
4 Meromorphic Functions Sharing Values with

Their Derivatives

In this section, we study the problem on meromorphic functions sharing two values

CM with their derivatives. We distinguish three theorems and give a corollary to

show that f ≡ f (k) when f and f (k) share distinct finite values a and b CM.

Theorem 4.1 [5] Let f be a non-constant meromorphic function, b ( 6= 0) be a

finite value. If f and f ′ share the values 0 and b CM, then f ≡ f ′.

Proof . Suppose that f 6= f ′. Since f and f ′ share 0 CM, we know that 0 must be

the Picard exceptional value of f and f ′. For f and f ′ share ∞ IM. By Theorem

2.16 we have

T (r, f) = O(T (r, f ′)), (r /∈ E).

Using the second fundamental theorem for 0, b and ∞, we get

T (r, f ′) ≤ N

(
r,

1

f ′

)
+ N

(
r,

1

f ′ − b

)
+ N(r, f ′) + S(r, f ′)

≤ N

(
r,

1
f ′
f
− 1

)
+ N(r, f ′) + S(r, f ′)

≤ T

(
r,

f ′

f

)
+ N(r, f ′) + S(r, f ′)

= m

(
r,

f ′

f

)
+ N

(
r,

f ′

f

)
+ N(r, f ′) + S(r, f ′)

= 2N(r, f ′) + S(r, f ′)

≤ N(r, f ′) + S(r, f ′)

≤ T (r, f ′) + S(r, f ′).

Hence

2N(r, f ′) = T (r, f ′) + S(r, f ′), (4.1)

and

2N

(
r,

1

f ′ − b

)
= T (r, f ′) + S(r, f ′). (4.2)
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Again using the second fundamental theorem for 0, b and ∞, we get

T (r, f ′) ≤ N

(
r,

1

f ′

)
+ N

(
r,

1

f ′ − b

)
+ N(r, f ′)−N

(
r,

1

f ′′

)
+ S(r, f ′),

with (4.1) and (4.2) we know

N

(
r,

1

f ′′

)
= S(r, f ′).

By Lemma 2.17 with ψ = (f + z)′, we have

N1)(r, f) = N1)(r, f + z)

≤ N (2(r, f + z) + N

(
r,

1

f ′

)
+ N0

(
r,

1

f ′′

)
+ S(r, f + z)

≤ N (2(r, f) + S(r, f ′). (4.3)

In addition, from (4.1) and (4.3) we get

N (2(r, f) = S(r, f ′), (4.4)

N1)(r, f) = S(r, f ′). (4.5)

(4.4) and (4.5) lead to

N(r, f ′) = N(r, f) = S(r, f ′).

With (4.1) we obtain

T (r, f ′) = S(r, f ′),

which is a contradiction, so f ≡ f ′. ❑

Theorem 4.2 [2] Let f be a non-constant meromorphic function, b ( 6= 0) be a

finite value, k (≥ 2) be an integer. If f and f (k) share the values 0 and b CM, then

f ≡ f (k).

Proof . We assume that b = 1 without loss generality. If not, it follows by con-

sidering the function f
b
. Suppose that f 6= f (k). Under the hypothesis of Theorem

4.2, we know
f(f (k) − 1)

(f − 1)f (k)
= eα, (4.6)

19



where α is an entire function. From (4.6) we have

T (r, eα) = O(T (r, f)), (r /∈ E),

and

α′ =
(eα)′

eα
=

−f ′

f(f − 1)
+

f (k+1)

f (k)(f (k) − 1)
. (4.7)

By Theorem 2.11, we know

T (r, α′) = S(r, eα) = S(r, f).

If f is an entire function, then from Theorem 3.1 and Theorem 3.4 , f ≡ f (k), which

is a contradiction. So f is not an entire function. Let z0 be a pole of order p of f .

If eα ≡ c (6= 0) is a constant. Taking z = z0 in (4.6), we have c = 1, so from (4.6),

f ≡ f (k). This is a contradiction. Hence eα is not a constant and α′ 6= 0. From

(4.7) we know that z0 is a zero of order at least p− 1 of α′, thus

N(r, f)−N(r, f) ≤ N

(
r,

1

α′

)
≤ T (r, α′) + O(1) = S(r, f).

That is

N(r, f) = N(r, f) + S(r, f). (4.8)

Set

g =
f

f (k)
, (4.9)

then g is an entire function. From (4.6) and (4.9), we have

f (k) =
1

g
− 1

eα − 1

(
1− 1

g

)
. (4.10)

By second fundamental theorem for 0, 1 and ∞, we get

T (r, eα) ≤ N

(
r,

1

eα

)
+ N

(
r,

1

eα − 1

)
+ N(r, eα) + S(r, eα)

≤ N

(
r,

1

eα − 1

)
+ S(r, f)

≤ T

(
r,

1

eα − 1

)
+ S(r, f)

≤ T (r, eα) + S(r, f).
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So

N

(
r,

1

eα − 1

)
= T (r, eα) + S(r, f) = T

(
r,

1

eα − 1

)
+ S(r, f),

then

m

(
r,

1

eα − 1

)
= S(r, f).

(4.9) implies

m

(
r,

1

g

)
= S(r, f),

so from (4.10) we obtain

m(r, f (k)) ≤ 2m

(
r,

1

g

)
+ m

(
r,

1

eα − 1

)
+ O(1) = S(r, f).

Hence

(k + 1)N(r, f) ≤ T (r, f (k)) = m(r, f (k)) + N(r, f (k)) ≤ (k + 1)N(r, f) + S(r, f).

(4.11)

Set

N∗(r) = N

(
r,

1

f (k) − f

)
−N

(
r,

1

f

)
−N

(
r,

1

f − 1

)

= N

(
r,

1

f (k) − f

)
−N

(
r,

1

f (k)

)
−N

(
r,

1

f (k) − 1

)
, (4.12)

and

F =
[f(f − 1)]k+1[f (k)(f (k) − 1)]k−1

(f (k) − f)2k
,

G =
F ′

F
+ (k + 1)

α′′

α′
.

If z∗ is a pole of order p of f , when p = 1, z∗ is not pole or zero of F , and when

p > 1, z∗ is a pole of F . So F has no zeros and

N(r, F ) ≤ N

(
r,

1

f (k) − f

)
−N

(
r,

1

f

)
−N

(
r,

1

f − 1

)
+ N(r, f)−N(r, f)

= N∗(r) + S(r, f).

Let z0 be a simple pole of f . Then F (z0) 6= 0, ∞. And near z0 we can write

f(z) =
R

z − z0

+ a0 + O(z − z0), (R 6= 0).
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Then

F =
R2k

(k!)2
+

(k + 1)R2k−1(2a0 − 1)

(k!)2
(z − z0) + O(z − z0)

2,

F ′ =
(k + 1)R2k−1(2a0 − 1)

(k!)2
+ O(z − z0),

α′ =
1

R
− 2a0 − 1

R2
(z − z0) + O(z − z0)

2,

and

α′′ = −2a0 − 1

R2
+ O(z − z0).

So

G(z0) =
F ′(z0)

F (z0)
+ (k + 1)

α′′(z0)

α′(z0)
= 0.

Hence the simple pole of f is the zeros of G. And G is a meromorphic function

satisfying

T (r,G) ≤ T

(
r,

F ′

F

)
+ T

(
r,

α′′

α′

)

= m

(
r,

F ′

F

)
+ N

(
r,

F ′

F

)
+ S(r, f)

= N(r, F ) + S(r, f).

We distinguish the following two case.

Case 1. Suppose that G 6= 0.Then

N(r, f) ≤ N

(
r,

1

G

)

≤ T (r,G) + O(1)

≤ N(r, F ) + S(r, f)

≤ N∗(r) + S(r, f). (4.13)

From (4.9), we have

g − 1 =
f − f (k)

f (k)
.

Hence

N

(
r,

1

g − 1

)
= N

(
r,

1

f (k) − f

)
−N

(
r,

1

f (k)

)
,
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and from (4.12) we get

N∗(r) + N

(
r,

1

f (k) − 1

)
= N

(
r,

1

g − 1

)

≤ T

(
r,

1

g

)
+ O(1)

≤ N

(
r,

f (k)

f

)
+ m

(
r,

f (k)

f

)
+ O(1)

= kN(r, f) + S(r, f).

Combining this with (4.13), we have

N

(
r,

1

f (k) − 1

)
≤ (k − 1)N(r, f) + S(r, f). (4.14)

From (4.14) and (4.11) we have

m

(
r,

1

f (k) − 1

)
= T (r, f (k))−N

(
r,

1

f (k) − 1

)
+ O(1)

≥ (k + 1)N(r, f)− (k − 1)N(r, f) + S(r, f)

= 2N(r, f) + S(r, f). (4.15)

Note that

m

(
r,

1

f (k)

)
+ m

(
r,

1

f (k) − 1

)
≤ m

(
r,

1

f (k+1)

)
+ S(r, f)

≤ T (r, f (k+1))−N

(
r,

1

f (k+1)

)
+ S(r, f),

so from (4.15) we have

m

(
r,

1

f (k)

)
≤ T (r, f (k+1))−N

(
r,

1

f (k+1)

)
− 2N(r, f) + S(r, f). (4.16)

It follows from (4.11) that

T (r, f (k+1)) ≤ (k + 2)N(r, f) + S(r, f). (4.17)

By Theorem 2.18 we know

N

(
r,

1

f (k+1)

)
> (k − ε)N(r, f) + S(r, f),
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where ε is any given positive number. Combining this with (4.16) and (4.17) we

get

m

(
r,

1

f (k)

)
< εN(r, f) + S(r, f). (4.18)

Hence

m

(
r,

1

f − 1

)
≤ m

(
r,

1

f (k)

)
+ S(r, f) < εN(r, f) + S(r, f).

This and (4.14) imply

T (r, f) = m

(
r,

1

f − 1

)
+ N

(
r,

1

f − 1

)

= m

(
r,

1

f − 1

)
+ N

(
r,

1

f (k) − 1

)

< (k − 1 + ε)N(r, f) + S(r, f). (4.19)

Since

T (r, f) ≥ N

(
r,

1

f

)
+O(1) = N

(
r,

1

f (k)

)
+O(1) = T (r, f (k))−m

(
r,

1

f (k)

)
+O(1),

we derive from (4.11) and (4.18)

T (r, f) > (k + 1)N(r, f)− εN(r, f) + S(r, f).

We obtain from this and (4.19) that

N(r, f) = S(r, f),

so

T (r, f) < S(r, f),

which is a contradiction.

Case 2. Suppose that G ≡ 0. Then F (α′)k+1 ≡ const. Let z0 be a simple pole of

f , then near z0 we can write

f(z) =
R

z − z0

+ O(1), (R 6= 0).
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By computation, we get

α′(z0) =
1

R
, F (z0) =

R2k

(k!)2
.

Hence

F (z0)(α
′(z0))

2k =
1

(k!)2
. (4.20)

If

F (z)(α′(z))2k 6= 1

(k!)2
,

from (4.20) we have

N(r, f) ≤ N

(
r,

1

F (z)(α′(z))2k − 1
(k!)2

)

≤ T (r, F (z)(α′(z))2k) + O(1)

= T (r, (α′(z)k−1) + O(1) = S(r, f).

Combining this with (4.11), we obtain

T (r, f (k)) = S(r, f),

which is a contradiction. So

F (z)(α′(z))2k =
1

(k!)2
.

Hence α′ ≡ const, F ≡ const and

N∗(r) = 0, N(r, f)−N(r, f) = 0.

Set

P =
f (k) − f

f (k)(f (k) − 1)
, Q =

(P ′)k+1

P k
.

It is clear that P and Q are entire functions. Let z0 be a simple pole of f . Then

near z0 we can write

f(z) =
R

z − z0

+ O(1), (R 6= 0).
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By computation, we get

P (z) =
(−1)k(z − z0)

k+1

k!R

[
1− (−1)k

k!
(z − z0)

k + O(z − z0)
k+1

]
,

Q(z) =
(−1)k(k + 1)k+1

k!R

[
1− (−1)k(k + 1)

k!
(z − z0)

k + O(z − z0)
k+1

]
.

Clearly, z0 is the zero of order k + 1 of P (z) and the zero of order k − 1 of Q′(z),

but not the zero of Q(z). Hence

(k − 1)N(r, f) ≤ N

(
r,

Q

Q′

)

≤ T

(
r,

Q

Q′

)
+ O(1)

≤ N

(
r,

1

Q

)
+ S(r, f),

and

N

(
r,

1

Q

)
+ N(r, f) ≤ N

(
r,

1

P ′

)

Therefore

kN(r, f) ≤ N

(
r,

1

P ′

)
+ S(r, f). (4.21)

Note that P is an entire function, by Theorem 2.19 we get

N

(
r,

1

P ′

)
≤ N

(
r,

1

P

)
+ S(r, f).

So

N0

(
r,

1

P ′

)
≤ N

(
r,

1

P

)
+ S(r, f),

where N0

(
r, 1

P ′
)

is the counting function of the zeros of P ′ which are not the multiple

zeros of P . Since the simple pole of f is the zero of order k + 1 of P and the zeros

of P only appear at the pole of f , hence

N

(
r,

1

P ′

)
≤ N(r, f) + N0

(
r,

1

P ′

)

≤ N(r, f) + N

(
r,

1

P

)
+ S(r, f)

≤ 2N(r, f) + S(r, f).
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From (4.21), we have

(k − 2)N(r, f) = S(r, f).

If k ≥ 3, then

N(r, f) = S(r, f).

Combining this with (4.11), we derive

T (r, f (k)) = S(r, f).

This is a contradiction. Now let us consider the case k = 2. If k = 2, then

P =
f ′′ − f

f ′′(f ′′ − 1)

=
1

R
(z − z0)

3

[
1− 1

2
(z − z0)

2 + O(z − z0)
3

]
.

Let

ω =

(
P ′

P

)2

+ 3

(
P ′

P

)′
+ 9, (4.22)

then ω is an entire function and ω(z0) = 0.

If ω 6= 0, we have

N(r, f) ≤ N

(
r,

1

ω

)
≤ T (r, ω) + O(1)

≤ m(r, ω) + O(1) = S(r, f).

Again from (4.11), we have

T (r, f (k)) = S(r, f),

which is a contradiction. Therefore ω ≡ 0.

Note that P is an entire function, and P has zeros of order 3 only at the poles of

f . We can assume that

u3 = P,

where u is an entire function, then

P ′

P
= 3

u′

u
.
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Clearly from (4.22), we know that u satisfies the equation

u′′ + u = 0, (4.23)

so

u = c1e
iz + c2e

−iz,

where c1 and c2 are constant. Since the pole of f are the zeros of u, hence c1 6= 0,

c2 6= 0 and

T (r, u) = N

(
r,

1

u

)
+ S(r, f) = N(r, f) + S(r, f), (4.24)

m

(
r,

1

u

)
= S(r, f). (4.25)

According to the definition of u, we have

f ′′ − f = f ′′(f ′′ − 1)u3.

Hence

f = f ′′
[
1− (f ′′ − 1)u3

]
,

f − 1 = (f ′′ − 1)
(
1− f ′′u3

)
.

Taking this into (4.6), we get

eα =
1− (f ′′ − 1)u3

1− f ′′u3
.

Hence

f ′′ =
1

u3
− 1

eα − 1
. (4.26)

Notice that m
(
r, 1

eα−1

)
= S(r, f). From (4.25) and (4.26) we obtain

m(r, f ′′) = S(r, f). (4.27)

According to the definition of F , we know

F =
(f)3(f − 1)3f ′′(f ′′ − 1)

(f ′′ − f)4
=

(
f(f − 1)

(f ′′ − f)u

)3

.

Since F ≡ const, so
f(f − 1)

(f ′′ − f)u
= c,
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where c 6= 0 is a constant. Hence

f ′′ − f =
f(f − 1)

cu
,

which gives

f ′′ = f

(
1 +

f − 1

cu

)
,

f ′′ − 1 = (f − 1)

(
1 +

f

cu

)
.

From (4.6), we have

eα =
(1 + f

cu
)(

1 + f−1
cu

) .

Hence

f = 1− cu +
1

eα − 1
.

Note that α′ ≡ const, let α′ = d. From the above equality we obtain

f ′ = −cu′ − d

[
1

eα − 1
+

1

(eα − 1)2

]
,

f ′′ = −cu′′ + d2

[
1

eα − 1
+

3

(eα − 1)2
+

2

(eα − 1)3

]
.

From this and (4.23), we have

u =
1

c
f ′′ − d2

c

[
1

eα − 1
+

3

(eα − 1)2
+

2

(eα − 1)3

]
.

Since m
(
r, 1

eα−1

)
= S(r, f), we derive from (4.27) and the above equality

m(r, u) = S(r, f).

Hence

T (r, u) = m(r, u) = S(r, f).

Taking this into (4.24), we have N(r, f) = S(r, f). Again from (4.11), we have

T (r, f (k)) = S(r, f),

which is a contradiction, so f ≡ f (k). ❑
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Theorem 4.3 [1] Let f be a non-constant meromorphic function, a and b be two

distinct finite non-zero values. If f and f (k) share values a and b CM, then f ≡ f (k).

Proof . Without loss generality, we assume that a (6= 0, 1), b = 1 are CM shared

values of f and f (k). Otherwise, consider f
b
. Suppose that f 6= f (k). Under the

hypothesis of Theorem 4.3, we know

(f − a)(f (k) − 1)

(f − 1)(f (k) − a)
= eα, (4.28)

where α is an entire function. From (4.28) we have

T (r, eα) = O(T (r, f)), (r /∈ E),

Similar to the proof of Theorem 4.2, it is easy to prove

N(r, f) = N(r, f) + S(r, f). (4.29)

Set

g =
f − a

f (k) − a
, (4.30)

then g is an entire function and

m

(
r,

1

g

)
= m

(
r,

f (k) − a

f − a

)
≤ m

(
r,

f (k)

f − a

)
+m

(
r,

a

f − a

)
≤ m

(
r,

1

f − a

)
+S(r, f).

From (4.28) and (4.30), we have

f (k) =
1− a

g
+

a− 1

eα − 1

(
1− 1

g

)
+ a.

Hence

m(r, f (k)) ≤ 2m

(
r,

1

g

)
+ m

(
r,

1

eα − 1

)
+ O(1).

By second fundamental theorem for 0, 1 and ∞, we get

T (r, eα) ≤ N

(
r,

1

eα

)
+ N

(
r,

1

eα − 1

)
+ N(r, eα) + S(r, eα)

≤ N

(
r,

1

eα − 1

)
+ S(r, f)

≤ T

(
r,

1

eα − 1

)
+ S(r, f)

≤ T (r, eα) + S(r, f).
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So

N

(
r,

1

eα − 1

)
= T (r, eα) + S(r, f) = T

(
r,

1

eα − 1

)
+ S(r, f),

then

m

(
r,

1

eα − 1

)
= S(r, f).

We have

m(r, f (k)) ≤ 2m

(
r,

1

g

)
+ S(r, f) ≤ 2m

(
r,

1

f − a

)
+ S(r, f).

It leads to

N(r, f (k)) ≤ T (r, f (k))

= m(r, f (k)) + N(r, f (k))

≤ 2m

(
r,

1

f − a

)
+ N(r, f (k)) + S(r, f).

From (4.29), we have

(k + 1)N(r, f) ≤ T (r, f (k)) ≤ (k + 1)N(r, f) + 2m

(
r,

1

f − a

)
+ S(r, f). (4.31)

Set

N∗(r) = N

(
r,

1

f (k) − f

)
−N

(
r,

1

f − a

)
−N

(
r,

1

f − 1

)

= N

(
r,

1

f (k) − f

)
−N

(
r,

1

f (k) − a

)
−N

(
r,

1

f (k) − 1

)
. (4.32)

Noting that

m

(
r,

1

f − a

)
+ m

(
r,

1

f − 1

)
= m

(
r,

1

f − a
+

1

f − 1

)
+ O(1)

≤ m

(
r,

f ′

f − a
+

f ′

f − 1

)
+ m

(
r,

1

f ′

)
+ O(1)

= m

(
r,

1

f ′

)
+ S(r, f)
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and

m

(
r,

1

f (k)

)
+ m

(
r,

1

f (k) − a

)
+ m

(
r,

1

f (k) − 1

)

= m

(
r,

1

f (k)
+

1

f (k) − a
+

1

f (k) − 1

)
+ O(1)

≤
(

r,
f (k+1)

f (k)
+

f (k+1)

f (k) − a
+

f (k+1)

f (k) − 1

)
+ m

(
r,

1

f (k+1)

)
+ O(1)

= m

(
r,

1

f (k+1)

)
+ S(r, f),

this and (4.32) imply

N∗(r) + 2T (r, f) = N∗(r) + T

(
r,

1

f − a

)
+ T

(
r,

1

f − 1

)
+ O(1)

= N

(
r,

1

f (k) − f

)
+ m

(
r,

1

f − a

)
+ m

(
r,

1

f − 1

)
+ O(1)

≤ T (r, f (k) − f) + m

(
r,

1

f ′

)
+ S(r, f)

= m

(
r, f

(
f (k)

f
− 1

))
+ N(r, f (k) − f) + m

(
r,

1

f ′

)
+ S(r, f)

≤ m(r, f) + kN(r, f) + N(r, f) + m

(
r,

1

f ′

)
+ S(r, f)

= T (r, f) + kN(r, f) + m

(
r,

1

f ′

)
+ S(r, f)

and

N∗(r) + 2T (r, f (k))

= N∗(r) + T

(
r,

1

f (k) − a

)
+ T

(
r,

1

f (k) − 1

)
+ O(1)

= N

(
r,

1

f (k) − f

)
+ m

(
r,

1

f (k) − a

)
+ m

(
r,

1

f (k) − 1

)
+ O(1)

≤ T (r, f (k) − f) + m

(
r,

1

f (k+1)

)
−m

(
r,

1

f (k)

)
+ S(r, f)

≤ T (r, f) + kN(r, f) + T (r, f (k+1))−N

(
r,

1

f (k+1)

)
−m

(
r,

1

f (k)

)
+ S(r, f)

≤ T (r, f) + (k + 1)N(r, f) + T (r, f (k))−N

(
r,

1

f (k+1)

)
−m

(
r,

1

f (k)

)
+ S(r, f).
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Therefore

N∗(r) + T (r, f) ≤ kN(r, f) + m

(
r,

1

f ′

)
+ S(r, f) (4.33)

and

N∗(r)+T (r, f (k)) ≤ T (r, f)+(k+1)N(r, f)−N

(
r,

1

f (k+1)

)
−m

(
r,

1

f (k)

)
+S(r, f).

(4.34)

Since

m

(
r,

1

f ′

)
≤ m

(
r,

f (k)

f ′

)
+ m

(
r,

1

f (k)

)
+ O(1) = m

(
r,

1

f (k)

)
+ S(r, f),

combining this with (4.33) and (4.34) we have

2N∗(r) + T (r, f (k)) ≤ (2k + 1)N(r, f)−N

(
r,

1

f (k+1)

)
+ S(r, f). (4.35)

By Theorem 2.18 we know

N(r,
1

f (k+1)
) > (k − ε)N(r, f) + S(r, f),

where ε is any given positive number. With (4.35) we derive

2N∗(r) + T (r, f (k)) ≤ (k + 1 + ε)N(r, f) + S(r, f).

From (4.31) we have

T (r, f (k)) ≤ (k + 1 + ε)N(r, f) + S(r, f) (4.36)

and

N∗(r) ≤ ε

2
N(r, f) + S(r, f). (4.37)

Now set

F =
[(f − a)(f − 1)]k+1[(f (k) − a)(f (k) − 1)]k−1

(f (k) − f)2k
,

G =





F ′
F

+ (k + 1)α′′
α′ , if k ≥ 2

F ′
F

+ 2α′′
α′ − 2, if k = 1.
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If z∗ is a pole of order p of f , when p = 1, z∗ is not pole or zero of F , and when

p > 1, z∗ is a pole of F . So F has no zeros and

N(r, F ) ≤ N

(
r,

1

f (k) − f

)
−N

(
r,

1

f

)
−N

(
r,

1

f − 1

)
+ N(r, f)−N(r, f)

= N∗(r) + S(r, f).

Let z0 be a simple pole of f . Then F (z0) 6= 0, ∞. And near z0 we can write

f(z) =
R

z − z0

+ a0 + O(z − z0), (R 6= 0).

If k ≥ 2, we have

F =
R2k

(k!)2
+

(k + 1)R2k−1(2a0 − a− 1)

(k!)2
(z − z0) + O(z − z0)

2,

F ′ =
(k + 1)R2k−1(2a0 − a− 1)

(k!)2
+ O(z − z0),

α′ = (a− 1)

[
− 1

R
+

2a0 − a− 1

R2
(z − z0) + O(z − z0)

2

]
,

and

α′′ = (a− 1)

[
2a0 − 1

R2
+ O(z − z0)

]
,

so

G(z0) =
F ′(z0)

F (z0)
+ (k + 1)

α′′(z0)

α′(z0)
= 0.

If k = 1, we have

F = R2 + 2R(2a0 − a− 1−R)(z − z0) + O(z − z0)
2,

F ′ = 2R(2a0 − a− 1−R) + O(z − z0),

α′ = (a− 1)

[
− 1

R
+

2a0 − a− 1− 2R

R2
(z − z0) + O(z − z0)

2

]
,

and

α′′ = (a− 1)

[
2a0 − 1− 2R

R2
+ O(z − z0)

]
,

so

G(z0) =
F ′(z0)

F (z0)
+ 2

α′′(z0)

α′(z0)
− 2 = 0.
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Hence the simple pole of f is the zeros of G. And G is a meromorphic function

satisfying

T (r,G) ≤ T

(
r,

F ′

F

)
+ T

(
r,

α′′

α′

)

= m

(
r,

F ′

F

)
+ N

(
r,

F ′

F

)
+ S(r, f)

= N(r, F ) + S(r, f).

We distinguish the following two case.

Case 1. Suppose that G 6= 0. Then

N(r, f) ≤ N

(
r,

1

G

)
≤ T (r,G) + O(1) ≤ N∗(r) + S(r, f).

This and (4.37) lead to

N(r, f) ≤ ε

2
N(r, f) + S(r, f).

Hence

N(r, f) = S(r, f),

and from (4.36) we derive

T (r, f (k)) < S(r, f).

This is a contradiction.

Case 2. Suppose that G ≡ 0.

We discuss the following two subcases.

Subcase 1. If k = 1, from G ≡ 0 we know

f ′

f − a
+

f ′

f − 1
− f ′′ − f ′

f ′ − f
+

α′′

α′
− 1 = 0.

Taking integrate of this, we have

α′
(f − a)(f − 1)

f ′ − f
= cez, (4.38)
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where c (6= 0) is a constant. Let z0 be a simple pole of f . Then near z0 we can

write

f(z) =
R

z − z0

+ O(1), (R 6= 0).

From (4.38), we get

cez0 = a− 1.

Since N(r, f)−N(r, f) = S(r, f), we have

N(r, f) ≤ N

(
r,

1

cez − (a− 1)

)

= T (r, ez) + O(1)

=
r

π
+ O(1). (4.39)

We rewrite (4.38) as

(f − a)(f − 1) =
c

α′
ezf

(
f ′

f
− 1

)
. (4.40)

From this,

2m(r, f) = m(r, (f − a)(f − 1)) + S(r, f)

≤ m(r,
1

α′
) + m(r, ez) + m(r, f) + m

(
r,

f ′

f

)
+ S(r, f)

= m(r, ez) + m(r, f) + S(r, f),

so

m(r, f) ≤ m(r, ez) + S(r, f) =
r

π
+ S(r, f).

(4.39) and the above equality imply

T (r, f) ≤ 2r

π
+ S(r, f).

Since T (r, eα) = O(T (r, f)), (r /∈ E), with the above equality we know that

λ(f) ≤ 1 and λ(eα) ≤ λ(f) ≤ 1. Since α is not constant, α must be a linear

function and α′ must be a constant. we get λ(eα) = λ(f) = 1. Let α′
c

= d, taking

it into (4.40) we have

f ′ − a = (f − a)[1 + de−z(f − 1)].
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Thus

g =
1

1 + de−z(f − 1)
=

f − a

f ′ − a
(4.41)

is an entire function with λ(g) ≤ 1. Since g(z0) = 0, we know

N(r, f) ≤ N

(
r,

1

g

)
= T (r, g) + O(1). (4.42)

From (4.41), we get

f =
ez

dg
− ez

d
+ 1.

Substituting the above equality into (4.41), we have

g2 = − 1

1 + ade−z
+ g

(
a− 1

a
+

a + 1

a(1 + ade−z)
− 1

1 + ade−z

g′

g

)
. (4.43)

Note that

m

(
r,

1

1 + ade−z

)
= m

(
r,

ez

ez + ad

)
= S(r, ez) = S(r, f).

It follows from (4.43) that

2m(r, g) ≤ m(r, g) + m

(
r,

g′

g

)
+ S(r, f)

= m(r, g) + S(r, f).

Hence

T (r, g) = m(r, g) = S(r, f).

From (4.42), we get

N(r, f) = S(r, f),

and so from (4.36)

T (r, f ′) = S(r, f),

which is a contradiction.

Subcase 2. If k ≥ 2, similar to the proof of Theorem 4.2, we can get a contradic-

tion.

This completes the proof of Theorem 4.3, so f ≡ f (k). ❑
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Corollary 4.4 Let f be a non-constant meromorphic function. If f and f (k) share

distinct finite values a and b CM, then f ≡ f (k).

P. Li gave the following example, which shows that the condition f and fk

have two shared values CM in corollary 4.4 is essential.

Example 4.5 Let a1 be any finite value, a2 = a1 +
√

2i. Let ω be a non-constant

solution of the following Riccati differential equation

ω′ = (ω − a1)(ω − a2). (4.44)

Let

f = (ω − a1)(ω − a2)− 1

3
.

We get

f ′ = ω′(2ω − a1 − a2)

and

f ′′ = 6ω′f, (4.45)

f ′′ +
1

6
= 6

(
f +

1

6

)2

. (4.46)

(4.44) implies that 0 is the Picard exceptional value of ω′, and from (4.45) we know

that 0 is a CM shared value of f and f ′′. (4.46) implies that −1
6

is the IM shared

value of f and f ′′, but f 6= f ′′.
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