3 Entire Functions Sharing Values with Their Deriva-

tives

In this section, we study the problem on entire functions sharing two values (CM

and IM) with their first derivatives.

Theorem 3.1 [10] Let f be a non-constant entire function. If f and f' share values

a and b CM, then f = f'.

Proof. When only one of a and b is zero, we suppose that a = 0 and b # 0 without

loss of generality, then 0 must be the Picard exceptional value of f and f’. Set
f@y =, f(z) =", (3.1)
where a(z) and ((z) are non-constant entire functions. Then we have
eP®) = o/(2)e?®. (3.2)

Notice that b is a CM value shared by f and f’, we have

=90
o =e, (3.3)
where «y(z) is an entire function. Combining (3.1) with (3.3) we can get
1 1
st el — Eeﬁﬂ =1. (3.4)

Using Theorem 2.10 to this, we know €¢” = 1 or ’Tleﬁﬂ = 1. If e” = 1, (3.3) implies
f=f. I Fe?7 =1, then ¢ = —be™ and (3.4) leads to ¢’ = b%*e™*. So from

(3.2), we can get e** = 272,, then ff’ = b?, which is impossible.

Now we assume that a # 0 and b # 0, then we have

f/_a’_ a(z)

f'=b _ s
= e = €
[—a o f=b ’

(3.5)



where a(z) and [(z) are entire functions. Suppose that f # f’. We can solve from

(3.5)
B be? —ae®*+a—b

f=

_ be™ —ae’ + (a — b)e’ e
B e — ef '

Y f/

ef — e

Hence,
ae®® 4 be® + (a — )™ — (a — b + {(b—a)( — &) — (a +b)}e*tP

+(a —b)B'e® — (a —b)de* = 0. (3.6)

Clearly,
T(r, f) < 2T(r,e™) + 2T (r, e”) + O(1). (3.7)

Assume that e® = ¢, where ¢ (# 0,1) is a constant. Then from (3.7) we know that

e’ is not a constant, and (3.6) implies
Ae*® + BeP +bc* =0, (3.8)
where
A=a—(a—bc, B=(a—0bc+{(b—a)f —(a+b}c+ (a—b)s.

By Theorem 2.11, we have
T(r,B) = S(r,e")

and by Theorem 2.12; (3.8) can not hold, so e* is not a constant.

Assume that e’ = ¢, where ¢ (# 0,1) is a constant. Then (3.6) implies
Ae*™ + Be* + ac® = 0, (3.9)
where
A=b+(a—b)e, B=(b—a)?+{(a—b)a —(a+b)}c—(a—0b).

By Theorem 2.11, we have
T(r,B) = 5(re)



and by Theorem 2.12, (3.9) can not hold, so €” is not a constant.

Assume that e~ = ¢, where ¢ (# 0, 1) is a constant. Then (3.6) implies
Ae*™ + Be*™ 4 Ce™ = 0, (3.10)
where
A=(a—b(1—-c)e, B=ac*+b—(a+bc, C=(a—b)c—1).

By Theorem 2.11, we have
T(r,C)=S(r,e”)

and by Theorem 2.12, (3.10) can not hold, so €’~% is not a constant.

Assume that e%~2* = ¢, where ¢ (# 0) is a constant. Then (3.6) implies
Ae®® + Be' + Ce*™ + De** + Fe™ = 0, (3.11)
where
A=—(a—b)* B=ac®+(a—b)e, C={(b—a)d —(a+b)}c
D=b+2(a—b)ca/, E=—(a—0b).
By Theorem 2.11, we have
T(r,C)=S(r,e*), T(r,D)=S8(re*), T(r,E)=S(re")

and by Theorem 2.12, (3.11) can not hold, so ¢’~2% is not a constant.

Assume that €*~® = ¢, where ¢ (# 0) is a constant. Then (3.6) implies

Ae%P + Be*’ 4 Ce* + De? + Ee = 0, (3.12)
where
— p— p— p— / p—
A:azb7 B:b (a2 b)c, C:(a b)s (a—{—b)’
c c c
_ _ /
% 2(a b)ﬁ, E—(a—b)d

By Theorem 2.11, we have

T(r,C)=S(r, eﬂ), T(r,D) = S(r, 6’6), T(r,E)=5(r, e?)
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and by Theorem 2.12, (3.12) can not hold, so €2°~“ is not a constant.

Again from (3.6) we have
ae’ + be** P 4+ (a — b)e*™ — (a — b)e*P + {(b—a)(B' — /) — (a + b)}e®
—(a —D)e*? = —(a —b)3. (3.13)

Applying Theorem 2.13 to (3.13), there exist not all zero constants ¢,cs,...,c¢ such
that
cre’ 4+ cpe®* P 4 c3e® + ey £ s {(b—a)(f — ) — (a+b)}e* + e’ = 0.
It leads to

16”77 4 e P 4 cze® + cue’ + cgale™ = —c5{(b—a)(F — ) — (a+b)}.

Using Theorem 2.13 again to this, we have not all zero constants dy,ds,...,ds such
that
d1€%7% + dye® P + dge® + dye’ + dsa’e™? = 0.

Therefore

d1€2,6—a -+ dgea + d36a+ﬂ -+ d4€2ﬂ = —d504/.

Using Theorem 2.13 again to this, we have not all zero constants t;,t,...,t4 such
that
116207 4 toe® + t3e20 4 4% = 0.

Suppose that t, # 0 without loss of generality, we derive from above equality

_t_le—oz . t_2€a—2,8 o t_36a—ﬂ —
ty t4 ty

Note that e~ 2% e2~# are all not constants, and §(0,e™%) = 1, §(0,e*2%) =1,
§(0,e*#) = 1. This contradicts Theorem 2.14, so f(2) = f'(2). O

Theorem 3.2 [8] Let f(z) be a non-constant entire function, a and b be distinct

finite values. If f and f’ share the value a and b IM, then f = f.
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Proof. We distinguish the following two cases.
Case 1. Assume that ab # 0.

Since a and b are shared by f and f’ IM, the zeros of f —a and f — b must be
simple zeros. Suppose that f(z) # f’. Then

N(nfjf)<T( )+ 0(1)

(())

Therefore

J - =17
Note
m(ngm )+ ngs) = (et 7o) row
f/ / 1
Sm(r,f_a—i—f_b)—|—m(7’,?)—|—0(1)
= miIlr f/ mi\r f/ m Tl
- (’f—a>+ (’f—b)+ (’f’)+0(1)
1
=m (7’77) + S(r, f)
This and (3.14) we have
ﬂnﬁ§m<n%>+ﬂnﬁ. (3.15)

Combining




Note
1 1 1
m(“z)+m@nuw)+m(“f—J
1 1 1
= {rg ot ) YO
fl/ fl/ f//
<o (nf gt gig) e () +oW)
B f// fl/ f// 1
= (n ) e (i) e () o () 0w
=m <r, %) + S(r, f)

This and (3.16) we get

m(n%)+ﬂWJvSNnﬂ+Tmfv+ann

<T(r, ) +T(r )+ S0, f).
This and (3.15) we obtain
T(r, f') = S(r, f).
In addition, (3.15) implies
T(r, f) <T(r, )+ S0, f) = S(r, f).
It is a contradiction, thus f = f’

Case 2. Assume that ab = 0.

We suppose that a = 0 and b = 1 without loss of generality. Since 0 and 1 are
shared values of f and f’, we know that the multiplicity of zeros of f is great than
one and the zeros of f — 1 are the simple zeros. Suppose that f = f’. Set

_ U=
g= =1 (3.17)
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Then g is an entire function and

1rg)=m (ro 505 (5 -1)) <m (n Dy ) v () w0 =00

f=1\/f f—=1 f
(3.18)
Moreover, (3.17) leads to
(f)? = ff =a(f*= 1)
Taking derivative twice, we derive
21" f" = (f)? = ff" =g (2= ) +a2ff = f) (3.19)
and
2(f//)2 + 2f/f/// o 3f/f// o ff///
=g"(fP = f)+24Cff = ) +gl2(f)? +2f " = f"]. (3.20)

Let z; be a zero of f — 1. Then f(z1) = f'(21) = 1. So from (3.19) and (3.20) we

have
f'(z) =1+ g(=),
"(z1) = 2¢'(21) — ¢*(z1) + 29(z1) + 1.
Set
p=1" _f(g_ﬁl)f/, (3.21)
w4 (29’;9_21+2g+1)f’_ (3.22)

Since f—1 has only simple zeros, we know that ¢ and i are entire functions. Hence,

<m (7“, ff—//l) +m (r, fL—ll) +m(r,g) + O(1)
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and

T(r, ) = m(r,¢)

<m (r, f—m) +m (7‘, L) +m(r,g") +m(r,g* +2g) + O(1)

F-1
= S(r, f).

F-1

Combining (3.21) with (3.22), we get
29" =g +¢)=(f =D —¢ = (1+9)9).
If 2g> — ¢’ + ¢ # 0, (3.23) implies

1 1
V() =Y (rgs) -

and

7 (ng) =¥ (romammrae) =500

By the second fundamental theorem for 1, 0, oo, we obtain

T f) <N (1 —— )+ N (1) N0 f) + S, f) = S(r f).
(72) 7 (7)

f-1 f

This is a contradiction. Therefore
29° — g +¢=0.
Let zo be a zero of f(z), then from (3.20) and (3.21) we know
2f"(20) = —g(20),  ["(20) = —d(20),

hence ¢(z9) = $9(20). In addition, (3.24) leads to

1

26% (20) + 59(20) = /(z0) = .

If 2 + 29 — ¢’ # 0, from (3.18) and (3.25) we have
N( 1)<N( S — ) S(r, )
r,— | < T, = S(r, f).

f 20>+ 39— ¢
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By the second fundamental theorem for 1, 0, oo, we obtain

ﬂnﬂ<ﬁoﬁ%7>%NO%)+Nmﬁ+ﬁnﬁ:ﬂnﬁ

This is a contradiction. Thus

1
g = 59+ 2g%. (3.26)

Suppose that g is a non-constant entire function, then by Theorem 2.15 we know

T(r,g) = S(r,9),

which is a contradiction. So g must be a constant. From (3.26), we know that g =0

or g = —%. Since f # f’, hence g = —1, and from (3.17) we obtain
2f = f)?=f
Set h = 2f" — f. Then f = h? and f’ = 2hh’. Hence,
M:iu+h) (3.27)

Solving (3.27), we get
h(z) = Aei® — 1,

where A (# 0) is a constant. Let z* = 4mi — 4log A. Then h(z*) = —2, and from
(3.27) we get A'(2*) = —1. Hence



and
f(z%) =2n(z*)h' (z*) = 1.
This contradicts the fact that 1 is a shared value of f and f’ IM.

Thus f = f'. N

For the shared value problem of an entire function f with its higher-order

derivatives, the following results are well-known.

Theorem 3.3 [12] Let f(z) be a non-constant entire function, k (> 2) be an integer
and a (# 0) be a finite value. Suppose that 0 is the Picard exceptional value of f
and f® and that a is a IM share value of f and f*. Then f(z) = e***B, where
A and B are constants satisfying A* = 1, that is f = f*).

Theorem 3.4 [12] Let [ be a non-constant entire function, k be a positive integer,
a and b be two distinct finite values. If f and f*) share values a and b CM, then
f=r®.
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