3 Entire Functions Sharing Values with Their Derivatives

In this section, we study the problem on entire functions sharing two values (CM and IM) with their first derivatives.

Theorem 3.1 [10] Let f be a non-constant entire function. If f and f^{\prime} share values a and $b C M$, then $f \equiv f^{\prime}$.

Proof. When only one of a and b is zero, we suppose that $a=0$ and $b \neq 0$ without loss of generality, then 0 must be the Picard exceptional value of f and f^{\prime}. Set

$$
\begin{equation*}
f(z)=e^{\alpha(z)}, \quad f^{\prime}(z)=e^{\beta(z)} \tag{3.1}
\end{equation*}
$$

where $\alpha(z)$ and $\beta(z)$ are non-constant entire functions. Then we have

$$
\begin{equation*}
e^{\beta(z)}=\alpha^{\prime}(z) e^{\alpha(z)} \tag{3.2}
\end{equation*}
$$

Notice that b is a CM value shared by f and f^{\prime}, we have

$$
\begin{equation*}
\frac{f-b}{f^{\prime}-b}=e^{\gamma} \tag{3.3}
\end{equation*}
$$

where $\gamma(z)$ is an entire function. Combining (3.1) with (3.3) we can get

$$
\begin{equation*}
\frac{1}{b} e^{\alpha}+e^{\gamma}-\frac{1}{b} e^{\beta+\gamma}=1 \tag{3.4}
\end{equation*}
$$

Using Theorem 2.10 to this, we know $e^{\gamma} \equiv 1$ or $\frac{-1}{b} e^{\beta+\gamma} \equiv 1$. If $e^{\gamma} \equiv 1$, (3.3) implies $f \equiv f^{\prime}$. If $\frac{-1}{b} e^{\beta+\gamma} \equiv 1$, then $e^{\beta}=-b e^{-\gamma}$ and (3.4) leads to $e^{\beta}=b^{2} e^{-\alpha}$. So from (3.2), we can get $e^{2 \alpha}=\frac{b^{2}}{\alpha^{\prime}}$, then $f f^{\prime}=b^{2}$, which is impossible.

Now we assume that $a \neq 0$ and $b \neq 0$, then we have

$$
\begin{equation*}
\frac{f^{\prime}-a}{f-a}=e^{\alpha(z)}, \quad \frac{f^{\prime}-b}{f-b}=e^{\beta(z)} \tag{3.5}
\end{equation*}
$$

where $\alpha(z)$ and $\beta(z)$ are entire functions. Suppose that $f \neq f^{\prime}$. We can solve from

$$
\begin{equation*}
f=\frac{b e^{\beta}-a e^{\alpha}+a-b}{e^{\beta}-e^{\alpha}}, \quad f^{\prime}=\frac{b e^{\alpha}-a e^{\beta}+(a-b) e^{\beta+\alpha}}{e^{\alpha}-e^{\beta}} . \tag{3.5}
\end{equation*}
$$

Hence,

$$
\begin{gather*}
a e^{2 \beta}+b e^{2 \alpha}+(a-b) e^{2 \alpha+\beta}-(a-b) e^{\alpha+2 \beta}+\left\{(b-a)\left(\beta^{\prime}-\alpha^{\prime}\right)-(a+b)\right\} e^{\alpha+\beta} \\
+(a-b) \beta^{\prime} e^{\beta}-(a-b) \alpha^{\prime} e^{\alpha}=0 . \tag{3.6}
\end{gather*}
$$

Clearly,

$$
\begin{equation*}
T(r, f)<2 T\left(r, e^{\alpha}\right)+2 T\left(r, e^{\beta}\right)+O(1) \tag{3.7}
\end{equation*}
$$

Assume that $e^{\alpha} \equiv c$, where $c(\neq 0,1)$ is a constant. Then from (3.7) we know that e^{β} is not a constant, and (3.6) implies

$$
\begin{equation*}
A e^{2 \beta}+B e^{\beta}+b c^{2}=0, \tag{3.8}
\end{equation*}
$$

where

$$
A=a-(a-b) c, \quad B=(a-b) c^{2}+\left\{(b-a) \beta^{\prime}-(a+b)\right\} c+(a-b) \beta^{\prime} .
$$

By Theorem 2.11, we have

$$
T(r, B)=S\left(r, e^{\beta}\right)
$$

and by Theorem 2.12, (3.8) can not hold, so e^{α} is not a constant.
Assume that $e^{\beta} \equiv c$, where $c(\neq 0,1)$ is a constant. Then (3.6) implies

$$
\begin{equation*}
A e^{2 \alpha}+B e^{\alpha}+a c^{2}=0 \tag{3.9}
\end{equation*}
$$

where

$$
A=b+(a-b) c, \quad B=(b-a) c^{2}+\left\{(a-b) \alpha^{\prime}-(a+b)\right\} c-(a-b) \alpha^{\prime} .
$$

By Theorem 2.11, we have

$$
T(r, B)=S\left(r, e^{\alpha}\right)
$$

and by Theorem 2.12, (3.9) can not hold, so e^{β} is not a constant.
Assume that $e^{\beta-\alpha} \equiv c$, where $c(\neq 0,1)$ is a constant. Then (3.6) implies

$$
\begin{equation*}
A e^{3 \alpha}+B e^{2 \alpha}+C e^{\alpha}=0 \tag{3.10}
\end{equation*}
$$

where

$$
A=(a-b)(1-c) c, \quad B=a c^{2}+b-(a+b) c, \quad C=(a-b)(c-1) \alpha^{\prime}
$$

By Theorem 2.11, we have

$$
T(r, C)=S\left(r, e^{\alpha}\right)
$$

and by Theorem 2.12, (3.10) can not hold, so $e^{\beta-\alpha}$ is not a constant.
Assume that $e^{\beta-2 \alpha} \equiv c$, where $c(\neq 0)$ is a constant. Then (3.6) implies

$$
\begin{equation*}
A e^{5 \alpha}+B e^{4 \alpha}+C e^{3 \alpha}+D e^{2 \alpha}+E e^{\alpha}=0 \tag{3.11}
\end{equation*}
$$

where

$$
\begin{gathered}
A=-(a-b) c^{2}, \quad B=a c^{2}+(a-b) c, \quad C=\left\{(b-a) \alpha^{\prime}-(a+b)\right\} c \\
D=b+2(a-b) c \alpha^{\prime}, \quad E=-(a-b) \alpha^{\prime}
\end{gathered}
$$

By Theorem 2.11, we have

$$
T(r, C)=S\left(r, e^{\alpha}\right), \quad T(r, D)=S\left(r, e^{\alpha}\right), \quad T(r, E)=S\left(r, e^{\alpha}\right)
$$

and by Theorem 2.12, (3.11) can not hold, so $e^{\beta-2 \alpha}$ is not a constant. Assume that $e^{2 \beta-\alpha} \equiv c$, where $c(\neq 0)$ is a constant. Then (3.6) implies

$$
\begin{equation*}
A e^{5 \beta}+B e^{4 \beta}+C e^{3 \beta}+D e^{2 \beta}+E e^{\beta}=0 \tag{3.12}
\end{equation*}
$$

where

$$
\begin{gathered}
A=\frac{a-b}{c^{2}}, \quad B=\frac{b-(a-b) c}{c^{2}}, \quad C=\frac{(a-b) \beta^{\prime}-(a+b)}{c}, \\
D=\frac{a c-2(a-b) \beta^{\prime}}{c}, \quad E=(a-b) \beta^{\prime} .
\end{gathered}
$$

By Theorem 2.11, we have

$$
T(r, C)=S\left(r, e^{\beta}\right), \quad T(r, D)=S\left(r, e^{\beta}\right), \quad T(r, E)=S\left(r, e^{\beta}\right)
$$

and by Theorem 2.12, (3.12) can not hold, so $e^{2 \beta-\alpha}$ is not a constant.

Again from (3.6) we have

$$
\begin{gather*}
a e^{\beta}+b e^{2 \alpha-\beta}+(a-b) e^{2 \alpha}-(a-b) e^{\alpha+\beta}+\left\{(b-a)\left(\beta^{\prime}-\alpha^{\prime}\right)-(a+b)\right\} e^{\alpha} \\
-(a-b) \alpha^{\prime} e^{\alpha-\beta}=-(a-b) \beta^{\prime} \tag{3.13}
\end{gather*}
$$

Applying Theorem 2.13 to (3.13), there exist not all zero constants $c_{1}, c_{2}, \ldots, c_{6}$ such that
$c_{1} e^{\beta}+c_{2} e^{2 \alpha-\beta}+c_{3} e^{2 \alpha}+c_{4} e^{\alpha+\beta}+c_{5}\left\{(b-a)\left(\beta^{\prime}-\alpha^{\prime}\right)-(a+b)\right\} e^{\alpha}+c_{6} \alpha^{\prime} e^{\alpha-\beta}=0$.

It leads to

$$
c_{1} e^{\beta-\alpha}+c_{2} e^{\alpha-\beta}+c_{3} e^{\alpha}+c_{4} e^{\beta}+c_{6} \alpha^{\prime} e^{-\beta}=-c_{5}\left\{(b-a)\left(\beta^{\prime}-\alpha^{\prime}\right)-(a+b)\right\} .
$$

Using Theorem 2.13 again to this, we have not all zero constants $d_{1}, d_{2}, \ldots, d_{5}$ such that

$$
d_{1} e^{\beta-\alpha}+d_{2} e^{\alpha-\beta}+d_{3} e^{\alpha}+d_{4} e^{\beta}+d_{5} \alpha^{\prime} e^{-\beta}=0
$$

Therefore

$$
d_{1} e^{2 \beta-\alpha}+d_{2} e^{\alpha}+d_{3} e^{\alpha+\beta}+d_{4} e^{2 \beta}=-d_{5} \alpha^{\prime} .
$$

Using Theorem 2.13 again to this, we have not all zero constants $t_{1}, t_{2}, \ldots, t_{4}$ such that

$$
t_{1} e^{2 \beta-\alpha}+t_{2} e^{\alpha}+t_{3} e^{\alpha+\beta}+t_{4} e^{2 \beta}=0
$$

Suppose that $t_{4} \neq 0$ without loss of generality, we derive from above equality

$$
-\frac{t_{1}}{t_{4}} e^{-\alpha}-\frac{t_{2}}{t_{4}} e^{\alpha-2 \beta}-\frac{t_{3}}{t_{4}} e^{\alpha-\beta}=1
$$

Note that $e^{-\alpha}, e^{\alpha-2 \beta}, e^{\alpha-\beta}$ are all not constants, and $\delta\left(0, e^{-\alpha}\right)=1, \delta\left(0, e^{\alpha-2 \beta}\right)=1$, $\delta\left(0, e^{\alpha-\beta}\right)=1$. This contradicts Theorem 2.14, so $f(z) \equiv f^{\prime}(z)$.

Theorem 3.2 [8] Let $f(z)$ be a non-constant entire function, a and b be distinct finite values. If f and f^{\prime} share the value a and $b I M$, then $f \equiv f^{\prime}$.

Proof. We distinguish the following two cases.
Case 1. Assume that $a b \neq 0$.

Since a and b are shared by f and $f^{\prime} \mathrm{IM}$, the zeros of $f-a$ and $f-b$ must be simple zeros. Suppose that $f(z) \neq f^{\prime}$. Then

$$
\begin{aligned}
N\left(r, \frac{1}{f-f^{\prime}}\right) & \leq T\left(r, f-f^{\prime}\right)+O(1) \\
& =m\left(r, f\left(1-\frac{f^{\prime}}{f}\right)\right)+O(1) \\
& \leq m(r, f)+S(r, f) \\
& =T(r, f)+S(r, f)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-b}\right) \leq N\left(r, \frac{1}{f-f^{\prime}}\right) \leq T(r, f)+S(r, f) \tag{3.14}
\end{equation*}
$$

Note

$$
\begin{aligned}
m\left(r, \frac{1}{f-a}\right)+m\left(r, \frac{1}{f-b}\right) & =m\left(r, \frac{1}{f-a}+\frac{1}{f-b}\right)+O(1) \\
& \leq m\left(r, \frac{f^{\prime}}{f-a}+\frac{f^{\prime}}{f-b}\right)+m\left(r, \frac{1}{f^{\prime}}\right)+O(1) \\
& =m\left(r, \frac{f^{\prime}}{f-a}\right)+m\left(r, \frac{f^{\prime}}{f-b}\right)+m\left(r, \frac{1}{f^{\prime}}\right)+O(1) \\
& =m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) .
\end{aligned}
$$

This and (3.14) we have

$$
\begin{equation*}
T(r, f) \leq m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{3.15}
\end{equation*}
$$

Combining

$$
\bar{N}\left(r, \frac{1}{f^{\prime}-a}\right)+\bar{N}\left(r, \frac{1}{f^{\prime}-b}\right) \leq N\left(r, \frac{1}{f-f^{\prime}}\right) \leq T(r, f)+S(r, f)
$$

with

$$
N\left(r, \frac{1}{f^{\prime}-a}\right)-\bar{N}\left(r, \frac{1}{f^{\prime}-a}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right)-\bar{N}\left(r, \frac{1}{f^{\prime}-b}\right) \leq N\left(r, \frac{1}{f^{\prime \prime}}\right),
$$

we get

$$
\begin{equation*}
N\left(r, \frac{1}{f^{\prime}-a}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right) \leq T(r, f)+N\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \tag{3.16}
\end{equation*}
$$

Note

$$
\begin{aligned}
& m\left(r, \frac{1}{f^{\prime}}\right)+m\left(r, \frac{1}{f^{\prime}-a}\right)+m\left(r, \frac{1}{f^{\prime}-b}\right) \\
= & m\left(r, \frac{1}{f^{\prime}}+\frac{1}{f^{\prime}-a}+\frac{1}{f^{\prime}-b}\right)+O(1) \\
\leq & m\left(r, \frac{f^{\prime \prime}}{f^{\prime}}+\frac{f^{\prime \prime}}{f^{\prime}-a}+\frac{f^{\prime \prime}}{f^{\prime}-b}\right)+m\left(r, \frac{1}{f^{\prime \prime}}\right)+O(1) \\
= & m\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-a}\right)+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-b}\right)+m\left(r, \frac{1}{f^{\prime \prime}}\right)+O(1) \\
= & m\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) .
\end{aligned}
$$

This and (3.16) we get

$$
\begin{aligned}
m\left(r, \frac{1}{f^{\prime}}\right)+2 T\left(r, f^{\prime}\right) & \leq T(r, f)+T\left(r, f^{\prime \prime}\right)+S(r, f) \\
& \leq T(r, f)+T\left(r, f^{\prime}\right)+S(r, f)
\end{aligned}
$$

This and (3.15) we obtain

$$
T\left(r, f^{\prime}\right)=S(r, f)
$$

In addition, (3.15) implies

$$
T(r, f) \leq T\left(r, f^{\prime}\right)+S(r, f)=S(r, f)
$$

It is a contradiction, thus $f \equiv f^{\prime}$

Case 2. Assume that $a b=0$.

We suppose that $a=0$ and $b=1$ without loss of generality. Since 0 and 1 are shared values of f and f^{\prime}, we know that the multiplicity of zeros of f is great than one and the zeros of $f-1$ are the simple zeros. Suppose that $f \neq f^{\prime}$. Set

$$
\begin{equation*}
g=\frac{f^{\prime}\left(f^{\prime}-f\right)}{f(f-1)} . \tag{3.17}
\end{equation*}
$$

Then g is an entire function and

$$
\begin{equation*}
T(r, g)=m\left(r, \frac{f^{\prime}}{f-1}\left(\frac{f^{\prime}}{f}-1\right)\right) \leq m\left(r, \frac{f^{\prime}}{f-1}\right)+m\left(r, \frac{f^{\prime}}{f}\right)+O(1)=S(r, f) \tag{3.18}
\end{equation*}
$$

Moreover, (3.17) leads to

$$
\left(f^{\prime}\right)^{2}-f f^{\prime}=g\left(f^{2}-f\right)
$$

Taking derivative twice, we derive

$$
\begin{equation*}
2 f^{\prime} f^{\prime \prime}-\left(f^{\prime}\right)^{2}-f f^{\prime \prime}=g^{\prime}\left(f^{2}-f\right)+g\left(2 f f^{\prime}-f^{\prime}\right) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{align*}
& 2\left(f^{\prime \prime}\right)^{2}+2 f^{\prime} f^{\prime \prime \prime}-3 f^{\prime} f^{\prime \prime}-f f^{\prime \prime \prime} \\
= & g^{\prime \prime}\left(f^{2}-f\right)+2 g^{\prime}\left(2 f f^{\prime}-f^{\prime}\right)+g\left[2\left(f^{\prime}\right)^{2}+2 f f^{\prime \prime}-f^{\prime \prime}\right] . \tag{3.20}
\end{align*}
$$

Let z_{1} be a zero of $f-1$. Then $f\left(z_{1}\right)=f^{\prime}\left(z_{1}\right)=1$. So from (3.19) and (3.20) we have

$$
\begin{gathered}
f^{\prime \prime}\left(z_{1}\right)=1+g\left(z_{1}\right) \\
f^{\prime \prime \prime}\left(z_{1}\right)=2 g^{\prime}\left(z_{1}\right)-g^{2}\left(z_{1}\right)+2 g\left(z_{1}\right)+1
\end{gathered}
$$

Set

$$
\begin{gather*}
\phi=\frac{f^{\prime \prime}-(g+1) f^{\prime}}{f-1} \tag{3.21}\\
\psi=\frac{f^{\prime \prime \prime}-\left(2 g^{\prime}-g^{2}+2 g+1\right) f^{\prime}}{f-1} . \tag{3.22}
\end{gather*}
$$

Since $f-1$ has only simple zeros, we know that ϕ and ψ are entire functions. Hence,

$$
\begin{aligned}
T(r, \phi) & =m(r, \phi) \\
& \leq m\left(r, \frac{f^{\prime \prime}}{f-1}\right)+m\left(r, \frac{f^{\prime}}{f-1}\right)+m(r, g)+O(1) \\
& =S(r, f)
\end{aligned}
$$

and

$$
\begin{aligned}
T(r, \psi) & =m(r, \psi) \\
& \leq m\left(r, \frac{f^{\prime \prime \prime}}{f-1}\right)+m\left(r, \frac{f^{\prime}}{f-1}\right)+m\left(r, g^{\prime}\right)+m\left(r, g^{2}+2 g\right)+O(1) \\
& =S(r, f) .
\end{aligned}
$$

Combining (3.21) with (3.22), we get

$$
\begin{equation*}
f^{\prime}\left(2 g^{2}-g^{\prime}+\phi\right)=(f-1)\left(\psi-\phi^{\prime}-(1+g) \phi\right) \tag{3.23}
\end{equation*}
$$

If $2 g^{2}-g^{\prime}+\phi \neq 0,(3.23)$ implies

$$
N\left(r, \frac{1}{f-1}\right) \leq N\left(r, \frac{1}{2 g^{2}-g^{\prime}+\phi}\right)=S(r, f)
$$

and

$$
\bar{N}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{\psi-\phi^{\prime}-(1+g) \phi}\right)=S(r, f) .
$$

By the second fundamental theorem for $1,0, \infty$, we obtain

$$
T(r, f)<\bar{N}\left(r, \frac{1}{f-1}\right)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r, f)=S(r, f)
$$

This is a contradiction. Therefore

$$
\begin{equation*}
2 g^{2}-g^{\prime}+\phi=0 . \tag{3.24}
\end{equation*}
$$

Let z_{0} be a zero of $f(z)$, then from (3.20) and (3.21) we know

$$
2 f^{\prime \prime}\left(z_{0}\right)=-g\left(z_{0}\right), \quad f^{\prime \prime}\left(z_{0}\right)=-\phi\left(z_{0}\right)
$$

hence $\phi\left(z_{0}\right)=\frac{1}{2} g\left(z_{0}\right)$. In addition, (3.24) leads to

$$
\begin{equation*}
2 g^{2}\left(z_{0}\right)+\frac{1}{2} g\left(z_{0}\right)-g^{\prime}\left(z_{0}\right)=0 \tag{3.25}
\end{equation*}
$$

If $2 g^{2}+\frac{1}{2} g-g^{\prime} \neq 0$, from (3.18) and (3.25) we have

$$
\bar{N}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{2 g^{2}+\frac{1}{2} g-g^{\prime}}\right)=S(r, f)
$$

Note that

$$
\begin{aligned}
N\left(r, \frac{1}{f-1}\right) & \leq N\left(r, \frac{f}{f^{\prime}-f}\right) \\
& =N\left(r, \frac{1}{\frac{f^{\prime}}{f}-1}\right) \\
& \leq T\left(r, \frac{f^{\prime}}{f}\right)+O(1) \\
& =N\left(r, \frac{f^{\prime}}{f}\right)+m\left(r, \frac{f^{\prime}}{f}\right)+O(1) \\
& =\bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \\
& =S(r, f) .
\end{aligned}
$$

By the second fundamental theorem for $1,0, \infty$, we obtain

$$
T(r, f)<\bar{N}\left(r, \frac{1}{f-1}\right)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r, f)=S(r, f)
$$

This is a contradiction. Thus

$$
\begin{equation*}
g^{\prime}=\frac{1}{2} g+2 g^{2} \tag{3.26}
\end{equation*}
$$

Suppose that g is a non-constant entire function, then by Theorem 2.15 we know

$$
T(r, g)=S(r, g)
$$

which is a contradiction. So g must be a constant. From (3.26), we know that $g \equiv 0$ or $g \equiv-\frac{1}{4}$. Since $f \neq f^{\prime}$, hence $g \equiv-\frac{1}{4}$, and from (3.17) we obtain

$$
\left(2 f^{\prime}-f\right)^{2}=f
$$

Set $h=2 f^{\prime}-f$. Then $f=h^{2}$ and $f^{\prime}=2 h h^{\prime}$. Hence,

$$
\begin{equation*}
h^{\prime}=\frac{1}{4}(1+h) . \tag{3.27}
\end{equation*}
$$

Solving (3.27), we get

$$
h(z)=A e^{\frac{1}{4} z}-1,
$$

where $A(\neq 0)$ is a constant. Let $z^{*}=4 \pi i-4 \log A$. Then $h\left(z^{*}\right)=-2$, and from (3.27) we get $h^{\prime}\left(z^{*}\right)=-\frac{1}{4}$. Hence

$$
f\left(z^{*}\right)=h^{2}\left(z^{*}\right)=4
$$

and

$$
f^{\prime}\left(z^{*}\right)=2 h\left(z^{*}\right) h^{\prime}\left(z^{*}\right)=1 .
$$

This contradicts the fact that 1 is a shared value of f and f^{\prime} IM.

Thus $f \equiv f^{\prime}$.

For the shared value problem of an entire function f with its higher-order derivatives, the following results are well-known.

Theorem 3.3 [12] Let $f(z)$ be a non-constant entire function, $k(\geq 2)$ be an integer and $a(\neq 0)$ be a finite value. Suppose that 0 is the Picard exceptional value of f and $f^{(k)}$, and that a is a IM share value of f and $f^{(k)}$. Then $f(z)=e^{A z+B}$, where A and B are constants satisfying $A^{k}=1$, that is $f \equiv f^{(k)}$.

Theorem 3.4 [12] Let f be a non-constant entire function, k be a positive integer, a and b be two distinct finite values. If f and $f^{(k)}$ share values a and $b C M$, then $f \equiv f^{(k)}$.

