4 Meromorphic Functions Sharing Values with Their Derivatives

In this section, we study the problem on meromorphic functions sharing two values CM with their derivatives. We distinguish three theorems and give a corollary to show that $f \equiv f^{(k)}$ when f and $f^{(k)}$ share distinct finite values a and b CM.

Theorem 4.1 [5] Let f be a non-constant meromorphic function, $b(\neq 0)$ be a finite value. If f and f^{\prime} share the values 0 and $b C M$, then $f \equiv f^{\prime}$.

Proof. Suppose that $f \neq f^{\prime}$. Since f and f^{\prime} share 0 CM, we know that 0 must be the Picard exceptional value of f and f^{\prime}. For f and f^{\prime} share ∞ IM. By Theorem 2.16 we have

$$
T(r, f)=O\left(T\left(r, f^{\prime}\right)\right), \quad(r \notin E)
$$

Using the second fundamental theorem for $0, b$ and ∞, we get

$$
\begin{aligned}
T\left(r, f^{\prime}\right) & \leq N\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right)+\bar{N}\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) \\
& \leq N\left(r, \frac{1}{\frac{f^{\prime}}{f}-1}\right)+\bar{N}\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) \\
& \leq T\left(r, \frac{f^{\prime}}{f}\right)+\bar{N}\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) \\
& =m\left(r, \frac{f^{\prime}}{f}\right)+N\left(r, \frac{f^{\prime}}{f}\right)+\bar{N}\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) \\
& =2 \bar{N}\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) \\
& \leq N\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) \\
& \leq T\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
2 \bar{N}\left(r, f^{\prime}\right)=T\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 N\left(r, \frac{1}{f^{\prime}-b}\right)=T\left(r, f^{\prime}\right)+S\left(r, f^{\prime}\right) \tag{4.2}
\end{equation*}
$$

Again using the second fundamental theorem for $0, b$ and ∞, we get

$$
T\left(r, f^{\prime}\right) \leq N\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right)+\bar{N}\left(r, f^{\prime}\right)-N\left(r, \frac{1}{f^{\prime \prime}}\right)+S\left(r, f^{\prime}\right),
$$

with (4.1) and (4.2) we know

$$
N\left(r, \frac{1}{f^{\prime \prime}}\right)=S\left(r, f^{\prime}\right)
$$

By Lemma 2.17 with $\psi=(f+z)^{\prime}$, we have

$$
\begin{align*}
\bar{N}_{1)}(r, f) & =\bar{N}_{1)}(r, f+z) \\
& \leq \bar{N}_{(2}(r, f+z)+\bar{N}\left(r, \frac{1}{f^{\prime}}\right)+N_{0}\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f+z) \\
& \leq \bar{N}_{(2}(r, f)+S\left(r, f^{\prime}\right) . \tag{4.3}
\end{align*}
$$

In addition, from (4.1) and (4.3) we get

$$
\begin{align*}
& \bar{N}_{(2}(r, f)=S\left(r, f^{\prime}\right), \tag{4.4}\\
& \bar{N}_{1)}(r, f)=S\left(r, f^{\prime}\right) . \tag{4.5}
\end{align*}
$$

(4.4) and (4.5) lead to

$$
\bar{N}\left(r, f^{\prime}\right)=\bar{N}(r, f)=S\left(r, f^{\prime}\right)
$$

With (4.1) we obtain

$$
T\left(r, f^{\prime}\right)=S\left(r, f^{\prime}\right)
$$

which is a contradiction, so $f \equiv f^{\prime}$.

Theorem 4.2 [2] Let f be a non-constant meromorphic function, $b(\neq 0)$ be a finite value, $k(\geq 2)$ be an integer. If f and $f^{(k)}$ share the values 0 and $b C M$, then $f \equiv f^{(k)}$.

Proof. We assume that $b=1$ without loss generality. If not, it follows by considering the function $\frac{f}{b}$. Suppose that $f \neq f^{(k)}$. Under the hypothesis of Theorem 4.2, we know

$$
\begin{equation*}
\frac{f\left(f^{(k)}-1\right)}{(f-1) f^{(k)}}=e^{\alpha} \tag{4.6}
\end{equation*}
$$

where α is an entire function. From (4.6) we have

$$
T\left(r, e^{\alpha}\right)=O(T(r, f)), \quad(r \notin E)
$$

and

$$
\begin{equation*}
\alpha^{\prime}=\frac{\left(e^{\alpha}\right)^{\prime}}{e^{\alpha}}=\frac{-f^{\prime}}{f(f-1)}+\frac{f^{(k+1)}}{f^{(k)}\left(f^{(k)}-1\right)} . \tag{4.7}
\end{equation*}
$$

By Theorem 2.11, we know

$$
T\left(r, \alpha^{\prime}\right)=S\left(r, e^{\alpha}\right)=S(r, f)
$$

If f is an entire function, then from Theorem 3.1 and Theorem $3.4, f \equiv f^{(k)}$, which is a contradiction. So f is not an entire function. Let z_{0} be a pole of order p of f. If $e^{\alpha} \equiv c(\neq 0)$ is a constant. Taking $z=z_{0}$ in (4.6), we have $c=1$, so from (4.6), $f \equiv f^{(k)}$. This is a contradiction. Hence e^{α} is not a constant and $\alpha^{\prime} \neq 0$. From (4.7) we know that z_{0} is a zero of order at least $p-1$ of α^{\prime}, thus

$$
N(r, f)-\bar{N}(r, f) \leq N\left(r, \frac{1}{\alpha^{\prime}}\right) \leq T\left(r, \alpha^{\prime}\right)+O(1)=S(r, f)
$$

That is

$$
\begin{equation*}
N(r, f)=\bar{N}(r, f)+S(r, f) \tag{4.8}
\end{equation*}
$$

Set

$$
\begin{equation*}
g=\frac{f}{f^{(k)}}, \tag{4.9}
\end{equation*}
$$

then g is an entire function. From (4.6) and (4.9), we have

$$
\begin{equation*}
f^{(k)}=\frac{1}{g}-\frac{1}{e^{\alpha}-1}\left(1-\frac{1}{g}\right) . \tag{4.10}
\end{equation*}
$$

By second fundamental theorem for 0,1 and ∞, we get

$$
\begin{aligned}
T\left(r, e^{\alpha}\right) & \leq N\left(r, \frac{1}{e^{\alpha}}\right)+N\left(r, \frac{1}{e^{\alpha}-1}\right)+N\left(r, e^{\alpha}\right)+S\left(r, e^{\alpha}\right) \\
& \leq N\left(r, \frac{1}{e^{\alpha}-1}\right)+S(r, f) \\
& \leq T\left(r, \frac{1}{e^{\alpha}-1}\right)+S(r, f) \\
& \leq T\left(r, e^{\alpha}\right)+S(r, f)
\end{aligned}
$$

So

$$
N\left(r, \frac{1}{e^{\alpha}-1}\right)=T\left(r, e^{\alpha}\right)+S(r, f)=T\left(r, \frac{1}{e^{\alpha}-1}\right)+S(r, f)
$$

then

$$
m\left(r, \frac{1}{e^{\alpha}-1}\right)=S(r, f)
$$

(4.9) implies

$$
m\left(r, \frac{1}{g}\right)=S(r, f)
$$

so from (4.10) we obtain

$$
m\left(r, f^{(k)}\right) \leq 2 m\left(r, \frac{1}{g}\right)+m\left(r, \frac{1}{e^{\alpha}-1}\right)+O(1)=S(r, f)
$$

Hence

$$
\begin{equation*}
(k+1) \bar{N}(r, f) \leq T\left(r, f^{(k)}\right)=m\left(r, f^{(k)}\right)+N\left(r, f^{(k)}\right) \leq(k+1) \bar{N}(r, f)+S(r, f) \tag{4.11}
\end{equation*}
$$

Set

$$
\begin{align*}
N^{*}(r) & =N\left(r, \frac{1}{f^{(k)}-f}\right)-N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f-1}\right) \\
& =N\left(r, \frac{1}{f^{(k)}-f}\right)-N\left(r, \frac{1}{f^{(k)}}\right)-N\left(r, \frac{1}{f^{(k)}-1}\right), \tag{4.12}
\end{align*}
$$

and

$$
\begin{gathered}
F=\frac{[f(f-1)]^{k+1}\left[f^{(k)}\left(f^{(k)}-1\right)\right]^{k-1}}{\left(f^{(k)}-f\right)^{2 k}} \\
G=\frac{F^{\prime}}{F}+(k+1) \frac{\alpha^{\prime \prime}}{\alpha^{\prime}}
\end{gathered}
$$

If z^{*} is a pole of order p of f, when $p=1, z^{*}$ is not pole or zero of F, and when $p>1, z^{*}$ is a pole of F. So F has no zeros and

$$
\begin{aligned}
\bar{N}(r, F) & \leq N\left(r, \frac{1}{f^{(k)}-f}\right)-N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f-1}\right)+N(r, f)-\bar{N}(r, f) \\
& =N^{*}(r)+S(r, f)
\end{aligned}
$$

Let z_{0} be a simple pole of f. Then $F\left(z_{0}\right) \neq 0, \infty$. And near z_{0} we can write

$$
f(z)=\frac{R}{z-z_{0}}+a_{0}+O\left(z-z_{0}\right), \quad(R \neq 0)
$$

Then

$$
\begin{gathered}
F=\frac{R^{2 k}}{(k!)^{2}}+\frac{(k+1) R^{2 k-1}\left(2 a_{0}-1\right)}{(k!)^{2}}\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2} \\
F^{\prime}=\frac{(k+1) R^{2 k-1}\left(2 a_{0}-1\right)}{(k!)^{2}}+O\left(z-z_{0}\right), \\
\alpha^{\prime}=\frac{1}{R}-\frac{2 a_{0}-1}{R^{2}}\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}
\end{gathered}
$$

and

$$
\alpha^{\prime \prime}=-\frac{2 a_{0}-1}{R^{2}}+O\left(z-z_{0}\right)
$$

So

$$
G\left(z_{0}\right)=\frac{F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}+(k+1) \frac{\alpha^{\prime \prime}\left(z_{0}\right)}{\alpha^{\prime}\left(z_{0}\right)}=0 .
$$

Hence the simple pole of f is the zeros of G. And G is a meromorphic function satisfying

$$
\begin{aligned}
T(r, G) & \leq T\left(r, \frac{F^{\prime}}{F}\right)+T\left(r, \frac{\alpha^{\prime \prime}}{\alpha^{\prime}}\right) \\
& =m\left(r, \frac{F^{\prime}}{F}\right)+N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \\
& =\bar{N}(r, F)+S(r, f)
\end{aligned}
$$

We distinguish the following two case.

Case 1. Suppose that $G \neq 0$.Then

$$
\begin{align*}
\bar{N}(r, f) & \leq N\left(r, \frac{1}{G}\right) \\
& \leq T(r, G)+O(1) \\
& \leq \bar{N}(r, F)+S(r, f) \\
& \leq N^{*}(r)+S(r, f) \tag{4.13}
\end{align*}
$$

From (4.9), we have

$$
g-1=\frac{f-f^{(k)}}{f^{(k)}}
$$

Hence

$$
N\left(r, \frac{1}{g-1}\right)=N\left(r, \frac{1}{f^{(k)}-f}\right)-N\left(r, \frac{1}{f^{(k)}}\right)
$$

and from (4.12) we get

$$
\begin{aligned}
N^{*}(r)+N\left(r, \frac{1}{f^{(k)}-1}\right) & =N\left(r, \frac{1}{g-1}\right) \\
& \leq T\left(r, \frac{1}{g}\right)+O(1) \\
& \leq N\left(r, \frac{f^{(k)}}{f}\right)+m\left(r, \frac{f^{(k)}}{f}\right)+O(1) \\
& =k \bar{N}(r, f)+S(r, f) .
\end{aligned}
$$

Combining this with (4.13), we have

$$
\begin{equation*}
N\left(r, \frac{1}{f^{(k)}-1}\right) \leq(k-1) \bar{N}(r, f)+S(r, f) \tag{4.14}
\end{equation*}
$$

From (4.14) and (4.11) we have

$$
\begin{align*}
m\left(r, \frac{1}{f^{(k)}-1}\right) & =T\left(r, f^{(k)}\right)-N\left(r, \frac{1}{f^{(k)}-1}\right)+O(1) \\
& \geq(k+1) \bar{N}(r, f)-(k-1) \bar{N}(r, f)+S(r, f) \\
& =2 \bar{N}(r, f)+S(r, f) \tag{4.15}
\end{align*}
$$

Note that

$$
\begin{aligned}
m\left(r, \frac{1}{f^{(k)}}\right)+m\left(r, \frac{1}{f^{(k)}-1}\right) & \leq m\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \\
& \leq T\left(r, f^{(k+1)}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)
\end{aligned}
$$

so from (4.15) we have

$$
\begin{equation*}
m\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k+1)}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)-2 \bar{N}(r, f)+S(r, f) \tag{4.16}
\end{equation*}
$$

It follows from (4.11) that

$$
\begin{equation*}
T\left(r, f^{(k+1)}\right) \leq(k+2) \bar{N}(r, f)+S(r, f) \tag{4.17}
\end{equation*}
$$

By Theorem 2.18 we know

$$
N\left(r, \frac{1}{f^{(k+1)}}\right)>(k-\varepsilon) \bar{N}(r, f)+S(r, f)
$$

where ε is any given positive number. Combining this with (4.16) and (4.17) we get

$$
\begin{equation*}
m\left(r, \frac{1}{f^{(k)}}\right)<\varepsilon \bar{N}(r, f)+S(r, f) \tag{4.18}
\end{equation*}
$$

Hence

$$
m\left(r, \frac{1}{f-1}\right) \leq m\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)<\varepsilon \bar{N}(r, f)+S(r, f)
$$

This and (4.14) imply

$$
\begin{align*}
T(r, f) & =m\left(r, \frac{1}{f-1}\right)+N\left(r, \frac{1}{f-1}\right) \\
& =m\left(r, \frac{1}{f-1}\right)+N\left(r, \frac{1}{f^{(k)}-1}\right) \\
& <(k-1+\varepsilon) \bar{N}(r, f)+S(r, f) \tag{4.19}
\end{align*}
$$

Since
$T(r, f) \geq N\left(r, \frac{1}{f}\right)+O(1)=N\left(r, \frac{1}{f^{(k)}}\right)+O(1)=T\left(r, f^{(k)}\right)-m\left(r, \frac{1}{f^{(k)}}\right)+O(1)$,
we derive from (4.11) and (4.18)

$$
T(r, f)>(k+1) \bar{N}(r, f)-\varepsilon \bar{N}(r, f)+S(r, f)
$$

We obtain from this and (4.19) that

$$
\bar{N}(r, f)=S(r, f)
$$

so

$$
T(r, f)<S(r, f)
$$

which is a contradiction.

Case 2. Suppose that $G \equiv 0$. Then $F\left(\alpha^{\prime}\right)^{k+1} \equiv$ const. Let z_{0} be a simple pole of f, then near z_{0} we can write

$$
f(z)=\frac{R}{z-z_{0}}+O(1), \quad(R \neq 0) .
$$

By computation, we get

$$
\alpha^{\prime}\left(z_{0}\right)=\frac{1}{R}, \quad F\left(z_{0}\right)=\frac{R^{2 k}}{(k!)^{2}}
$$

Hence

$$
\begin{equation*}
F\left(z_{0}\right)\left(\alpha^{\prime}\left(z_{0}\right)\right)^{2 k}=\frac{1}{(k!)^{2}} . \tag{4.20}
\end{equation*}
$$

If

$$
F(z)\left(\alpha^{\prime}(z)\right)^{2 k} \neq \frac{1}{(k!)^{2}},
$$

from (4.20) we have

$$
\begin{aligned}
\bar{N}(r, f) & \leq N\left(r, \frac{1}{F(z)\left(\alpha^{\prime}(z)\right)^{2 k}-\frac{1}{(k!)^{2}}}\right) \\
& \leq T\left(r, F(z)\left(\alpha^{\prime}(z)\right)^{2 k}\right)+O(1) \\
& =T\left(r,\left(\alpha^{\prime}(z)^{k-1}\right)+O(1)=S(r, f) .\right.
\end{aligned}
$$

Combining this with (4.11), we obtain

$$
T\left(r, f^{(k)}\right)=S(r, f)
$$

which is a contradiction. So

$$
F(z)\left(\alpha^{\prime}(z)\right)^{2 k}=\frac{1}{(k!)^{2}}
$$

Hence $\alpha^{\prime} \equiv$ const, $F \equiv$ const and

$$
N^{*}(r)=0, \quad N(r, f)-\bar{N}(r, f)=0 .
$$

Set

$$
P=\frac{f^{(k)}-f}{f^{(k)}\left(f^{(k)}-1\right)}, \quad Q=\frac{\left(P^{\prime}\right)^{k+1}}{P^{k}}
$$

It is clear that P and Q are entire functions. Let z_{0} be a simple pole of f. Then near z_{0} we can write

$$
f(z)=\frac{R}{z-z_{0}}+O(1), \quad(R \neq 0)
$$

By computation, we get

$$
\begin{gathered}
P(z)=\frac{(-1)^{k}\left(z-z_{0}\right)^{k+1}}{k!R}\left[1-\frac{(-1)^{k}}{k!}\left(z-z_{0}\right)^{k}+O\left(z-z_{0}\right)^{k+1}\right] \\
Q(z)=\frac{(-1)^{k}(k+1)^{k+1}}{k!R}\left[1-\frac{(-1)^{k}(k+1)}{k!}\left(z-z_{0}\right)^{k}+O\left(z-z_{0}\right)^{k+1}\right] .
\end{gathered}
$$

Clearly, z_{0} is the zero of order $k+1$ of $P(z)$ and the zero of order $k-1$ of $Q^{\prime}(z)$, but not the zero of $Q(z)$. Hence

$$
\begin{aligned}
(k-1) \bar{N}(r, f) & \leq N\left(r, \frac{Q}{Q^{\prime}}\right) \\
& \leq T\left(r, \frac{Q}{Q^{\prime}}\right)+O(1) \\
& \leq \bar{N}\left(r, \frac{1}{Q}\right)+S(r, f)
\end{aligned}
$$

and

$$
\bar{N}\left(r, \frac{1}{Q}\right)+\bar{N}(r, f) \leq \bar{N}\left(r, \frac{1}{P^{\prime}}\right)
$$

Therefore

$$
\begin{equation*}
k N(r, f) \leq \bar{N}\left(r, \frac{1}{P^{\prime}}\right)+S(r, f) \tag{4.21}
\end{equation*}
$$

Note that P is an entire function, by Theorem 2.19 we get

$$
N\left(r, \frac{1}{P^{\prime}}\right) \leq N\left(r, \frac{1}{P}\right)+S(r, f) .
$$

So

$$
N_{0}\left(r, \frac{1}{P^{\prime}}\right) \leq \bar{N}\left(r, \frac{1}{P}\right)+S(r, f)
$$

where $N_{0}\left(r, \frac{1}{P^{\prime}}\right)$ is the counting function of the zeros of P^{\prime} which are not the multiple zeros of P. Since the simple pole of f is the zero of order $k+1$ of P and the zeros of P only appear at the pole of f, hence

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{P^{\prime}}\right) & \leq \bar{N}(r, f)+N_{0}\left(r, \frac{1}{P^{\prime}}\right) \\
& \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{P}\right)+S(r, f) \\
& \leq 2 \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

From (4.21), we have

$$
(k-2) \bar{N}(r, f)=S(r, f) .
$$

If $k \geq 3$, then

$$
\bar{N}(r, f)=S(r, f)
$$

Combining this with (4.11), we derive

$$
T\left(r, f^{(k)}\right)=S(r, f)
$$

This is a contradiction. Now let us consider the case $k=2$. If $k=2$, then

$$
\begin{aligned}
P & =\frac{f^{\prime \prime}-f}{f^{\prime \prime}\left(f^{\prime \prime}-1\right)} \\
& =\frac{1}{R}\left(z-z_{0}\right)^{3}\left[1-\frac{1}{2}\left(z-z_{0}\right)^{2}+O\left(z-z_{0}\right)^{3}\right]
\end{aligned}
$$

Let

$$
\begin{equation*}
\omega=\left(\frac{P^{\prime}}{P}\right)^{2}+3\left(\frac{P^{\prime}}{P}\right)^{\prime}+9 \tag{4.22}
\end{equation*}
$$

then ω is an entire function and $\omega\left(z_{0}\right)=0$.
If $\omega \neq 0$, we have

$$
\begin{aligned}
\bar{N}(r, f) & \leq N\left(r, \frac{1}{\omega}\right) \leq T(r, \omega)+O(1) \\
& \leq m(r, \omega)+O(1)=S(r, f)
\end{aligned}
$$

Again from (4.11), we have

$$
T\left(r, f^{(k)}\right)=S(r, f)
$$

which is a contradiction. Therefore $\omega \equiv 0$.
Note that P is an entire function, and P has zeros of order 3 only at the poles of f. We can assume that

$$
u^{3}=P,
$$

where u is an entire function, then

$$
\frac{P^{\prime}}{P}=3 \frac{u^{\prime}}{u} .
$$

Clearly from (4.22), we know that u satisfies the equation

$$
\begin{equation*}
u^{\prime \prime}+u=0 \tag{4.23}
\end{equation*}
$$

so

$$
u=c_{1} e^{i z}+c_{2} e^{-i z}
$$

where c_{1} and c_{2} are constant. Since the pole of f are the zeros of u, hence $c_{1} \neq 0$, $c_{2} \neq 0$ and

$$
\begin{gather*}
T(r, u)=N\left(r, \frac{1}{u}\right)+S(r, f)=N(r, f)+S(r, f) \tag{4.24}\\
m\left(r, \frac{1}{u}\right)=S(r, f) \tag{4.25}
\end{gather*}
$$

According to the definition of u, we have

$$
f^{\prime \prime}-f=f^{\prime \prime}\left(f^{\prime \prime}-1\right) u^{3}
$$

Hence

$$
\begin{gathered}
f=f^{\prime \prime}\left[1-\left(f^{\prime \prime}-1\right) u^{3}\right], \\
f-1=\left(f^{\prime \prime}-1\right)\left(1-f^{\prime \prime} u^{3}\right) .
\end{gathered}
$$

Taking this into (4.6), we get

$$
e^{\alpha}=\frac{1-\left(f^{\prime \prime}-1\right) u^{3}}{1-f^{\prime \prime} u^{3}}
$$

Hence

$$
\begin{equation*}
f^{\prime \prime}=\frac{1}{u^{3}}-\frac{1}{e^{\alpha}-1} \tag{4.26}
\end{equation*}
$$

Notice that $m\left(r, \frac{1}{e^{\alpha}-1}\right)=S(r, f)$. From (4.25) and (4.26) we obtain

$$
\begin{equation*}
m\left(r, f^{\prime \prime}\right)=S(r, f) \tag{4.27}
\end{equation*}
$$

According to the definition of F, we know

$$
F=\frac{(f)^{3}(f-1)^{3} f^{\prime \prime}\left(f^{\prime \prime}-1\right)}{\left(f^{\prime \prime}-f\right)^{4}}=\left(\frac{f(f-1)}{\left(f^{\prime \prime}-f\right) u}\right)^{3}
$$

Since $F \equiv$ const, so

$$
\frac{f(f-1)}{\left(f^{\prime \prime}-f\right) u}=c,
$$

where $c \neq 0$ is a constant. Hence

$$
f^{\prime \prime}-f=\frac{f(f-1)}{c u}
$$

which gives

$$
\begin{aligned}
f^{\prime \prime} & =f\left(1+\frac{f-1}{c u}\right), \\
f^{\prime \prime}-1 & =(f-1)\left(1+\frac{f}{c u}\right) .
\end{aligned}
$$

From (4.6), we have

$$
e^{\alpha}=\frac{\left(1+\frac{f}{c u}\right)}{\left(1+\frac{f-1}{c u}\right)} .
$$

Hence

$$
f=1-c u+\frac{1}{e^{\alpha}-1}
$$

Note that $\alpha^{\prime} \equiv$ const, let $\alpha^{\prime}=d$. From the above equality we obtain

$$
\begin{gathered}
f^{\prime}=-c u^{\prime}-d\left[\frac{1}{e^{\alpha}-1}+\frac{1}{\left(e^{\alpha}-1\right)^{2}}\right] \\
f^{\prime \prime}=-c u^{\prime \prime}+d^{2}\left[\frac{1}{e^{\alpha}-1}+\frac{3}{\left(e^{\alpha}-1\right)^{2}}+\frac{2}{\left(e^{\alpha}-1\right)^{3}}\right] .
\end{gathered}
$$

From this and (4.23), we have

$$
u=\frac{1}{c} f^{\prime \prime}-\frac{d^{2}}{c}\left[\frac{1}{e^{\alpha}-1}+\frac{3}{\left(e^{\alpha}-1\right)^{2}}+\frac{2}{\left(e^{\alpha}-1\right)^{3}}\right] .
$$

Since $m\left(r, \frac{1}{e^{\alpha}-1}\right)=S(r, f)$, we derive from (4.27) and the above equality

$$
m(r, u)=S(r, f)
$$

Hence

$$
T(r, u)=m(r, u)=S(r, f)
$$

Taking this into (4.24), we have $N(r, f)=S(r, f)$. Again from (4.11), we have

$$
T\left(r, f^{(k)}\right)=S(r, f)
$$

which is a contradiction, so $f \equiv f^{(k)}$.

Theorem 4.3 [1] Let f be a non-constant meromorphic function, a and b be two distinct finite non-zero values. If f and $f^{(k)}$ share values a and $b C M$, then $f \equiv f^{(k)}$.

Proof. Without loss generality, we assume that $a(\neq 0,1), b=1$ are CM shared values of f and $f^{(k)}$. Otherwise, consider $\frac{f}{b}$. Suppose that $f \neq f^{(k)}$. Under the hypothesis of Theorem 4.3, we know

$$
\begin{equation*}
\frac{(f-a)\left(f^{(k)}-1\right)}{(f-1)\left(f^{(k)}-a\right)}=e^{\alpha} \tag{4.28}
\end{equation*}
$$

where α is an entire function. From (4.28) we have

$$
T\left(r, e^{\alpha}\right)=O(T(r, f)), \quad(r \notin E)
$$

Similar to the proof of Theorem 4.2, it is easy to prove

$$
\begin{equation*}
N(r, f)=\bar{N}(r, f)+S(r, f) \tag{4.29}
\end{equation*}
$$

Set

$$
\begin{equation*}
g=\frac{f-a}{f^{(k)}-a}, \tag{4.30}
\end{equation*}
$$

then g is an entire function and
$m\left(r, \frac{1}{g}\right)=m\left(r, \frac{f^{(k)}-a}{f-a}\right) \leq m\left(r, \frac{f^{(k)}}{f-a}\right)+m\left(r, \frac{a}{f-a}\right) \leq m\left(r, \frac{1}{f-a}\right)+S(r, f)$.
From (4.28) and (4.30), we have

$$
f^{(k)}=\frac{1-a}{g}+\frac{a-1}{e^{\alpha}-1}\left(1-\frac{1}{g}\right)+a .
$$

Hence

$$
m\left(r, f^{(k)}\right) \leq 2 m\left(r, \frac{1}{g}\right)+m\left(r, \frac{1}{e^{\alpha}-1}\right)+O(1) .
$$

By second fundamental theorem for 0,1 and ∞, we get

$$
\begin{aligned}
T\left(r, e^{\alpha}\right) & \leq N\left(r, \frac{1}{e^{\alpha}}\right)+N\left(r, \frac{1}{e^{\alpha}-1}\right)+N\left(r, e^{\alpha}\right)+S\left(r, e^{\alpha}\right) \\
& \leq N\left(r, \frac{1}{e^{\alpha}-1}\right)+S(r, f) \\
& \leq T\left(r, \frac{1}{e^{\alpha}-1}\right)+S(r, f) \\
& \leq T\left(r, e^{\alpha}\right)+S(r, f)
\end{aligned}
$$

So

$$
N\left(r, \frac{1}{e^{\alpha}-1}\right)=T\left(r, e^{\alpha}\right)+S(r, f)=T\left(r, \frac{1}{e^{\alpha}-1}\right)+S(r, f)
$$

then

$$
m\left(r, \frac{1}{e^{\alpha}-1}\right)=S(r, f)
$$

We have

$$
m\left(r, f^{(k)}\right) \leq 2 m\left(r, \frac{1}{g}\right)+S(r, f) \leq 2 m\left(r, \frac{1}{f-a}\right)+S(r, f)
$$

It leads to

$$
\begin{aligned}
N\left(r, f^{(k)}\right) & \leq T\left(r, f^{(k)}\right) \\
& =m\left(r, f^{(k)}\right)+N\left(r, f^{(k)}\right) \\
& \leq 2 m\left(r, \frac{1}{f-a}\right)+N\left(r, f^{(k)}\right)+S(r, f)
\end{aligned}
$$

From (4.29), we have

$$
\begin{equation*}
(k+1) \bar{N}(r, f) \leq T\left(r, f^{(k)}\right) \leq(k+1) \bar{N}(r, f)+2 m\left(r, \frac{1}{f-a}\right)+S(r, f) \tag{4.31}
\end{equation*}
$$

Set

$$
\begin{align*}
N^{*}(r) & =N\left(r, \frac{1}{f^{(k)}-f}\right)-N\left(r, \frac{1}{f-a}\right)-N\left(r, \frac{1}{f-1}\right) \\
& =N\left(r, \frac{1}{f^{(k)}-f}\right)-N\left(r, \frac{1}{f^{(k)}-a}\right)-N\left(r, \frac{1}{f^{(k)}-1}\right) . \tag{4.32}
\end{align*}
$$

Noting that

$$
\begin{aligned}
m\left(r, \frac{1}{f-a}\right)+m\left(r, \frac{1}{f-1}\right) & =m\left(r, \frac{1}{f-a}+\frac{1}{f-1}\right)+O(1) \\
& \leq m\left(r, \frac{f^{\prime}}{f-a}+\frac{f^{\prime}}{f-1}\right)+m\left(r, \frac{1}{f^{\prime}}\right)+O(1) \\
& =m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)
\end{aligned}
$$

and

$$
\begin{aligned}
& m\left(r, \frac{1}{f^{(k)}}\right)+m\left(r, \frac{1}{f^{(k)}-a}\right)+m\left(r, \frac{1}{f^{(k)}-1}\right) \\
= & m\left(r, \frac{1}{f^{(k)}}+\frac{1}{f^{(k)}-a}+\frac{1}{f^{(k)}-1}\right)+O(1) \\
\leq & \left(r, \frac{f^{(k+1)}}{f^{(k)}}+\frac{f^{(k+1)}}{f^{(k)}-a}+\frac{f^{(k+1)}}{f^{(k)}-1}\right)+m\left(r, \frac{1}{f^{(k+1)}}\right)+O(1) \\
= & m\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f),
\end{aligned}
$$

this and (4.32) imply

$$
\begin{aligned}
N^{*}(r)+2 T(r, f) & =N^{*}(r)+T\left(r, \frac{1}{f-a}\right)+T\left(r, \frac{1}{f-1}\right)+O(1) \\
& =N\left(r, \frac{1}{f^{(k)}-f}\right)+m\left(r, \frac{1}{f-a}\right)+m\left(r, \frac{1}{f-1}\right)+O(1) \\
& \leq T\left(r, f^{(k)}-f\right)+m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \\
& =m\left(r, f\left(\frac{f^{(k)}}{f}-1\right)\right)+N\left(r, f^{(k)}-f\right)+m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \\
& \leq m(r, f)+k \bar{N}(r, f)+N(r, f)+m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \\
& =T(r, f)+k \bar{N}(r, f)+m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)
\end{aligned}
$$

and

$$
\begin{aligned}
& N^{*}(r)+2 T\left(r, f^{(k)}\right) \\
= & N^{*}(r)+T\left(r, \frac{1}{f^{(k)}-a}\right)+T\left(r, \frac{1}{f^{(k)}-1}\right)+O(1) \\
= & N\left(r, \frac{1}{f^{(k)}-f}\right)+m\left(r, \frac{1}{f^{(k)}-a}\right)+m\left(r, \frac{1}{f^{(k)}-1}\right)+O(1) \\
\leq & T\left(r, f^{(k)}-f\right)+m\left(r, \frac{1}{f^{(k+1)}}\right)-m\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \\
\leq & T(r, f)+k \bar{N}(r, f)+T\left(r, f^{(k+1)}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)-m\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \\
\leq & T(r, f)+(k+1) \bar{N}(r, f)+T\left(r, f^{(k)}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)-m\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
N^{*}(r)+T(r, f) \leq k \bar{N}(r, f)+m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{4.33}
\end{equation*}
$$

and

$$
\begin{equation*}
N^{*}(r)+T\left(r, f^{(k)}\right) \leq T(r, f)+(k+1) \bar{N}(r, f)-N\left(r, \frac{1}{f^{(k+1)}}\right)-m\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) \tag{4.34}
\end{equation*}
$$

Since

$$
m\left(r, \frac{1}{f^{\prime}}\right) \leq m\left(r, \frac{f^{(k)}}{f^{\prime}}\right)+m\left(r, \frac{1}{f^{(k)}}\right)+O(1)=m\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
$$

combining this with (4.33) and (4.34) we have

$$
\begin{equation*}
2 N^{*}(r)+T\left(r, f^{(k)}\right) \leq(2 k+1) \bar{N}(r, f)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \tag{4.35}
\end{equation*}
$$

By Theorem 2.18 we know

$$
N\left(r, \frac{1}{f^{(k+1)}}\right)>(k-\varepsilon) \bar{N}(r, f)+S(r, f)
$$

where ε is any given positive number. With (4.35) we derive

$$
2 N^{*}(r)+T\left(r, f^{(k)}\right) \leq(k+1+\varepsilon) \bar{N}(r, f)+S(r, f)
$$

From (4.31) we have

$$
\begin{equation*}
T\left(r, f^{(k)}\right) \leq(k+1+\varepsilon) \bar{N}(r, f)+S(r, f) \tag{4.36}
\end{equation*}
$$

and

$$
\begin{equation*}
N^{*}(r) \leq \frac{\varepsilon}{2} \bar{N}(r, f)+S(r, f) \tag{4.37}
\end{equation*}
$$

Now set

$$
\begin{gathered}
F=\frac{[(f-a)(f-1)]^{k+1}\left[\left(f^{(k)}-a\right)\left(f^{(k)}-1\right)\right]^{k-1}}{\left(f^{(k)}-f\right)^{2 k}}, \\
G=\left\{\begin{array}{cl}
\frac{F^{\prime}}{F}+(k+1) \frac{\alpha^{\prime \prime}}{\alpha^{\prime}}, & \text { if } k \geq 2 \\
\frac{F^{\prime}}{F}+2 \frac{\alpha^{\prime \prime}}{\alpha^{\prime}}-2, & \text { if } k=1 .
\end{array}\right.
\end{gathered}
$$

If z^{*} is a pole of order p of f, when $p=1, z^{*}$ is not pole or zero of F, and when $p>1, z^{*}$ is a pole of F. So F has no zeros and

$$
\begin{aligned}
\bar{N}(r, F) & \leq N\left(r, \frac{1}{f^{(k)}-f}\right)-N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{f-1}\right)+N(r, f)-\bar{N}(r, f) \\
& =N^{*}(r)+S(r, f)
\end{aligned}
$$

Let z_{0} be a simple pole of f. Then $F\left(z_{0}\right) \neq 0, \infty$. And near z_{0} we can write

$$
f(z)=\frac{R}{z-z_{0}}+a_{0}+O\left(z-z_{0}\right), \quad(R \neq 0)
$$

If $k \geq 2$, we have

$$
\begin{gathered}
F=\frac{R^{2 k}}{(k!)^{2}}+\frac{(k+1) R^{2 k-1}\left(2 a_{0}-a-1\right)}{(k!)^{2}}\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}, \\
F^{\prime}=\frac{(k+1) R^{2 k-1}\left(2 a_{0}-a-1\right)}{(k!)^{2}}+O\left(z-z_{0}\right), \\
\alpha^{\prime}=(a-1)\left[-\frac{1}{R}+\frac{2 a_{0}-a-1}{R^{2}}\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right],
\end{gathered}
$$

and

$$
\alpha^{\prime \prime}=(a-1)\left[\frac{2 a_{0}-1}{R^{2}}+O\left(z-z_{0}\right)\right],
$$

so

$$
G\left(z_{0}\right)=\frac{F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}+(k+1) \frac{\alpha^{\prime \prime}\left(z_{0}\right)}{\alpha^{\prime}\left(z_{0}\right)}=0 .
$$

If $k=1$, we have

$$
\begin{gathered}
F=R^{2}+2 R\left(2 a_{0}-a-1-R\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}, \\
F^{\prime}=2 R\left(2 a_{0}-a-1-R\right)+O\left(z-z_{0}\right), \\
\alpha^{\prime}=(a-1)\left[-\frac{1}{R}+\frac{2 a_{0}-a-1-2 R}{R^{2}}\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right],
\end{gathered}
$$

and

$$
\alpha^{\prime \prime}=(a-1)\left[\frac{2 a_{0}-1-2 R}{R^{2}}+O\left(z-z_{0}\right)\right]
$$

so

$$
G\left(z_{0}\right)=\frac{F^{\prime}\left(z_{0}\right)}{F\left(z_{0}\right)}+2 \frac{\alpha^{\prime \prime}\left(z_{0}\right)}{\alpha^{\prime}\left(z_{0}\right)}-2=0
$$

Hence the simple pole of f is the zeros of G. And G is a meromorphic function satisfying

$$
\begin{aligned}
T(r, G) & \leq T\left(r, \frac{F^{\prime}}{F}\right)+T\left(r, \frac{\alpha^{\prime \prime}}{\alpha^{\prime}}\right) \\
& =m\left(r, \frac{F^{\prime}}{F}\right)+N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \\
& =\bar{N}(r, F)+S(r, f) .
\end{aligned}
$$

We distinguish the following two case.
Case 1. Suppose that $G \neq 0$. Then

$$
\bar{N}(r, f) \leq N\left(r, \frac{1}{G}\right) \leq T(r, G)+O(1) \leq N^{*}(r)+S(r, f)
$$

This and (4.37) lead to

$$
\bar{N}(r, f) \leq \frac{\varepsilon}{2} \bar{N}(r, f)+S(r, f)
$$

Hence

$$
\bar{N}(r, f)=S(r, f)
$$

and from (4.36) we derive

$$
T\left(r, f^{(k)}\right)<S(r, f)
$$

This is a contradiction.
Case 2. Suppose that $G \equiv 0$.

We discuss the following two subcases.
Subcase 1. If $k=1$, from $G \equiv 0$ we know

$$
\frac{f^{\prime}}{f-a}+\frac{f^{\prime}}{f-1}-\frac{f^{\prime \prime}-f^{\prime}}{f^{\prime}-f}+\frac{\alpha^{\prime \prime}}{\alpha^{\prime}}-1=0
$$

Taking integrate of this, we have

$$
\begin{equation*}
\alpha^{\prime} \frac{(f-a)(f-1)}{f^{\prime}-f}=c e^{z} \tag{4.38}
\end{equation*}
$$

where $c(\neq 0)$ is a constant. Let z_{0} be a simple pole of f. Then near z_{0} we can write

$$
f(z)=\frac{R}{z-z_{0}}+O(1), \quad(R \neq 0)
$$

From (4.38), we get

$$
c e^{z_{0}}=a-1
$$

Since $N(r, f)-\bar{N}(r, f)=S(r, f)$, we have

$$
\begin{align*}
N(r, f) & \leq N\left(r, \frac{1}{c e^{z}-(a-1)}\right) \\
& =T\left(r, e^{z}\right)+O(1) \\
& =\frac{r}{\pi}+O(1) . \tag{4.39}
\end{align*}
$$

We rewrite (4.38) as

$$
\begin{equation*}
(f-a)(f-1)=\frac{c}{\alpha^{\prime}} e^{z} f\left(\frac{f^{\prime}}{f}-1\right) \tag{4.40}
\end{equation*}
$$

From this,

$$
\begin{aligned}
2 m(r, f) & =m(r,(f-a)(f-1))+S(r, f) \\
& \leq m\left(r, \frac{1}{\alpha^{\prime}}\right)+m\left(r, e^{z}\right)+m(r, f)+m\left(r, \frac{f^{\prime}}{f}\right)+S(r, f) \\
& =m\left(r, e^{z}\right)+m(r, f)+S(r, f)
\end{aligned}
$$

so

$$
m(r, f) \leq m\left(r, e^{z}\right)+S(r, f)=\frac{r}{\pi}+S(r, f)
$$

(4.39) and the above equality imply

$$
T(r, f) \leq \frac{2 r}{\pi}+S(r, f)
$$

Since $T\left(r, e^{\alpha}\right)=O(T(r, f)), \quad(r \notin E)$, with the above equality we know that $\lambda(f) \leq 1$ and $\lambda\left(e^{\alpha}\right) \leq \lambda(f) \leq 1$. Since α is not constant, α must be a linear function and α^{\prime} must be a constant. we get $\lambda\left(e^{\alpha}\right)=\lambda(f)=1$. Let $\frac{\alpha^{\prime}}{c}=d$, taking it into (4.40) we have

$$
f^{\prime}-a=(f-a)\left[1+d e^{-z}(f-1)\right] .
$$

Thus

$$
\begin{equation*}
g=\frac{1}{1+d e^{-z}(f-1)}=\frac{f-a}{f^{\prime}-a} \tag{4.41}
\end{equation*}
$$

is an entire function with $\lambda(g) \leq 1$. Since $g\left(z_{0}\right)=0$, we know

$$
\begin{equation*}
N(r, f) \leq N\left(r, \frac{1}{g}\right)=T(r, g)+O(1) \tag{4.42}
\end{equation*}
$$

From (4.41), we get

$$
f=\frac{e^{z}}{d g}-\frac{e^{z}}{d}+1
$$

Substituting the above equality into (4.41), we have

$$
\begin{equation*}
g^{2}=-\frac{1}{1+a d e^{-z}}+g\left(\frac{a-1}{a}+\frac{a+1}{a\left(1+a d e^{-z}\right)}-\frac{1}{1+a d e^{-z}} \frac{g^{\prime}}{g}\right) . \tag{4.43}
\end{equation*}
$$

Note that

$$
m\left(r, \frac{1}{1+a d e^{-z}}\right)=m\left(r, \frac{e^{z}}{e^{z}+a d}\right)=S\left(r, e^{z}\right)=S(r, f)
$$

It follows from (4.43) that

$$
\begin{aligned}
2 m(r, g) & \leq m(r, g)+m\left(r, \frac{g^{\prime}}{g}\right)+S(r, f) \\
& =m(r, g)+S(r, f)
\end{aligned}
$$

Hence

$$
T(r, g)=m(r, g)=S(r, f)
$$

From (4.42), we get

$$
N(r, f)=S(r, f)
$$

and so from (4.36)

$$
T\left(r, f^{\prime}\right)=S(r, f)
$$

which is a contradiction.

Subcase 2. If $k \geq 2$, similar to the proof of Theorem 4.2, we can get a contradiction.

This completes the proof of Theorem 4.3, so $f \equiv f^{(k)}$.

Corollary 4.4 Let f be a non-constant meromorphic function. If f and $f^{(k)}$ share distinct finite values a and $b C M$, then $f \equiv f^{(k)}$.
P. Li gave the following example, which shows that the condition f and f^{k} have two shared values CM in corollary 4.4 is essential.

Example 4.5 Let a_{1} be any finite value, $a_{2}=a_{1}+\sqrt{2}$. Let ω be a non-constant solution of the following Riccati differential equation

$$
\begin{equation*}
\omega^{\prime}=\left(\omega-a_{1}\right)\left(\omega-a_{2}\right) \tag{4.44}
\end{equation*}
$$

Let

$$
f=\left(\omega-a_{1}\right)\left(\omega-a_{2}\right)-\frac{1}{3}
$$

We get

$$
f^{\prime}=\omega^{\prime}\left(2 \omega-a_{1}-a_{2}\right)
$$

and

$$
\begin{align*}
f^{\prime \prime} & =6 \omega^{\prime} f \tag{4.45}\\
f^{\prime \prime}+\frac{1}{6} & =6\left(f+\frac{1}{6}\right)^{2} \tag{4.46}
\end{align*}
$$

(4.44) implies that 0 is the Picard exceptional value of ω^{\prime}, and from (4.45) we know that 0 is a CM shared value of f and $f^{\prime \prime}$. (4.46) implies that $-\frac{1}{6}$ is the IM shared value of f and $f^{\prime \prime}$, but $f \neq f^{\prime \prime}$.

