{1}, u_{2}, u_{3} for $(H B V P)$.

