2 Some Definitions and Theorems

In this section, we review some basic definitions, the first and the second fundamental theorems, and some well-known results in the theory of value distribution whose proofs can be found in $[4,6,11]$.

Definition 2.1 For $x \geq 0$, define

$$
\log ^{+} x=\max (\log x, 0)= \begin{cases}\log x, & \text { if } x \geq 1 \\ 0, & \text { if } 0 \leq x<1\end{cases}
$$

which is called the positive logarithmic function.

Definition 2.2 Let $f(z)$ be a non-constant meromorphic function in the disc $|z| \leq$ $R(0<R<\infty)$. For $0<r<R$, define

$$
m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

which is the average of the positive logarithm of $|f(z)|$ on the circle $|z|=r$.

Definition 2.3 Let $f(z)$ be a non-constant meromorphic function in the disc $|z| \leq$ $R(0<R<\infty)$. For $0<r<R$, define

$$
N(r, f)=\int_{0}^{r} \frac{n(t, f)-n(0, f)}{t} d t+n(0, f) \log r
$$

where $n(t, f)$ denotes the number of poles of $f(z)$ in the disc $|z| \leq t$, multiple poles are counted according to their multiplicities. $n(0, f)$ denotes the multiplicity of poles of $f(z)$ at the origin. $N(r, f)$ is called the counting function of poles of $f(z)$.

Definition 2.4 Let $f(z)$ be a non-constant meromorphic function in the disc $|z| \leq$ $R(0<R<\infty)$. For $0<r<R$, define

$$
T(r, f)=m(r, f)+N(r, f),
$$

which is called the characteristic function of $f(z)$.

Definition 2.5 Let $f(z)$ be a non-constant meromorphic function in the disc $|z| \leq$ $R(0<R<\infty)$. For $0<r<R$, define

$$
\bar{N}(r, f)=\int_{0}^{r} \frac{\bar{n}(t, f)-\bar{n}(0, f)}{t} d t+\bar{n}(0, f) \log r
$$

where $\bar{n}(t, f)$ denotes the number of distinct poles of $f(z)$ in the disc $|z| \leq t$, and any of them be counted only once. $\bar{N}(r, f)$ is called the reduced counting function of poles of $f(z)$.

Definition 2.6 Let $f(z)$ be a non-constant meromorphic function in the complex plane. The order λ of $f(z)$ is defined by

$$
\lambda(f) \equiv \lambda=\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}
$$

Definition 2.7 Let $f(z)$ be a non-constant meromorphic function in the complex plane and a be any complex number. The deficiency of a with respect to $f(z)$ is defined by

$$
\delta(a, f)=1-\varlimsup_{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

If $\delta(a, f)>0$, then the complex number a is called a deficient value of $f(z)$. The deficient value is also called exceptional value in the sense of Nevanlinna.

Theorem 2.8 (The first fundamental theorem) Suppose that $f(z)$ is meromorphic in $|z|<R(\leq \infty)$ and a is any complex number. Then for $0<r<R$ we have

$$
\begin{equation*}
T\left(r, \frac{1}{f-a}\right)=T(r, f)+\log \left|c_{\lambda}\right|+\varepsilon(a, r) \tag{2.1}
\end{equation*}
$$

where c_{λ} is the first non-zero cofficient of the Laurent expansion of $\frac{1}{f-a}$ at the origin, and

$$
|\varepsilon(a, r)| \leq \log ^{+}|a|+\log 2 .
$$

We can simply write formula (2.1) as

$$
T\left(r, \frac{1}{f-a}\right)=T(r, f)+O(1)
$$

which means that, for any complex number a, the difference of $T\left(r, \frac{1}{f-a}\right)$ and $T(r, f)$ is a bounded quantity.

Theorem 2.9 (The second fundamental theorem) Suppose that $f(z)$ is a nonconstant meromorphic function in $|z|<R$ and $a_{j}(j=1,2, \ldots, q)$ are $q(\geq 2)$ distinct finite complex numbers. Then for $0<r<R$, we have

$$
\begin{equation*}
m(r, f)+\sum_{j=1}^{q} m\left(r, \frac{1}{f-a_{j}}\right) \leq 2 T(r, f)-N_{1}(r)+S(r, f) \tag{2.2}
\end{equation*}
$$

where

$$
N_{1}(r)=2 N(r, f)-N\left(r, f^{\prime}\right)+N\left(r, \frac{1}{f^{\prime}}\right),
$$

and

$$
S(r, f)=m\left(r, \frac{f^{\prime}}{f}\right)+m\left(r, \sum_{j=1}^{q} \frac{f^{\prime}}{f-a_{j}}\right)+O(1)
$$

If the order of $f(z)$ is finite, then

$$
S(r, f)=O(\log r)=o(T(r, f)), \quad(r \rightarrow \infty)
$$

If the order of $f(z)$ is infinite, then

$$
S(r, f)=O(\log (r T(r, f)))=o(T(r, f)), \quad(r \rightarrow \infty, r \notin E)
$$

where $E \subseteq(0, \infty)$ is a set of finite linear measure.
When $q \geq 3$, (2.2) can be restated as

$$
(q-2) T(r, f)<\sum_{j=1}^{q} N\left(r, \frac{1}{f-a_{j}}\right)-N_{1}(r)+S(r, f)
$$

or

$$
(q-2) T(r, f)<\sum_{j=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+S(r, f)
$$

Theorem 2.10 Let $f_{j}(z)(j=1,2,3)$ be meromorphic functions and $f_{1}(z)$ be nonconstant. If

$$
\sum_{j=1}^{3} f_{j}(z) \equiv 1
$$

and

$$
\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right)+2 \sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right)<(\lambda+o(1)) T(r) \quad(r \in I),
$$

where $\lambda<1, T(r)=\max _{1 \leq j \leq 3}\left\{T\left(r, f_{j}\right)\right\}$, and $I \subseteq(0, \infty)$ is a set of infinite linear measure, then $f_{2}(z) \equiv 1$ or $f_{3}(z) \equiv 1$.

Theorem 2.11 Let $h(z)$ be a non-constant entire function and $f(z)=e^{h(z)}$. Then
(i) $T(r, h)=o(T(r, f)) \quad(r \rightarrow \infty)$,
(ii) $T\left(r, h^{\prime}\right)=S(r, f)$.

Theorem 2.12 Suppose that $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \ldots, g_{n}(z)$ are entire functions satisfying the following conditions.
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$.
(ii) $g_{j}(z)-g_{k}(z)$ are not constants for $1 \leq j<k \leq n$.
(iii) For $1 \leq j \leq n, 1 \leq h<k \leq n, T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}-g_{k}}\right)\right\} \quad(r \rightarrow \infty, r \notin E)$.

Then $f_{j}(z) \equiv 0(j=1,2, \ldots, n)$.

Theorem 2.13 Let $g_{j}(z)(j=1,2, \ldots, n)$ be entire functions and $a_{j}(z)(j=0,1, \ldots, n)$ be meromorphic functions satisfying

$$
T\left(r, a_{j}\right)=o\left(\sum_{k=1}^{n} T\left(r, e^{g_{k}}\right)\right) \quad(r \rightarrow \infty, r \notin E) \quad(j=0,1, \ldots, n)
$$

If

$$
\sum_{j=1}^{n} a_{j}(z) e^{g_{j}(z)} \equiv a_{0}(z)
$$

then there exist constants $c_{j}(j=1,2, \ldots, n)$, at least one of them is not zero, such that

$$
\sum_{j=1}^{n} c_{j} a_{j}(z) e^{g_{j}(z)} \equiv 0
$$

Theorem 2.14 [9] Let $g_{j}(z)(j=1,2, \ldots, p)$ be transcendental entire functions and $a_{j}(j=0,1, \ldots, p)$ be non-zero constants. If $\sum_{j=1}^{p} a_{j} g_{j}(z)=1$, then $\sum_{j=1}^{p} \delta\left(0, g_{j}\right) \leq$ $p-1$.

Theorem 2.15 [7] Suppose that $f(z)$ is a non-constant meromorphic function satisfying the differential equation

$$
\left(f^{\prime}\right)^{n}=a_{0}(z)+a_{1}(z) f+\ldots a_{2 n}(z) f^{2 n}=P(z, f)
$$

where n is a positive integer and $a_{0}, a_{1}, \ldots, a_{2 n}(\neq 0)$ are meromorphic functions satifying

$$
\sum_{j=0}^{2 n} T\left(r, a_{j}\right)=S(r, f)
$$

Then $m(r, f)=S(r, f)$ and

$$
m\left(r, \frac{1}{f-\alpha}\right)=S(r, f)
$$

where α is a finite value, and $P(z, \alpha) \neq 0$.

Theorem 2.16 Let f and g be non-constant meromorphic functions. If f and g share distinct values a_{1}, a_{2} and $a_{3} I M$, then

$$
T(r, f)<3 T(r, g)+S(r, f)
$$

Lemma 2.17 Let f be a non-constant meromorphic function, $\psi(z)=f^{(k)}(z)$, where k is a positive integer. Then

$$
k \bar{N}_{1)}(r, f) \leq \bar{N}_{(2}(r, f)+\bar{N}\left(r, \frac{1}{\psi-1}\right)+N_{0}\left(r, \frac{1}{\psi^{\prime}}\right)+S(r, f),
$$

where $N_{0}\left(r, \frac{1}{\psi^{\prime}}\right)$ denotes the counting function of zeros of ψ^{\prime} which are not the multiple zeros of $\psi-1 . \bar{N}_{1)}(r, f)$ denotes the counting function of single poles of $f(z) . \bar{N}_{(2}(r, f)$ denotes the counting function of multiple poles of $f(z)$, and any of them be counted only once.

Theorem 2.18 [3] Suppose $f(z)$ is a transcendental meromorphic function in the complex plane and k is a positive integer. Then

$$
(k-1) \bar{N}(r, f) \leq(1+\varepsilon) N\left(r, \frac{1}{f^{(k)}}\right)+(1+\varepsilon)[N(r, f)-\bar{N}(r, f)]+S(r, f)
$$

where ε is any fixed positive number.

Theorem 2.19 Suppose $f(z)$ is a non-constant meromorphic function in the complex plane and k is a positive integer. Then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N\left(r, \frac{1}{f}\right)+S(r, f)
$$

and

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

