4 Meromorphic Functions Sharing Values with

Their Derivatives

In this section, we study the problem on meromorphic functions sharing two values
CM with their derivatives. We distinguish three theorems and give a corollary to

show that f = f®*) when f and f*) share distinct finite values a and b CM.

Theorem 4.1 [5] Let f be a non-constant meromorphic function, b (# 0) be a
finite value. If f and f' share the values 0 and b CM, then f = f'.

Proof. Suppose that f # f'. Since f and f’ share 0 CM, we know that 0 must be
the Picard exceptional value of f and f’. For f and f’ share co IM. By Theorem
2.16 we have

) N ( ﬁ) LN [ + S0, f)

<N ( f#l) + N, f) + S, f)

(5o (c) s

Hence

and



Again using the second fundamental theorem for 0, b and oo, we get

T(r,f) <N (r, %) +N (r, ﬁ) +N(r, f) =N (r, %) +S(r, f1),

with (4.1) and (4.2) we know

1
N(r,— ) =85(1f).
(r52) =501
By Lemma 2.17 with ¢» = (f + z)/, we have

Niy(r, f) = Niy(r, f +2)

< Ne(rf+2)+N (r, %) + Ny (r, %) +S(r, f+2)

< Ne(r f) + 8. f). (4.3)
In addition, from (4.1) and (4.3) we get

No(r, f) = S(r, f), (4.4)

Ny(r, f) = S(r, f). (4.5)

(4.4) and (4.5) lead to

With (4.1) we obtain
T(r,f) = S(r. "),

which is a contradiction, so f = f. U

Theorem 4.2 [2] Let f be a non-constant meromorphic function, b (# 0) be a
finite value, k (> 2) be an integer. If f and f*) share the values 0 and b CM, then

=1,

Proof. We assume that b = 1 without loss generality. If not, it follows by con-
sidering the function %. Suppose that f # f*). Under the hypothesis of Theorem

4.2, we know

f(f(k) - ]') «
F-Dfm = o
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where « is an entire function. From (4.6) we have

T(r,e®) =O0(T(r, ), (r¢E),

and

(4.7)

If f is an entire function, then from Theorem 3.1 and Theorem 3.4 , f = f*), which
is a contradiction. So f is not an entire function. Let zy be a pole of order p of f.
If e* = ¢ (#0) is a constant. Taking z = z in (4.6), we have ¢ = 1, so from (4.6),
f = f®. This is a contradiction. Hence e® is not a constant and o/ # 0. From

(4.7) we know that zy is a zero of order at least p — 1 of &/, thus

N(r,f)—=N(r,f) <N (7’, é) <T(r,a")+0O(1) = S(r, f).

That is
N(r, f) = N(r, f) + 5, f) (45)
Set
9= Z (4.9)

then g is an entire function. From (4.6) and (4.9), we have

w11 (1_1), (4.10)

g e*—1 g

By second fundamental theorem for 0, 1 and co, we get

L 1) + N(r,e®) + S(r,e)
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So

N(r, ! >:T(r,ea)+5(nf)=T(ﬁea1

ex —1

)+ 56

then

(4.9) implies

so from (4.10) we obtain

m(r, f¥) < 2m <7~, 5) +m <7~, eal_ 1) +0(1) = S(r, f).

(k+ N(r, f) < T(r, f®) = m(r, f®) + N(r, f0) < (k + 1)N(r, f) + S(r, f).

(4.11)
Set
= (geg) 5 (e8) oty
1 1 |
and
Ja f(f— 1)]k+1[f(k)(f(k) — 1))kt
- (f®) — f)2k ;
F, O//

If 2* is a pole of order p of f, when p = 1, 2* is not pole or zero of F, and when

p > 1, 2" is a pole of F'. So F has no zeros and
N(r,F)< N L N L N L N N
(r,F) < Trm—y) N\ F) T\ F o + N(r, f) = N(r, f)
= N*(r) + S(r, f).
Let zp be a simple pole of f. Then F'(zy) # 0, co. And near 2z, we can write

f(z) = i +ag+0(z —2), (R#0).

Z— 20
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Then
R2k (k + 1)R2k_1(2a0 - 1)

F=taet ()2 (2= 20) + O = )%
. (k+1D)R* (240 — 1
pe (k:!)2( = +0(z = 20),
, 1 2ap—1
of = 7= aOR2 (z — 20) + O(z — )3,
and
2a9 — 1
o = — a0R2 _|_O(z—2’0).
So
F'(z0) ' (20)
(ZO) F(Zo) ( )O/(Zo)

Hence the simple pole of f is the zeros of G. And G is a meromorphic function

satisfying

We distinguish the following two case.

Case 1. Suppose that G # 0.Then

< N*(r) + 50, /). (113
From (4.9), we have
;5%
g—1= F

Hence




and from (4.12) we get

¥ 1 1
N (T)+N<T,m) :N(T, _1>
0

f o
=kN(r, f) + S(r, f)
Combining this with (4.13), we have
N (r, ﬁ) < (k=1)N(r, f)+S(r, f). (4.14)
From (4.14) and (4.11) we have
m <r, ﬁ) =T(r, f¥) - N (T’, f(k)l_ 1) +0(1)
> (k+1)N(r, f) = (k=1)N(r, [) +5(r, f)
=2N(r, f) + S(r, f). (4.15)

Note that

1 1 1
" ( W) o ( 7= 1) =m ( f<k+1>) 51

so from (4.15) we have

m (7“, %) <T(r,f*)—N (r, #) —2N(r, )+ S(r, f). (4.16)

It follows from (4.11) that
T(r, f**) < (k+2)N(r, f) + S(r, ). (4.17)

By Theorem 2.18 we know

N (7“, ﬁ) > (k—e)N(r, f)+ S(r, f),
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where € is any given positive number. Combining this with (4.16) and (4.17) we
get
1 —
w (n i) < N0 + 56, (4.18)

Hence

m <7“, ﬁ) <m (n i) L S0 f) <N f) + S(r, f).

This and (4.14) imply

<(k—=1+&)N(r, f) + S(r, f). (4.19)

Since

T(r,f) >N (r, %) +0(1)=N (r, %) +0(1) =T(r, f¥)—m <7~, %) +0(1),

we derive from (4.11) and (4.18)
T(r,f) > (k+1)N(r, f) —eN(r, f) + S(r, f).
We obtain from this and (4.19) that

N(r.f)=S(r, f),

SO
Tr, f) < S0 f),

which is a contradiction.

Case 2. Suppose that G = 0. Then F(a/)**! = const. Let 25 be a simple pole of

f, then near zy we can write

f2) = v o). (R+0).

Z— 20
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By computation, we get

1 RQk
o' (29) = o’ F(z0) [CiE
Hence
/ 2k 1
F(z0)(0'(20))™ = W (4.20)
If

from (4.20) we have

_ 1
N<T7f)§N<r7 / 2% 1 )
F) (@ ()% —
< T(r, F(2)(o/(2))) + O(1)

=T(r, (/(2)*) + 0(1) = S(r. f).

Combining this with (4.11), we obtain

which is a contradiction. So

Set
£ - s (P!
FOFE 1) P

It is clear that P and @) are entire functions. Let zy be a simple pole of f. Then

pP= Q=

near zy we can write

f2) = v o). (R+0).

zZ — 20
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By computation, we get

k'R

—1)*(k + 1)1 —kk+1 1
Q(z):( )(k:!R ) {1——( )]i' )(2—20)k+0(z—zo)k }

Clearly, zj is the zero of order k + 1 of P(z) and the zero of order k — 1 of Q'(2),

P(Z) _ (_1)k(2 — Zo)k+1 |:1 . (_1)k(z . Zo)k + O(Z _ Zo)k+1] :

but not the zero of Q(z). Hence

(k—1)N(r,f) <N (r,

and

Therefore

P/
Note that P is an entire function, by Theorem 2.19 we get

¥ (n k) <x (rB) +son

kN(r,f) <N (7’, i) + S(r, f). (4.21)

So
Ny (r, %) <N <T‘, %) + S(r, f),

where N (r, %) is the counting function of the zeros of P’ which are not the multiple

zeros of P. Since the simple pole of f is the zero of order £+ 1 of P and the zeros
of P only appear at the pole of f, hence
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From (4.21), we have
If £ > 3, then

Combining this with (4.11), we derive

T(r, f®) = S(r. ).
This is a contradiction. Now let us consider the case k = 2. If k£ = 2, then

B f//_f

frf"=1)
_ Ly [1 - %(2 — %)+ Oz — zoﬂ |

R
P\? P’

then w is an entire function and w(zp) = 0.

If w # 0, we have

Let

N(r,f) <N <7“, 5) <T(r,w)+O(1)
<m(r,w)+0(1) = S(r, f).

Again from (4.11), we have

T(r, f®) =S(r, f),

which is a contradiction. Therefore w = 0.
Note that P is an entire function, and P has zeros of order 3 only at the poles of

f. We can assume that

u? = P,
where u is an entire function, then
Pl ul
R Sl
P U
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Clearly from (4.22), we know that u satisfies the equation
u" +u=0, (4.23)

SO

u = cie” + cpe” ",

where ¢; and ¢y are constant. Since the pole of f are the zeros of u, hence ¢; # 0,

co # 0 and

T(ru) = N <r, %) + S0 f) = N(r, f) + S(r, f), (4.24)
m (r, %) S0, ). (4.25)

According to the definition of u, we have

f// . f — f//(f// . 1)u3_
Hence
f _ f// [1 o (f// . 1)u3} ’
f—lZ(f”—l) (1_]@//“3)‘

Taking this into (4.6), we get

@ 1 - (f” — 1)u3
€ = 1— f”u3
Hence
1 1
"= — — . 4.2
T B | (4.26)
Notice that m (r, =) = S(r, f). From (4.25) and (4.26) we obtain
m(r, f") = S(r, ). (4.27)

According to the definition of F', we know

FPF-D3" =1 fF-D\°
" G ) <<f" = f)u> |

Since F' = const, so
-
(f"=Pu
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where ¢ # 0 is a constant. Hence

f//_f: f(f_l)’
cu
which gives
= (1 +f ) |
cu

From (4.6), we have

Hence

Note that o/ = const, let o’ = d. From the above equality we obtain

1 1
[
e e e}

1 3 2
"o d2 .
art [ea—ﬁ(ea—l)”(ea—lﬁ}

From this and (4.23), we have

1., d2[1 3 2 }

e o R P N A PR JE

Since m (7", ea+1) = S(r, f), we derive from (4.27) and the above equality
m(r,u) = S(r, f).

Hence

T(r,u) =m(r,u) = S(r, f).

Taking this into (4.24), we have N(r, f) = S(r, f). Again from (4.11), we have

which is a contradiction, so f = f®).
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Theorem 4.3 [1] Let f be a non-constant meromorphic function, a and b be two

distinct finite non-zero values. If f and f*) share values a and b CM, then f = f*).

Proof. Without loss generality, we assume that a (# 0,1), b = 1 are CM shared
values of f and f®. Otherwise, consider £. Suppose that f # f*). Under the

b
hypothesis of Theorem 4.3, we know

Y-ay® -1 _,
=D —a) =

where « is an entire function. From (4.28) we have

T(r,e®)=0(T(r,f)), (ré¢kFE),
Similar to the proof of Theorem 4.2, it is easy to prove
N(r, f) = N(r, f) + S(r, f).

Set

then g is an entire function and

1\ f®) —q _ f) a \ 1
n(ng) = (=) s (g e () <o (s

From (4.28) and (4.30), we have

1—a a—1 1
f(k): g +€a_1(1—§)—l—a.

Hence

m(r,f(k)) <2m <r, é) +m (7“, eal 1) +0(1).

By second fundamental theorem for 0, 1 and co, we get

1 1
T(r,e®) <N (T, —) +N (7’,
e e

1) + N(r,e®) + S(r,e)

SN(T, ! )+S(r,f)
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(4.28)

(4.29)

(4.30)

)+S(r, f).



So

N (7‘, eal_ 1) — T(r,e®) + S(r, f) = T (n eal_ 1) + 80, ),
then
m (7“, - 1) — S(r, /).
We have
m(r, 1®) < 2m (n ;) +S(r, f) < 2m (r, - ! a) + S0 f).
It Teads to

N(r, f®) < T(r, f®)

= m(r, ) + N(r, f¥)

<2m (73 f . a) +N(r, f®) + S(r, f).

From (4.29), we have

1
f—a

(k+DN(r, f) <T(r, f®) < (k+1)N(r, f) + 2m (r, ) +S(r, f). (4.31)

Set
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and

1 1 1
w(rgw) (=) o ()
1 1 1
m( W f<k—a+f<k>—1>+0(1)
Fl+D) f(k+1 FU+D) 1
( k)_a—l—f(k)_1>~|—m<r,—f(k+1))+0(1)

(r G ) + S(r, f),
this and (4.32) imply

N*(r)+2T(r,f) = N*(r)+T (r, ! ) +T (r, ! +O(1)
1

=N (r, f(k)l_ f) +m (r,

=T(r, )+ kN(r, f) +m (r, —) +S(r, f)

and

32



Therefore

N*(r) + T(r, f) < KN(r, f) + m (7", i) + S0, ) (4.33)

f

and

N*(r)+T(r, f(k)) <T(r,f)+(k+1)N(r, f)—N (7’, ﬁ) —-m (7’, %) +S(r, f).
(4.34)

Since

() <o) o) o= ) s

combining this with (4.33) and (4.34) we have

IN*(r) + T(r, f®) < (2k + 1)N(r, ) = N ( f(klﬂ > +S(rf).  (4.35)

By Theorem 2.18 we know

1

N(ﬁ@) > (k—é?)N(T,f)—i—S(T,f),

where ¢ is any given positive number. With (4.35) we derive
ON*(r) + T(r, f®) < (k+ 1+ )N(r, f) + S(r, f).
From (4.31) we have
T(r, fO) < (k4 1+&)N(r, f)+ S(r, f) (4.36)

and

N*(r) < SN(r, f) + S(r, f). (4.37)

Now set

F— [(f — a)(f — DIFH(F® — a)(f® — 1)]k_1’

(F& =77

oo Er(k+1)%, ifk>2
429 -2 ifk=1
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If 2* is a pole of order p of f, when p = 1, z* is not pole or zero of F', and when

p>1, 2" is a pole of F'. So F' has no zeros and
N(r,F) <N r# - N 7“l - N TL + N(r, f) = N(r, f)
) — ,f(k)—f ’f ’f—l b )
= N*(r) + S(r, f).
Let zp be a simple pole of f. Then F'(zy) # 0, co. And near 2z, we can write

f(z)= R +ag+O(z — z), (R#D0).

zZ— 20

If £ > 2, we have

R*  (k+1)R* ' (2a — a — 1)

Pt G

(z—20) + O(z — 20)?,

k+1)R*Y(2ap —a — 1)

,_(
F= (k!)2

+ O(z — 2p),

1 2ap—a—-1
o' =(a—1) [—E—F%(z—zo)jLO(z—zo)Q},

and
o = (a—1) {20“1’%2_ ! +0(z — ZO)} ,
G(z0) = ?gj)) +(k+ 1)252))) — 0.

If k=1, we have
F=R*+2R(2a0—a—1—R)(z — 2) + O(z — )3,

F'=2R(2a0 —a—1—R) + O(z — 2),

o =(a—1) [—}%jL 2a0—aR—21 _2R(z—zo) —I—O(z—zo)Q} :
and
" =(a—-1) lz%_}%# +O(z — zo)} :
SO
Glzg) = L0) | 00"2) 5
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Hence the simple pole of f is the zeros of G. And G is a meromorphic function

satisfying

= N(r,F)+S5(r, f).
We distinguish the following two case.

Case 1. Suppose that G # 0. Then

N(r,f)<N (7‘, é) < T(r,G) + O(1) < N*(r) + S(r, f).

This and (4.37) lead to

N(r.f) < SN(r. f)+S(r,f).

DO | ™

Hence

and from (4.36) we derive

T(r, f®) < S(r, f).

This is a contradiction.
Case 2. Suppose that G = 0.
We discuss the following two subcases.

Subcase 1. If £ =1, from G = 0 we know

f/ f/ _f//_f/ Oé_”_ _
[ e S T B

Taking integrate of this, we have

ALY .
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where ¢ (# 0) is a constant. Let zy be a simple pole of f. Then near z; we can

write

f2) = v o). (R+0).

Z— 20

From (4.38), we get

ce® =a—1.

Since N(r, f) — N(r, f) = S(r, f), we have

N0 <8 (r )
=T(r,e*)+0(1)
= % +O(1). (4.39)
We rewrite (4.38) as
(7-af - =5er (£ 1), (4.40)

From this,

2m(r, f) = m(r,(f —a)(f — 1))+ S(r, f)
< mlr, 1)+ i)+t )+ (72 50
=m(r,e*) +m(r, f)+ S(r, f),

SO

mir, ) < m(r.e) +S(r.f) =~ + 5(r,f).
(4.39) and the above equality imply
2
T(r, f) < = +S(r. f).

Since T'(r,e®) = O(T(r, f)), (r ¢ E), with the above equality we know that
A(f) < 1 and A(e®) < A(f) < 1. Since « is not constant, o must be a linear
function and o/ must be a constant. we get A(e®) = A(f) = 1. Let %/ = d, taking

it into (4.40) we have

fr=—a=(f—-a)l +de*(f - 1)].
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Thus

1 f—a
= = 4.41
I =13 de=(f -1 f—a (4.41)
is an entire function with A(g) < 1. Since g(zo) = 0, we know
1
N(r,f) <N (7’, —) =T(r,g) +0(1). (4.42)
g
From (4.41), we get
eZ eZ
-5 S
T=3 a"
Substituting the above equality into (4.41), we have
1 a—1 a+1 1 g
S — - ). 4.43
J 1+ ade= 9 < a * a(l+ade™?) 1+ ade™> g) (4.43)

Note that

1 e? o
m(r,m> —m(T,M—Qd) —S(T,@)—S(T’, )

It follows from (4.43) that

/

2m(r.9) < mirg) +m () 450,

=m(r,g) +5(r, [).

Hence
From (4.42), we get
and so from (4.36)

which is a contradiction.

Subcase 2. If k > 2, similar to the proof of Theorem 4.2, we can get a contradic-

tion.

This completes the proof of Theorem 4.3, so f = f*). U
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Corollary 4.4 Let f be a non-constant meromorphic function. If f and f% share

distinct finite values a and b CM, then f = f*).

P. Li gave the following example, which shows that the condition f and f*

have two shared values CM in corollary 4.4 is essential.

Example 4.5 Let a; be any finite value, ay = a; + V2i. Let w be a non-constant

solution of the following Riccati differential equation

W= (w—a)(w—as). (4.44)
Let
f=(w—a)(w—ay) — %
We get
f=u 2w —a; —as)
and
£ = 6w'f, (4.45)
np 6 1)’ 4.46
f‘i‘é— (f‘f‘é)- (4.46)

(4.44) implies that 0 is the Picard exceptional value of W', and from (4.45) we know
that 0 is a CM shared value of f and f". (4.46) implies that —% is the IM shared

6
value of f and f", but f # f".
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