
Chapter 4

High Order Ordinary Differential

Equation Equipped with A Kind

of Three-Point Boundary

Condtion

4.1 Introduction

In the last thirty years, a great deal of works has been done to study the positive

solutions of two point boundary value problem for differential equations which are

used to describe a number of physical, biological and chemical phenomena. For

additional background and results, we refer the reader to the monograph by Agarwal

and Wong [2, 3, 7, 8, 9], Agarwal, O’Regan and Wong [10] as well as the recent

contributions by [12, 24, 29, 30, 50, 51, 59, 60, 52, 63].

Boundary value problems for higher order differential equations can arise, es-

pecially for fourth order equations. Recently, three point or multi-point boundary

value problem of the differential equations were presented and studied by many
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authors, see [48, 49, 59, 60].

In this chapter, we attempt to establish some existence theorems of positive

solutions for the following n + 2th order nonlinear boundary value problem:

(HBV P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(HE) [φp(u
(n)(t))]′′ = f(t, u(t), u(1)(t), · · · , u(n+1)(t))

(BC5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(i)(0) = 0, i = 0, 1, 2, . . . n − 3,

u(n−2)(0) = ξu(n−2)(1),

u(n−1)(1) = ηu(n−1)(0),

u(n)(0) = μu(n)(δ),

u(n)(1) = νu(n)(δ),

where f : (0, 1) × R
n+2 → [0, +∞) is a continuous function; μ, ν ≥ 0, ξ �= 1, η �=

1, 0 < δ < 1, n ≥ 2 and φp(z) = |z|p−2z for p > 1.

In 2006, Ma and Ge [52] has studied this topic for boundary value problem:

(HBV P ∗
5 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(HE∗
5) [φp(u

′′(t))]′′ = a(t)f(u(t))

(BC∗
5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(0) = ξu(1),

u′(1) = ηu′(0),

u′′(0) = μu′′(δ),

u′′(1) = νu′′(δ).

They applied a fixed-point theorem to establish the existence of at least three

positive solutions of (HBV P ∗
5 ). Now, we consider the more general case (HBVP)

and hope to obtain some extension of the excellent results of Ma and Ge [52].

4.2 Preliminaries

In order to abbreviate our discussion, we need the following observations and

lemmas.

Throughout this chapter, we assume that

(C5) q is a constant and satisfies 1
p

+ 1
q

= 1;
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and observe that

(C6) (φp)
−1(z) := φq(z) = |z|q−2z

Definition 4.2.1 Let X be a real Banach space and P be a cone of X. A map

ψ : P → [0, +∞) is called a nonnegative continuous concave functional map if ψ is

nonnegative, continuous and satisfies for all x, y ∈ P and t ∈ [0, 1],

ψ(tx + (1 − t)y) ≥ tψ(x) + (1 − t)ψ(y).

Definition 4.2.2 Let X be a real Banach space and P be a cone of X. A map

β : P → [0, +∞) is called a nonnegative continuous convex functional map if β is

nonnegative, continuous and satisfies for all x, y ∈ P and t ∈ [0, 1],

β(tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y).

Let γ, β and θ be nonnegative continuous convex functionals on P , and let α

and ψ be nonnegative continuous concave functionals on P . For given nonnegative

numbers h, a, b, d and c, we define the following sets:

P (γ, c) = {x ∈ P | γ(x) < c},
P (γ, α, a, c) = {x ∈ P | a ≤ α(x), γ(x) ≤ c},
Q(γ, β, d, c) = {x ∈ P | β(x) ≤ d, γ(x) ≤ c},
P (γ, θ, α, a, b, c) = {x ∈ P | a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c},
Q(γ, β, ψ, h, d, c) = {x ∈ P | h ≤ ψ(x), β(x) ≤ d, γ(x) ≤ c}.

In order to obtain multiple positive solutions of (HBV P ), the following fixed-

point theorem due to Avery which is a generalization of Leggett-Willliams fixed-

point theorem will be fundamental.

Lemma 4.2.3 ([12], Theorem 2.4) Let X be a real Banach space and P be a

cone of X. Suppose γ, β and θ are three nonnegative continuous convex functionals
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on P and α, ψ are two nonnegative continuous concave functionals on P such that

there are c, L ∈ (0,∞) satisfying

α(x) ≤ β(x), ||x|| ≤ Lγ(x)

for x ∈ P (γ, c). Suppose further that

T : P (γ, c) → P (γ, c)

is completely continuous and there exist h, d, a, b ≥ 0 with 0 < d < a such that each

of the following is satisfied:

(i) {x ∈ P (γ, θ, α, a, b, c) | α(x) > a} �= ∅ and α(Tx) > a for x ∈ P (γ, θ, α, a, b, c),

(ii) {x ∈ Q(γ, β, ψ, h, d, c) | β(x) < d} �= ∅ and β(Tx) < d for x ∈ Q(γ, β, ψ, h, d, c),

(iii) α(Tx) > a for x ∈ P (γ, α, a, c) with θ(Tx) > b,

(iv) β(Tx) < d for x ∈ Q(γ, β, d, c) with ψ(Tx) < h.

Then, T has at least three fixed points x1, x2, x3 ∈ P (γ, c) such that β(x1) < d,

a < α(x2), d < β(x3) with α(x3) < a.

Lemma 4.2.4 ([52]) Suppose that H is continuous on [0, 1], then the unique so-

lution of boundary value problem⎧⎨
⎩

−y′′ = H(t) in (0, 1)

y(0) = φp(μ)y(δ), y(1) = φp(ν)y(δ),
(4.2.1)

is

y(t) =
1

M

∫ 1

0

g(t, s)H(s)ds,

where

M := 1 − φp(μ) − (φp(ν) − φp(μ))δ �= 0 (4.2.2)

and

g(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s(1 − t) + φp(ν)s(t − δ), 0 ≤ s ≤ t < δ < 1 or 0 ≤ s ≤ δ ≤ t ≤ 1,

t(1 − s) + φp(ν)t(s − δ) + φp(μ)(1 − δ)(s − t), 0 ≤ t ≤ s ≤ δ < 1,

s(1 − t) + φp(ν)δ(t − s) + φp(μ)(1 − t)(δ − s), 0 ≤ δ ≤ s ≤ t ≤ 1,

(1 − s)(t − φp(μ)t + φp(μ)δ), 0 < δ ≤ t ≤ s ≤ 1 or 0 ≤ t < δ ≤ s ≤ 1.
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Lemma 4.2.5 ([52]) Suppose that H is continuous on [0, 1], then the unique so-

lution of boundary value problem

⎧⎨
⎩

−y′′ = H(t) in (0, 1),

y(0) = ξy(1), y′(1) = ηy′(0),
(4.2.3)

is

y(t) =
1

M1

∫ 1

0

h(t, s)H(s)ds,

where

M1 = (1 − ξ)(1 − η) �= 0

and

h(t, s) =

⎧⎨
⎩

s + η(t − s) + ξη(1 − t), 0 ≤ s ≤ t ≤ 1,

t + ξ(s − t) + ξη(1 − s), 0 ≤ t ≤ s ≤ 1.

Lemma 4.2.6 ([52]) Suppose that 0 ≤ ξ, η < 1, 0 < t1 < t2 < 1 and, δ ∈ (0, 1).

Then, for all s ∈ [0, 1],

h(t1, s)

h(t2, s)
≥ t1

t2
(4.2.4)

and

h(1, s)

h(δ, s)
≤ 1

δ
(4.2.5)

hold.

Lemma 4.2.7 ([52]) Suppose that ξ, η > 1, 0 < t1 < t2 < 1 and δ ∈ (0, 1). Then,

for all s ∈ [0, 1],

h(t2, s)

h(t1, s)
≥ 1 − t2

1 − t1
(4.2.6)

and

h(0, s)

h(δ, s)
≤ 1

1 − δ
(4.2.7)

hold.
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4.3 Three Positive solutions

Here, we consider the classical Banach space X = Cn([0, 1]) which is equipped

with the usual norm. The cones P1 and P2 ⊂ X are defined as follows:

P1 = {u ∈ X | u(n−2)(t) is nonnegative concave and nondecreasing on [0, 1]}

and

P2 = {u ∈ X | u(n−2)(t) is nonnegative concave and nonincreasing on [0, 1]}.

Next, let t1, t2, t3 ∈ (0, 1) with t1 < t2 be fixed. Moreover, we shall define the

nonnegative continuous concave functionals α, ψ and nonnegative convex function-

als β, θ, γ on P1 by

γ(x) = max
t∈[0,t3]

x(n−2)(t) = x(n−2)(t3), x ∈ P1,

ψ(x) = min
t∈[δ,1]

x(n−2)(t) = x(n−2)(δ), x ∈ P1,

β(x) = max
t∈[δ,1]

x(n−2)(t) = x(n−2)(1), x ∈ P1,

α(x) = min
t∈[t1,t2]

x(n−2)(t) = x(n−2)(t1), x ∈ P1,

θ(x) = max
t∈[t1,t2]

x(n−2)(t) = x(n−2)(t2), x ∈ P1.

Theorem 4.3.1 Suppose that M > 0 and the following assumptions hold:

(A4) f : (0, 1) × R
n+2 → [0,∞) is continuous,

(A5) ξ, η ∈ [0, 1) and a, b, c ∈ (0,∞) satisfying 0 < a < b < t2
t1

b ≤ c

and

(A6) there are three positive constants k1, k2, k3 satisfy the following conditions:

(1◦) f(t, y1, · · · , yn+2) > k1φp(
b
B

),

for (t, y1, · · · , yn+2) ∈ [t1, t2] ×
∏n−2

k=0 [bt
n−2−k
1 ,

tn−1−k
2

t1
b] × R

3,

(2◦) f(t, y1, · · · , yn+2) < k2φp(
a
C

),

for (t, y1, · · · , yn+2) ∈ [0, 1] × [0, a]n−1 × R
3,

(3◦) f(t, y1, · · · , yn+2) ≤ k3φp(
c
A
),

for (t, y1, · · · , yn+2) ∈ [0, 1] × [0, 1
t3

c]n−1 × R
3,

.
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where A,B and C are defined as follows:

A = 1
M1φq(M)

∫ 1

0
h(t3, s)φq[

∫ 1

0
k3 · g(s, r)dr]ds,

B = 1
M1φq(M)

∫ 1

0
h(t1, s)φq[

∫ t2
t1

k1 · g(s, r)dr]ds,

C = 1
M1φq(M)

∫ 1

0
h(1, s)φq[

∫ 1

0
k2 · g(s, r)dr]ds.

Then, the boundary value problem (HBV P ) has at least three positive solutions.

Proof . By Lemma 4.2.4, we obtain

u(n)(t) = − 1

φq(M)
φq

(∫ 1

0

g(t, s)f(s, u(s), · · · , u(n+1)(s))ds

)
.

Moreover, it follows from Lemma 4.2.5, we see that

u(n−2)(t) =
1

M1φq(M)

∫ 1

0

h(t, s)φq

(∫ 1

0

g(s, τ)f(τ, u(τ), · · · , u(n+1)(τ))dτ

)
ds.

Inspired by the above-mentioned result, we can define a completely continuous

operator T : P1 → X via

(Tu)(n−2)(t) =
1

M1φq(M)

∫ 1

0

h(t, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds.

It is clear that u is a positive solution of (HBV P ) if and only if u is a fixed point

of T on cone P1. Since M and M1 > 0,

(Tu)(n−2) ≥ 0 for u ∈ P1.

Furthermore,

((Tu)(n−2)(t))′ =
1 − ξ

M1φq(M)
{η

∫ t

0

φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds

+

∫ 1

t

φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds}

≥0

and

((Tu)(n−2)(t))′′ = − 1

φq(M)
φq

(∫ 1

0

g(t, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
≤ 0,
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which imply TP1 ⊂ P1. Follows from u ∈ P1, we see that

γ(u) = u(n−2)(t3) = u(n−2)(t3 × 1 + (1 − t3) × 0)

≥ t3u
(n−2)(1) + (1 − t3)u

(n−2)(0) ≥ t3 × max
t∈[0,1]

|u(n−2)(t)|.

Therefore, for u ∈ P1(γ, c), we have

0 ≤ u(n−2)(t) ≤ max
t∈[0,1]

|u(n−2)(t)| ≤ 1

t3
γ(u) ≤ 1

t3
c

on [0, 1] which implies

0 ≤ u(k)(t) ≤ 1

t3
c on [0, 1], k = 0, · · · , n − 2.

This and (A6) − (3◦) imply

γ((Tu)) = max
t∈[0,t3]

(Tu)(n−2)(t) = (Tu)(n−2)(t3)

=
1

M1φq(M)

∫ 1

0

h(t3, s)φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds

≤ 1

M1φq(M)

∫ 1

0

h(t3, s)φq

(∫ 1

0

k3 · g(s, r) · φp(
c

A
)dr

)
ds

=
c

A

{
1

M1φq(M)

∫ 1

0

h(t3, s)φq

(∫ 1

0

k3 · g(s, r)dr

)
ds

}
= c.

Therefore, we obtain that T : P1(γ, c) → P1(γ, c). Next, we separate the rest proof

into the following steps:

Step 1 For some ε1 ∈ (0, t2
t1

b − b), let

u
(n−2)
1 (t) := b + ε1,

then,

u1 ∈ P1(γ, θ, α, b,
t2
t1

b, c) = {x ∈ P1 | b ≤ α(x), θ(x) ≤ t2
t1

b, γ(x) ≤ c}.

This means that u1 ∈ {u ∈ P1(γ, θ, α, b, t2
t1

b, c) | α(u) > b} �= ∅ is well-defined.

Moreover, we have

u(n−2)(t) ≥ u(n−2)(t1) = α(u) ≥ b
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and

u(n−2)(t) ≤ u(n−2)(t2) = θ(u) ≤ t2
t1

b

on [t1, t2], which implies, for u ∈ P1(γ, θ, α, b, t2
t1

b, c),

btn−2−k
1 ≤ u(k)(t) ≤ tn−1−k

2

t1
b on [t1, t2], k = 0, . . . n − 2.

This and (A6) − (1◦) imply

α((Tu)) = min
t∈[t1,t2]

(Tu)(n−2)(t) = (Tu)(n−2)(t1)

=
1

M1φq(M)

∫ 1

0

h(t1, s)φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds

>
1

M1φq(M)

∫ 1

0

h(t1, s)φq

(∫ t2

t1

k1 · g(s, r) · φp(
b

B
)dr

)
ds

=
b

B

{
1

M1φq(M)

∫ 1

0

h(t1, s)φq

(∫ t2

t1

k1 · g(s, r)dr

)
ds

}
= b.

Step 2 For some ε2 ∈ (0, a − δa), let

u
(n−2)
2 (t) := a − ε2,

then,

u2 ∈ Q1(γ, β, ψ, δa, a, c) = {x ∈ P1 | δa ≤ ψ(x), β(x) ≤ a, γ(x) ≤ c}.

This means that u2 ∈ {u ∈ Q1(γ, β, ψ, δa, a, c) | β(u) < a} �= ∅ is well-defined.

Moreover, we have 0 ≤ u(n−2)(t) ≤ u(n−2)(1) = β(u) ≤ a on [0, 1], which implies,

for u ∈ Q1(γ, β, ψ, δa, a, c),

0 ≤ u(k)(t) ≤ a on [0, 1], k = 0, · · · , n − 2.

This and (A6) − (2◦) imply

β((Tu)) = max
t∈[δ,1]

(Tu)(n−2)(t) = (Tu)(n−2)(1)

=
1

M1φq(M)

∫ 1

0

h(1, s)φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds

<
1

M1φq(M)

∫ 1

0

h(1, s)φq

(∫ 1

0

k2 · g(s, r) · φp(
a

C
)dr

)
ds

=
a

C

{
1

M1φq(M)

∫ 1

0

h(1, s)φq

(∫ 1

0

k2 · g(s, r)dr

)
ds

}
= a.
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Step 3 For u ∈ P1(γ, α, b, c) = {x ∈ P1 | b ≤ α(x), γ(x) ≤ c} with θ(Tu) > t2
t1

b, it

follows from Lemma 4.2.6 that

α((Tu)) = min
t∈[t1,t2]

(Tu)(n−2)(t) = (Tu)(n−2)(t1)

=
1

M1φq(M)

∫ 1

0

h(t1, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

=
1

M1φq(M)

∫ 1

0

h(t1, s)

h(t2, s)
h(t2, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

≥ t1
t2

{
1

M1φq(M)

∫ 1

0

h(t2, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

}

=
t1
t2
{(Tu)(n−2)(t2)} =

t1
t2

max
t∈[t1,t2]

(Tu)(n−2)(t)

=
t1
t2

θ(Tu) >
t1
t2

t2
t1

b = b.

Step 4 For u ∈ Q1(γ, β, a, c) = {x ∈ P1 | β(x) ≤ a, γ(x) ≤ c} with ψ(Tu) < δa,

it follows from Lemma 4.2.6 that

β((Tu)) = max
t∈[δ,1]

(Tu)(n−2)(t) = (Tu)(n−2)(1)

=
1

M1φq(M)

∫ 1

0

h(1, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

=
1

M1φq(M)

∫ 1

0

h(1, s)

h(δ, s)
h(δ, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

≤ 1

δ

{
1

M1φq(M)

∫ 1

0

h(δ, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

}

=
1

δ
{(Tu)(n−2)(δ)} =

1

δ
min
t∈[δ,1]

(Tu)(n−2)(t)

=
1

δ
ψ(Tu) <

1

δ
δa = a.

Therefore, the hypotheses of Lemma 4.2.3 are fulfilled. Thus, there exist three

positive solutions u1, u2, u3 for (HBV P ). ❑

Let t1, t2, t3 ∈ (0, 1) with t1 < t2 fixed. Moreover, we shall define the nonnega-

tive continuous concave functionals α, ψ and nonnegative convex functionals β, θ, γ
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on P2 by

γ(x) = max
t∈[t3,1]

x(n−2)(t) = x(n−2)(t3), x ∈ P2,

ψ(x) = min
t∈[0,δ]

x(n−2)(t) = x(n−2)(δ), x ∈ P2,

β(x) = max
t∈[0,δ]

x(n−2)(t) = x(n−2)(0), x ∈ P2,

α(x) = min
t∈[t1,t2]

x(n−2)(t) = x(n−2)(t2), x ∈ P2,

θ(x) = max
t∈[t1,t2]

x(n−2)(t) = x(n−2)(t1), x ∈ P2.

Theorem 4.3.2 Suppose that M > 0 and the following assumptions hold:

(A7) f : (0, 1) × R
n+2 → [0,∞) is continuous,

(A8) ξ, η ∈ (1,∞) and a, b, c ∈ (0,∞) satisfying 0 < a < b < 1−t1
1−t2

b ≤ c,

and

(A9) there are three positive constants k1, k2, k3 satisfy (2◦), (3◦), and

(4◦) f(t, y1, · · · , yn+2) > k1φp(
b
B

),

(t, y1, · · · , yn+2) ∈ [t1, t2] ×
∏n−2

k=0 [bt
n−2−k
1 , 1−t1

1−t2
tn−2−k
2 b] × R

3.

Then, the boundary value problem (HBV P ) has at least three positive solutions.

Proof . By Lemma 4.2.4, we obtain

u(n)(t) = − 1

φq(M)
φq

(∫ 1

0

g(t, s)f(s, u(s), · · · , u(n+1)(s))ds

)
.

Moreover, it follows from Lemma 4.2.5, we see that

u(n−2)(t) =
1

M1φq(M)

∫ 1

0

h(t, s)φq

(∫ 1

0

g(s, τ)f(τ, u(τ), · · · , u(n+1)(τ))dτ

)
ds.

Inspired by the above-mentioned result, we can define a completely continuous

operator T : P2 → X via

(Tu)(n−2)(t) =
1

M1φq(M)

∫ 1

0

h(t, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds.

It is clear that u is a positive solution of (HBV P ) if and only if u is a fixed point

of T on cone P2. Since M and M1 > 0,

(Tu)(n−2) ≥ 0 for u ∈ P2.
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Furthermore,

((Tu)(n−2)(t))′ =
1 − ξ

M1φq(M)
{η

∫ t

0

φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds

+

∫ 1

t

φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds}

≤0,

and

((Tu)(n−2)(t))′′ = − 1

φq(M)
φq

(∫ 1

0

g(t, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
≤ 0,

which imply TP2 ⊂ P2. Follows from u ∈ P2, we see that

γ(u) = u(n−2)(t3) = u(n−2)(t3 × 1 + (1 − t3) × 0)

≥ t3u
(n−2)(1) + (1 − t3)u

(n−2)(0) ≥ t3 × max
t∈[0,1]

|u(n−2)(t)|.

Therefore, we have

0 ≤ u(n−2)(t) ≤ max
t∈[0,1]

|u(n−2)(t)| ≤ 1

t3
γ(u) ≤ 1

t3
c

on [0, 1], which implies, for u ∈ P2(γ, c),

0 ≤ u(k)(t) ≤ 1

t3
c on [0, 1], k = 0, · · · , n − 2.

This and (A9) − (3◦) imply

γ((Tu)) = max
t∈[t3,1]

(Tu)(n−2)(t) = (Tu)(n−2)(t3)

=
1

M1φq(M)

∫ 1

0

h(t3, s)φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds

≤ 1

M1φq(M)

∫ 1

0

h(t3, s)φq

(∫ 1

0

k3g(s, r)φp(
c

A
)dr

)
ds

=
c

A

{
1

M1φq(M)

∫ 1

0

h(t3, s)φq

(∫ 1

0

k3g(s, r)dr

)
ds

}
= c.

Therefore, we obtain that T : P2(γ, c) → P2(γ, c). Next, we separate the rest proof

into the following steps:

Step 1 For some ε1 ∈ (0, 1−t1
1−t2

b − b), let

u
(n−2)
1 (t) := b + ε1,
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then,

u1 ∈ P2(γ, θ, α, b,
1 − t1
1 − t2

b, c) = {x ∈ P2 | b ≤ α(x), θ(x) ≤ 1 − t1
1 − t2

b, γ(x) ≤ c}.

This means that u1 ∈ {u ∈ P2(γ, θ, α, b, 1−t1
1−t2

b, c) | α(u) > b} �= ∅ is well-defined.

Moreover, we have

u(n−2)(t) ≥ u(n−2)(t2) = α(u) ≥ b

and

u(n−2)(t) ≤ u(n−2)(t1) = θ(u) ≤ 1 − t1
1 − t2

b

on [t1, t2], which implies, for u ∈ P2(γ, θ, α, b, 1−t1
1−t2

b, c),

bn−2−k
1 ≤ u(k)(t) ≤ 1 − t1

1 − t2
tn−2−k
2 b on [t1, t2], k = 0, · · · , n − 2.

This and (A9) − (4◦) imply

α((Tu)) = min
t∈[t1,t2]

(Tu)(n−2)(t) = (Tu)(n−2)(t2)

=
1

M1φq(M)

∫ 1

0

h(t2, s)φq

(∫ 1

0

g(s, r)f(r, u(r), u(1)(r), · · · , u(n+1)(r))dr

)
ds

>
1

M1φq(M)

∫ 1

0

h(t2, s)φq

(∫ t2

t1

k1 · g(s, r) · φp(
b

B
)dr

)
ds

=
b

B

{
1

M1φq(M)

∫ 1

0

h(t2, s)φq

(∫ t2

t1

k1 · g(s, r)dr

)
ds

}
= b.

Step 2 For some ε2 ∈ (0, a − (1 − δ)a), let

u
(n−2)
2 (t) := a − ε2,

then

u2 ∈ P2(γ, β, ψ, (1 − δ)a, a, c) = {x ∈ P2 | (1 − δ)a ≤ ψ(x), β(x) ≤ a, γ(x) ≤ c}.

This means that u2 ∈ {u ∈ Q2(γ, β, ψ, (1− δ)a, a, c) | β(u) < a} �= ∅ is well-defined.

Moreover, we have

0 ≤ u(n−2)(t) ≤ u(n−2)(0) = β(u) ≤ a

37



on [0, 1], which implies, for u ∈ Q2(γ, β, ψ, (1 − δ)a, a, c),

0 ≤ u(k)(t) ≤ a on [0, 1], k = 0, · · · , n − 2.

This and (A9) − (2◦) imply

β((Tu)) = max
t∈[0,δ]

(Tu)(n−2)(t) = (Tu)(n−2)(0)

=
1

M1φq(M)

∫ 1

0

h(0, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

<
1

M1φq(M)

∫ 1

0

h(0, s)φq

(∫ 1

0

k2 · g(s, r) · φp(
a

C
)dr

)
ds

=
a

C

{
1

M1φq(M)

∫ 1

0

h(0, s)φq

(∫ 1

0

k2 · g(s, r)dr

)
ds

}
= a.

Step 3 For u ∈ P2(γ, α, b, c) = {x ∈ P2 | b ≤ α(x), γ(x) ≤ c} with θ(Tu) > 1−t1
1−t2

b,

it follows from Lemma 4.2.7 that

α(Tu) = min
t∈[t1,t2]

(Tu)(n−2)(t) = (Tu)(n−2)(t2)

=
1

M1φq(M)

∫ 1

0

h(t2, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

=
1

M1φq(M)

∫ 1

0

h(t2, s)

h(t1, s)
h(t1, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

≥ 1 − t2
1 − t1

{
1

M1φq(M)

∫ 1

0

h(t2, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

}

=
1 − t2
1 − t1

{(Tu)(n−2)(t1)} =
1 − t2
1 − t1

max
t∈[t1,t2]

(Tu)(n−2)(t)

=
1 − t2
1 − t1

θ(Tu) >
1 − t2
1 − t1

× 1 − t1
1 − t2

b = b.

Step 4 For Q2(γ, β, a, c) = {x ∈ P2 | β(x) ≤ a, γ(x) ≤ c} with ψ(Tu) < (1− δ)a,
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it follows from Lemma 4.2.7 that

β(Tu) = max
t∈[0,δ]

(Tu)(n−2)(t) = (Tu)(n−2)(0)

=
1

M1φq(M)

∫ 1

0

h(0, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

=
1

M1φq(M)

∫ 1

0

h(0, s)

h(δ, s)
h(δ, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

≤ 1

(1 − δ)

{
1

M1φq(M)

∫ 1

0

h(δ, s)φq

(∫ 1

0

g(s, r)f(r, u(r), · · · , u(n+1)(r))dr

)
ds

}

=
1

(1 − δ)
{(Tu)(n−2)(δ)} =

1

(1 − δ)
min
t∈[0,δ]

(Tu)(n−2)(t)

=
1

(1 − δ)
ψ(Tu) <

1

(1 − δ)
(1 − δ)a = a.

Therefore, the hypotheses of Lemma 4.2.3 are fulfilled and there exist three positive

solutions u1, u2, u3 for (HBV P ). ❑
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