
3 Entire Functions Sharing Values with Their Deriva-

tives

In this section, we study the problem on entire functions sharing two values (CM

and IM) with their first derivatives.

Theorem 3.1 [10] Let f be a non-constant entire function. If f and f ′ share values

a and b CM, then f ≡ f ′.

Proof . When only one of a and b is zero, we suppose that a = 0 and b 6= 0 without

loss of generality, then 0 must be the Picard exceptional value of f and f ′. Set

f(z) = eα(z), f ′(z) = eβ(z), (3.1)

where α(z) and β(z) are non-constant entire functions. Then we have

eβ(z) = α′(z)eα(z). (3.2)

Notice that b is a CM value shared by f and f ′, we have

f − b

f ′ − b
= eγ, (3.3)

where γ(z) is an entire function. Combining (3.1) with (3.3) we can get

1

b
eα + eγ − 1

b
eβ+γ = 1. (3.4)

Using Theorem 2.10 to this, we know eγ ≡ 1 or −1
b

eβ+γ ≡ 1. If eγ ≡ 1, (3.3) implies

f ≡ f ′. If −1
b

eβ+γ ≡ 1, then eβ = −be−γ and (3.4) leads to eβ = b2e−α. So from

(3.2), we can get e2α = b2

α′ , then ff ′ = b2, which is impossible.

Now we assume that a 6= 0 and b 6= 0, then we have

f ′ − a

f − a
= eα(z),

f ′ − b

f − b
= eβ(z), (3.5)
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where α(z) and β(z) are entire functions. Suppose that f 6= f ′. We can solve from

(3.5)

f =
beβ − aeα + a− b

eβ − eα
, f ′ =

beα − aeβ + (a− b)eβ+α

eα − eβ
.

Hence,

ae2β + be2α + (a− b)e2α+β − (a− b)eα+2β + {(b− a)(β′ − α′)− (a + b)}eα+β

+(a− b)β′eβ − (a− b)α′eα = 0. (3.6)

Clearly,

T (r, f) < 2T (r, eα) + 2T (r, eβ) + O(1). (3.7)

Assume that eα ≡ c, where c (6= 0, 1) is a constant. Then from (3.7) we know that

eβ is not a constant, and (3.6) implies

Ae2β + Beβ + bc2 = 0, (3.8)

where

A = a− (a− b)c, B = (a− b)c2 + {(b− a)β′ − (a + b)}c + (a− b)β′.

By Theorem 2.11, we have

T (r, B) = S(r, eβ)

and by Theorem 2.12, (3.8) can not hold, so eα is not a constant.

Assume that eβ ≡ c, where c (6= 0, 1) is a constant. Then (3.6) implies

Ae2α + Beα + ac2 = 0, (3.9)

where

A = b + (a− b)c, B = (b− a)c2 + {(a− b)α′ − (a + b)}c− (a− b)α′.

By Theorem 2.11, we have

T (r, B) = S(r, eα)
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and by Theorem 2.12, (3.9) can not hold, so eβ is not a constant.

Assume that eβ−α ≡ c, where c (6= 0, 1) is a constant. Then (3.6) implies

Ae3α + Be2α + Ceα = 0, (3.10)

where

A = (a− b)(1− c)c, B = ac2 + b− (a + b)c, C = (a− b)(c− 1)α′.

By Theorem 2.11, we have

T (r, C) = S(r, eα)

and by Theorem 2.12, (3.10) can not hold, so eβ−α is not a constant.

Assume that eβ−2α ≡ c, where c (6= 0) is a constant. Then (3.6) implies

Ae5α + Be4α + Ce3α + De2α + Eeα = 0, (3.11)

where

A = −(a− b)c2, B = ac2 + (a− b)c, C = {(b− a)α′ − (a + b)}c,

D = b + 2(a− b)cα′, E = −(a− b)α′.

By Theorem 2.11, we have

T (r, C) = S(r, eα), T (r,D) = S(r, eα), T (r, E) = S(r, eα)

and by Theorem 2.12, (3.11) can not hold, so eβ−2α is not a constant.

Assume that e2β−α ≡ c, where c (6= 0) is a constant. Then (3.6) implies

Ae5β + Be4β + Ce3β + De2β + Eeβ = 0, (3.12)

where

A =
a− b

c2
, B =

b− (a− b)c

c2
, C =

(a− b)β′ − (a + b)

c
,

D =
ac− 2(a− b)β′

c
, E = (a− b)β′.

By Theorem 2.11, we have

T (r, C) = S(r, eβ), T (r,D) = S(r, eβ), T (r, E) = S(r, eβ)
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and by Theorem 2.12, (3.12) can not hold, so e2β−α is not a constant.

Again from (3.6) we have

aeβ + be2α−β + (a− b)e2α − (a− b)eα+β + {(b− a)(β′ − α′)− (a + b)}eα

−(a− b)α′eα−β = −(a− b)β′. (3.13)

Applying Theorem 2.13 to (3.13), there exist not all zero constants c1,c2,...,c6 such

that

c1e
β + c2e

2α−β + c3e
2α + c4e

α+β + c5{(b− a)(β′ − α′)− (a + b)}eα + c6α
′eα−β = 0.

It leads to

c1e
β−α + c2e

α−β + c3e
α + c4e

β + c6α
′e−β = −c5{(b− a)(β′ − α′)− (a + b)}.

Using Theorem 2.13 again to this, we have not all zero constants d1,d2,...,d5 such

that

d1e
β−α + d2e

α−β + d3e
α + d4e

β + d5α
′e−β = 0.

Therefore

d1e
2β−α + d2e

α + d3e
α+β + d4e

2β = −d5α
′.

Using Theorem 2.13 again to this, we have not all zero constants t1,t2,...,t4 such

that

t1e
2β−α + t2e

α + t3e
α+β + t4e

2β = 0.

Suppose that t4 6= 0 without loss of generality, we derive from above equality

−t1
t4

e−α − t2
t4

eα−2β − t3
t4

eα−β = 1.

Note that e−α, eα−2β, eα−β are all not constants, and δ(0, e−α) = 1, δ(0, eα−2β) = 1,

δ(0, eα−β) = 1. This contradicts Theorem 2.14, so f(z) ≡ f ′(z). ❑

Theorem 3.2 [8] Let f(z) be a non-constant entire function, a and b be distinct

finite values. If f and f ′ share the value a and b IM, then f ≡ f ′.
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Proof . We distinguish the following two cases.

Case 1. Assume that ab 6= 0.

Since a and b are shared by f and f ′ IM, the zeros of f − a and f − b must be

simple zeros. Suppose that f(z) 6= f ′. Then

N

(
r,

1

f − f ′

)
≤ T (r, f − f ′) + O(1)

= m

(
r, f

(
1− f ′

f

))
+ O(1)

≤ m(r, f) + S(r, f)

= T (r, f) + S(r, f).

Therefore

N

(
r,

1

f − a

)
+ N

(
r,

1

f − b

)
≤ N

(
r,

1

f − f ′

)
≤ T (r, f) + S(r, f). (3.14)

Note

m

(
r,

1

f − a

)
+ m

(
r,

1

f − b

)
= m

(
r,

1

f − a
+

1

f − b

)
+ O(1)

≤ m

(
r,

f ′

f − a
+

f ′

f − b

)
+ m

(
r,

1

f ′

)
+ O(1)

= m

(
r,

f ′

f − a

)
+ m

(
r,

f ′

f − b

)
+ m

(
r,

1

f ′

)
+ O(1)

= m

(
r,

1

f ′

)
+ S(r, f).

This and (3.14) we have

T (r, f) ≤ m

(
r,

1

f ′

)
+ S(r, f). (3.15)

Combining

N

(
r,

1

f ′ − a

)
+ N

(
r,

1

f ′ − b

)
≤ N

(
r,

1

f − f ′

)
≤ T (r, f) + S(r, f)

with

N

(
r,

1

f ′ − a

)
−N

(
r,

1

f ′ − a

)
+ N

(
r,

1

f ′ − b

)
−N

(
r,

1

f ′ − b

)
≤ N

(
r,

1

f ′′

)
,
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we get

N

(
r,

1

f ′ − a

)
+ N

(
r,

1

f ′ − b

)
≤ T (r, f) + N

(
r,

1

f ′′

)
+ S(r, f). (3.16)

Note

m

(
r,

1

f ′

)
+ m

(
r,

1

f ′ − a

)
+ m

(
r,

1

f ′ − b

)

= m

(
r,

1

f ′
+

1

f ′ − a
+

1

f ′ − b

)
+ O(1)

≤ m

(
r,

f ′′

f ′
+

f ′′

f ′ − a
+

f ′′

f ′ − b

)
+ m

(
r,

1

f ′′

)
+ O(1)

= m

(
r,

f ′′

f ′

)
+ m

(
r,

f ′′

f ′ − a

)
+ m

(
r,

f ′′

f ′ − b

)
+ m

(
r,

1

f ′′

)
+ O(1)

= m

(
r,

1

f ′′

)
+ S(r, f).

This and (3.16) we get

m

(
r,

1

f ′

)
+ 2T (r, f ′) ≤ T (r, f) + T (r, f ′′) + S(r, f)

≤ T (r, f) + T (r, f ′) + S(r, f).

This and (3.15) we obtain

T (r, f ′) = S(r, f).

In addition, (3.15) implies

T (r, f) ≤ T (r, f ′) + S(r, f) = S(r, f).

It is a contradiction, thus f ≡ f ′

Case 2. Assume that ab = 0.

We suppose that a = 0 and b = 1 without loss of generality. Since 0 and 1 are

shared values of f and f ′, we know that the multiplicity of zeros of f is great than

one and the zeros of f − 1 are the simple zeros. Suppose that f 6= f ′. Set

g =
f ′(f ′ − f)

f(f − 1)
. (3.17)
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Then g is an entire function and

T (r, g) = m

(
r,

f ′

f − 1

(
f ′

f
− 1

))
≤ m

(
r,

f ′

f − 1

)
+ m

(
r,

f ′

f

)
+ O(1) = S(r, f).

(3.18)

Moreover, (3.17) leads to

(f ′)2 − ff ′ = g(f 2 − f).

Taking derivative twice, we derive

2f ′f ′′ − (f ′)2 − ff ′′ = g′(f 2 − f) + g(2ff ′ − f ′) (3.19)

and

2(f ′′)2 + 2f ′f ′′′ − 3f ′f ′′ − ff ′′′

= g′′(f 2 − f) + 2g′(2ff ′ − f ′) + g[2(f ′)2 + 2ff ′′ − f ′′]. (3.20)

Let z1 be a zero of f − 1. Then f(z1) = f ′(z1) = 1. So from (3.19) and (3.20) we

have

f ′′(z1) = 1 + g(z1),

f ′′′(z1) = 2g′(z1)− g2(z1) + 2g(z1) + 1.

Set

φ =
f ′′ − (g + 1)f ′

f − 1
, (3.21)

ψ =
f ′′′ − (2g′ − g2 + 2g + 1)f ′

f − 1
. (3.22)

Since f−1 has only simple zeros, we know that φ and ψ are entire functions. Hence,

T (r, φ) = m(r, φ)

≤ m

(
r,

f ′′

f − 1

)
+ m

(
r,

f ′

f − 1

)
+ m(r, g) + O(1)

= S(r, f)
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and

T (r, ψ) = m(r, ψ)

≤ m

(
r,

f ′′′

f − 1

)
+ m

(
r,

f ′

f − 1

)
+ m(r, g′) + m(r, g2 + 2g) + O(1)

= S(r, f).

Combining (3.21) with (3.22), we get

f ′(2g2 − g′ + φ) = (f − 1)(ψ − φ′ − (1 + g)φ). (3.23)

If 2g2 − g′ + φ 6= 0, (3.23) implies

N

(
r,

1

f − 1

)
≤ N

(
r,

1

2g2 − g′ + φ

)
= S(r, f)

and

N

(
r,

1

f

)
≤ N

(
r,

1

ψ − φ′ − (1 + g)φ

)
= S(r, f).

By the second fundamental theorem for 1, 0, ∞, we obtain

T (r, f) < N

(
r,

1

f − 1

)
+ N

(
r,

1

f

)
+ N(r, f) + S(r, f) = S(r, f).

This is a contradiction. Therefore

2g2 − g′ + φ = 0. (3.24)

Let z0 be a zero of f(z), then from (3.20) and (3.21) we know

2f ′′(z0) = −g(z0), f ′′(z0) = −φ(z0),

hence φ(z0) = 1
2
g(z0). In addition, (3.24) leads to

2g2(z0) +
1

2
g(z0)− g′(z0) = 0. (3.25)

If 2g2 + 1
2
g − g′ 6= 0, from (3.18) and (3.25) we have

N

(
r,

1

f

)
≤ N

(
r,

1

2g2 + 1
2
g − g′

)
= S(r, f).
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Note that

N

(
r,

1

f − 1

)
≤ N

(
r,

f

f ′ − f

)

= N

(
r,

1
f ′
f
− 1

)

≤ T

(
r,

f ′

f

)
+ O(1)

= N

(
r,

f ′

f

)
+ m

(
r,

f ′

f

)
+ O(1)

= N

(
r,

1

f

)
+ S(r, f)

= S(r, f).

By the second fundamental theorem for 1, 0, ∞, we obtain

T (r, f) < N

(
r,

1

f − 1

)
+ N

(
r,

1

f

)
+ N(r, f) + S(r, f) = S(r, f).

This is a contradiction. Thus

g′ =
1

2
g + 2g2. (3.26)

Suppose that g is a non-constant entire function, then by Theorem 2.15 we know

T (r, g) = S(r, g),

which is a contradiction. So g must be a constant. From (3.26), we know that g ≡ 0

or g ≡ −1
4
. Since f 6= f ′, hence g ≡ −1

4
, and from (3.17) we obtain

(2f ′ − f)2 = f.

Set h = 2f ′ − f . Then f = h2 and f ′ = 2hh′. Hence,

h′ =
1

4
(1 + h). (3.27)

Solving (3.27), we get

h(z) = Ae
1
4
z − 1,

where A (6= 0) is a constant. Let z∗ = 4πi − 4 log A. Then h(z∗) = −2, and from

(3.27) we get h′(z∗) = −1
4
. Hence

f(z∗) = h2(z∗) = 4
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and

f ′(z∗) = 2h(z∗)h′(z∗) = 1.

This contradicts the fact that 1 is a shared value of f and f ′ IM.

Thus f ≡ f ′. ❑

For the shared value problem of an entire function f with its higher-order

derivatives, the following results are well-known.

Theorem 3.3 [12] Let f(z) be a non-constant entire function, k (≥ 2) be an integer

and a ( 6= 0) be a finite value. Suppose that 0 is the Picard exceptional value of f

and f (k), and that a is a IM share value of f and f (k). Then f(z) = eAz+B, where

A and B are constants satisfying Ak = 1, that is f ≡ f (k).

Theorem 3.4 [12] Let f be a non-constant entire function, k be a positive integer,

a and b be two distinct finite values. If f and f (k) share values a and b CM, then

f ≡ f (k).
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