
Chapter 3

Single Asset American Style

Option Pricing Problems

An American option is an option which gives holder a right to exercise prior the

expiration date. Merton [59] assumed that the stock price dynamics satisfies the

geometric Brownian motion and proposed a parabolic FBP for valuation the vanilla

American options. The final payoff ψ of the American option is given as max(x−K, 0)

for call or max(K − x, 0) for put.

In this chapter, we shall consider the generalized American option pricing pro-

blems. Namely, the stock price dynamics is measured by the time-homogeneous

diffusions and the final payoff function is given as a positive real-valued function

in C3([0,∞)). By using the Feynman-Kac formula, the American option pricing

problems can be modelled as a FBP. Under the given assumptions, we shall show

that the free boundary and the solution of the FBP are increasing functions. The

main contribution of this chapter is to provide a rigorous verification of the concavity

of the free boundary. Consequently, we obtain that the optimal exercise boundary is

strictly concave function in the American call pricing problem. Following the spirit of

[12], we use this information to provide an asymptotic formula for s(t) of the vanilla
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American call when the remaining time is close to zero. We obtain that

s(τ) ∼ K + 2Kτ 1/2

[
log

σ2

4(r − q)
√

πτ

]1/2

, for q > r,

s(τ) ∼ K + 2Kτ 1/2

[
log

σ2

8
√

πrτ

]1/2

, for q = r,

as the remaining time τ is close to zero. Here r, q and σ are the constant interest

rate, dividends rate and the constant volatility. These asymptotic formulas was also

given in [18] by using different technique. Here, we provide a simple way to obtain

the formulas by using the concavity of s(t).

3.1 Free Boundary Problems Arising from Pricing

of American Options

Let X(t) be the stock price, which is a solution of the following time-homogeneous

diffusion

dX(t) = (r − q)X(t)dt + σX(t)dB(t), and X(s) = x,

where B(t) is a Brownian motion, and ψ(x) be a bounded function. Denote

v(x, t) = E
(
e−

R T
t r(ξ)dξψ(X(T ))|X(t) = x

)
,

where r(x) is the interest rate, then v(x, τ) is the price of a European option with

the final payoff ψ(x).

By using the Feynman-Kac formula, the European option’s price v satisfies the

following parabolic equation

Lv = 0 with v(x, T ) = ψ(x),
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where L = L0 + ∂
∂τ

and

L0 =
σ2x2

2

∂2

∂x2
+ (r − q)x

∂

∂x
− r. (3.1)

For the American option pricing problems, since American option can be exercised

at any time t < T , this problem is formulated as an FBP. Let u(x, τ) be the value of

an American option, then u(x, τ) must satisfy following inequality under no-arbitrage

condition

u(x, τ) ≥ ψ(x), 0 ≤ τ ≤ T.

Now, we separate the domain {(x, t)|0 ≤ x < ∞, 0 ≤ t ≤ T} into two parts:

(i) a continuation region C = {(x, t)|u(x, t) > ψ(x)}, and (ii) a stopping region

S = {(x, t)|u(x, t) = ψ(x)}. Given τ ∈ (0, T ), we consider the following two cases.

(1) ψ(x) is a strictly increasing function and (2) ψ is a strictly decreasing function.

When ψ(x) is a strictly increasing function, there is a time-depended function s(t)

such that u(x, t) > ψ(x) for 0 < x < s(t) (see [11]). Hence, the continuation region is

described as C = {(x, t)|0 < x < s(t), 0 < t < T}.

When ψ(x) is a strictly decreasing function, there is a time-depended function

s(t) such that u(x, t) > ψ(x) for s(t) < x < ∞. Hence, the continuation region is

described as C = {(x, t)|s(t) < x < ∞, 0 < t < T}.

And then, by using the no arbitrage condition, the price of the American option

satisfies the high contact condition, that is ux(x, t) = ψ′(x).

To investigate the American option’s price u with the optimal exercise boundary

s, we consider the following one phase one-dimensional FBP for linear parabolic
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equations (3.1):

Lu = 0 0 < x < s(t), 0 < t < ∞, (3.2)

u(x, t) > ψ(x) 0 < x < s(t), 0 < t < ∞, (3.3)

u(0, t) = ψ(0) 0 < t < ∞, (3.4)

u(x, 0) = ψ(x) 0 ≤ x ≤ s(0), (P) (3.5)

u(s(t), t) = ψ(s(t)) 0 ≤ t < ∞, (3.6)

∂u

∂x
(s(t), t) = ψ′(s(t)) 0 ≤ t < ∞, (3.7)

Here, L is rewritten as

L = L0 − ∂

∂t

and L0 is defined as

L0 ≡ a(x)
∂2

∂x2
+ b(x)

∂

∂x
+ c(x).

We assume that coefficients a, b, c ∈ C2+α([0,∞)) for some α ∈ (0, 1) with a(x) ≥

a0 > 0 for 0 ≤ x < ∞ and c(x) ≤ 0 for 0 ≤ x < ∞ and ψ ∈ C3([0,∞)) is a positive

real-valued function with

L0ψ(x)





> 0 for 0 ≤ x < d,

< 0 for d < x < ∞,

(3.8)

for some d > 0. We shall discuss some properties for the solution (s, u) of Problem

(P).

This problem had been studied by Kotlow [40]. He showed that the problem (P)

is well-posed and that u(x, t) and s(t) are both nondecreasing functions of t.
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When L is given as

L0 ≡ ∂2

∂x2
,

Problem (P) is called a Stefan problem. Friedman [21] showed that the free boundary

for the Stefan problem is smooth and monotone increasing. Moreover, Friedman and

Jensen [22] showed that the free boundary is a concave function by using the maximum

principle to control the level curve.

In addition, we make the following assumptions which will be used later.

Assumptions

(A) c(x) is a nonincreaing function in [0,∞).

(B) ψ(x) is a positive strictly increasing convex function in [0,∞).

(C) d
dx
L0ψ(x) ≤ 0 and c(x) + b′(x) ≤ 0 in [0,∞).

(D) lim supξ→∞ L0ψ(ξ) < 0.

3.2 Properties of the Solution

Let {s, u} be the solution of (P) and denote C, namely continuation region, as

C = {(x, t); 0 < x < s(t), 0 < t < ∞}. (3.9)

Now we define û on Q̄ by

û(x, t) =





u(x, t) (x, t) ∈ C

ψ(x) (x, t) ∈ Q̄− C

where Q̄ = [0,∞)× [0,∞).

In this section, we will show that
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1. s(t) is a strictly increasing function with s(0) = d,

2. u(x, ·) is a strictly increasing function in C,

3. ux(·, t) is increasing function in C.

In order to prove these results, we need some preliminaries.

Definition 3.1. Given t ∈ [0,∞), the t-section of C is defined to be

Ct = {x ∈ R|0 < x < s(t)}. (3.10)

Clearly, we have

C =
⋃
t<∞

(Ct × {t})

and

s(t) = sup{x|x ∈ Ct}. (3.11)

The following properties of u and s(t) have been proved by Kotlow [40].

Lemma 3.2. Let {s, u} be a solution of (P). They have the following properties:

(a) ut > 0 in C.

(b) s(0) = d < ∞ and s(t) > d for 0 < t < ∞.

(c) s(t) is a nondecreasing function.

(d) There exists a s∞ ∈ (d,∞) such that s(t) → s∞ uniformly as t → ∞ if As-

sumption (D) holds.

Remark 3.3. If d = ∞, then the continuation region C = (0,∞)× (0,∞).
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Let

M0 = a(x)
∂2

∂x2
+ (b(x) + a′(x))

∂

∂x
+ (c(x) + b′(x)). (3.12)

be an elliptic operator. We define a parabolic operator M as

M = M0 − ∂

∂t
.

Lemma 3.4. Let {s, u} be a solution of (P). At points (s(t), t), t > 0, u satisfies

ut(s(t), t) = 0.

Proof. By (3.6), we have u(s(t), t) = ψ(s(t)). Differentiating u(s(t), t) = ψ(s(t)) with

respect to t, we have

ux(s(t), t)s
′(t) + ut(s(t), t) = ψ′(s(t))s′(t).

Since ux(s(t), t) = ψ′(s(t)) by (3.7), we have ut(s(t), t) = 0.

Lemma 3.5. Let {s, u} be a solution of (P) and w = û − ψ in Q̄. Then w(·, t) has

a local maximum in (0, s(t)). Moreover, this local maximum can not lie in (d, s(t)).

Proof. By (3.3) and (3.6), we have w(0, t) = w(s(t), t) = 0 and w(x, t) > 0 on C.

This implies that there exists a d′ ∈ (0, s(t0)) for some t0 > 0, which may depend

on t0, such that w(d′, t0) is a local maximum. Now, we claim that d′ 6∈ (d, s(t0)).

Suppose that d′ ∈ (d, s(t0)) is a local maximum of w(x, t0). We define

Ωt0 = {(x, t) ∈ C|d ≤ x ≤ s(t), t ≤ t0},

∂pΩt0 = {(x, t) ∈ ∂Ωt0|t < t0}.
and apply the differential operator L to w. By (3.8) and (3.2), w satisfies the parabolic

differential equation

Lw = (L0 − ∂

∂t
)u− L0ψ(x) = −L0ψ(x) > 0 on Ωt0 .
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Now, we apply the maximum principle to this equation. Since (d′, t0) ∈ Ωt0 − ∂pΩt0

is a nonnegative maximum over Ωt0 , it implies that w is a constant function on Ωt0 .

This contradicts to that wt = ut > 0. So d′ ≤ d.

Theorem 3.6. Let {s, u} be a solution of (P). Then

(a) s(t) is a strictly increasing function.

(b) ux(x, t) > 0 for (x, t) ∈ C if (A), (B) hold.

(c) ux(x, t) < ψ′(x) for (x, t) ∈ Cd, where Cd = {(x, t ∈ C|x > d)}, if (A), (B),

(C) hold.

Proof. For (a), we only need to show that s(t2) 6= s(t1), for t2 < t1 by (c) in Lemma

3.2. Suppose that there is an interval [t1, t2] such that s(t) = s(t1) for all t ∈ [t1, t2],

then ux(s(t), t) is a constant function for all t ∈ (t1, t2). Since Lu = 0 in (0, s(t1))×

(t1, t2) and u(s(t), t) = ψ(s(t1)) for all t ∈ [t1, t2], we have u ∈ C∞([0, s(t1))× (t1, t2)).

Since ut(s(t1), t1) = 0 for t ∈ (t1, t2), ut > 0 in (0, s(t1)) × (t1, t2) and Lut = 0 in

(0, s(t1)) × (t1, t2), we have utx(s(t), t) < 0 for t ∈ (t1, t2) by applying the boundary

point form of the maximum principle. And then, we have uxt(s(t), t) = utx(s(t), t) < 0

which implies that ux(s(t), t) is strictly decreasing for t ∈ (t1, t2). On the other hand,

s(t) is a nondecreasing function in [t1, t2] and ψ(x) is a strictly increasing convex

function. This implies that ψ′(s(t)) is a nondecreasing function in [t1, t2]. Hence, we

obtain that ux(s(t), t) = ψ′(s(t)) is a nondecreasing function in [t1, t2] and there is a

contradiction. So s(t) is a strictly increasing function.
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We now show that (b) ux ≥ 0. We first consider that

∂

∂t
ux =

∂

∂x

∂u

∂t
=

∂

∂x
(L0u)

=
∂

∂x
(a(x)uxx + b(x)ux + c(x)u)

= a(x)
∂2

∂x2
ux + (b(x) + a′(x))

∂

∂x
ux + (c(x) + b′(x))ux + c′(x)u

Consequently, ux satisfies the parabolic differential equation

Mux = −c′(x)u.

Let w(x, t) = û(x, t) − ψ(x) on Q̄. Then w(0, t) = 0 and w(x, t) > 0 on C by (3.3)

and (3.4). So we have

wx(0, t) = lim
h→0+

w(h, t)− w(0, t)

h
≥ 0.

This implies that

ux(0, t) ≥ ψ′(0) > 0 (3.13)

for 0 < t < ∞. We apply the maximum principle to this equation. Since ux(s(t), t) =

ψ′(s(t)) > 0 for t ≥ 0 by (3.7), ux(0, t) > 0 for 0 < t < ∞ by (3.13), ux(x, 0) =

ψ′(x) > 0 for 0 < x < s(0) by (3.5) and c′(x) ≤ 0 by assumption (A), this shows

ux(x, t) > 0 for 0 < x < s(t) and 0 < t < ∞.

Finally, we show that (c) ux(x, t) < ψ′(x) for d < x < s(t) and 0 < t < ∞. Let

w(x, t) = û(x, t) − ψ(x) on Q̄. Since w(s(t), t) = wx(s(t), t) = 0 by (3.6) and (3.7),

w(x, t) > 0 on C by (3.3), and the continuity of w and wx, we have that, for any

t > 0, there exists a δ > 0 such that wx(x, t) < 0 for s(t) − δ < x < s(t) and t > 0.

Suppose that there is a x′ ∈ (d, s(t)− δ) with wx(x
′, t) ≥ 0, then there exists a local

maximum in [x′, s(t)) ⊆ (d, s(t)). This contradicts to Lemma 3.5. So we obtain that
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there is no x ∈ (d, s(t)) with wx(x, t) ≥ 0. Hence, we have wx(x, t) < 0 for (x, t) ∈ Cd.

This implies that ux(x, t) < ψ′(x) for (x, t) ∈ Cd.

3.3 Concavity of the Free Boundary

Suppose that (A), (B) and (C) hold. We will show that s(t) in (3.9) is a concave

function; consequently the continuation region of C in (3.9) is a convex set.

In order to prove our main theorem, we need a lemma.

Lemma 3.7. Let {s, u} be a solution of (P) and define w = u − ψ on C̄d, where

C̄d = {(x, t) ∈ R2|d < x ≤ s(t), 0 < t < ∞}. At points (s(t), t), t > 0, w has the

following properties

w(s(t), t) = 0, wt(s(t), t) = 0, wx(s(t), t) = 0,

wxx(s(t), t) = − 1

a(s(t))
(L0ψ(s(t))),

wtx(s(t), t) =
1

a(s(t))
(L0ψ(s(t)))s′(t),

wtt(s(t), t) = − 1

a(s(t))
(L0ψ(s(t)))(s′)2(t).

Proof. Since u(s(t), t) = ψ(s(t)), ux(s(t), t) = ψ′(s(t)) and ut(s(t), t) = 0, we obtain

the first three equalities. By (3.8) and (3.2), we have

awxx + bwx + cw − wt = −L0ψ.

Since w = 0, wx = 0 and wt = 0 at (s(t), t), we have

wxx = −1

a
(L0ψ).
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Differentiating the equality

wx(s(t), t) = 0

with respect to t, we have

wxxs
′(t) + wtx = 0.

So wtx = −wxxs
′(t) = 1

a
(L0ψ(x))s′(t). Next, wtt can be found by differentiating

wt(s(t), t) = 0.

We obtain

wxt(s(t), t)s
′(t) + wtt(s(t), t) = 0.

So wtt = −wxt(s(t), t)s
′(t) = − 1

a
(L0ψ(x))(s′)2(t).

Now, we can state and proof our mean theorem of this chpater.

Theorem 3.8. Let (A), (B), (C) and (D) hold and {s, u} be a solution of (P). Then

s(t) is a concave function.

Proof. We have known that s(t) is a strictly increasing function. Suppose that there

is a point t0 with s′(t0) = m > 0 and s′′(t0) > 0. This implies that there exists an

ε > 0 such that s′(t) > m for t ∈ (t0, t0 + ε). We consider the line

y(t) = m(t− t0) + s(t0)

for some t > 0. So y(t0) = s(t0). Since s(t) is bounded above by (d) of Lemma

3.2 and m > 0, there must exist another point t1 > t0 such that y(t1) = s(t1). Let

f(t) = w(y(t), t) for some t > t3 where t3 = inf{t|(y(t), t) ∈ Cd}. Since wt(s(t), t) = 0
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and wx(s(t), t) = 0, we have

f ′(ti) = mwx(y(ti), ti) + wt(y(ti), ti)

= mwx(s(ti), ti) + wt(s(ti), ti) = 0, i = 1, 2.

We also have f(t0) = w(y(t0), t0) = 0, f(t1) = w(y(t1), t1) = 0 and (y(t), t) ∈ Cd for

t ∈ (t0, t1), which implies that f(t) = w(y(t), t) > 0 for t ∈ (t0, t1). So there exists a

local maximum of f between t0 and t1, namely f(t2) where t2 ∈ (t0, t1). This implies

that f(t2) > 0 and f ′(t2) = 0. Without loss of generality, we can assume that there

is no local maximum between t2 and t1. Since f(t0) = f(t1) = 0, f(t2) > 0, and

f ′(ti) = 0, i = 0, 1, 2, we have

f ′(t) < 0 for t ∈ (t2, t1) (3.14)

and f ′(t) > 0 for some interval, say (t4, t2), where t0 ≤ t4 < t2.

Since

lim
x→s(t)

wx(x, t)

wt(x, t)
= −s′(t)

by l’Hôpital’s rule and w < 0 on Cd, let

v =





wt

wx

, (x, t) ∈ Cd,

−s′(t), x = s(t),

which is well-defined on C̄d. Then we have that

f ′(t) = mwx(y(t), t) + wt(y(t), t)

= wx(y(t), t)(m + v(y(t), t))

(3.15)

for t > t3. Applying the differential operator L to the equality vwx = wt, we obtain

that v satisfies the following parabolic equation

avxx + (b +
2wxx

wx

)vx − 1

wx

(M0ψ
′)v − vt = 0 on C̄d. (3.16)
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Let Γα be the level curves on which v = α. Since wx < 0, M0ψ
′ ≤ 0 and

v satisfies the parabolic equation (3.16), the x-coordinate along Γα can not first

increasing (decreasing) and then decreasing (increasing). This is because that there

would be a region whose parabolic boundary is a part of Γα; consequently v ≡ α in

this region and hence v ≡ α in Cd. Since Γα is understood to be continued as long it

remains in Cd, for each α there is a gα(t) such that

Γα = {(gα(t), t)|v(gα(t), t) = α, t > 0}.

Since f ′(ti) = 0, i = 0, 1, 2 and f ′(t) = wx(y(t), t)(m+v(y(t), t)), we have v(y(ti), ti) =

−m, i = 0, 1, 2. This implies that (y(ti), ti) ∈ Γ−m, i = 0, 1, 2. Now we consider the

function g−m(t). Since (y(ti), ti) ∈ Γ−m, that is v(y(ti), ti) = −m, i = 0, 1, 2, we have

y(ti) = g−m(ti), i = 0, 1, 2.

Since g−m(t) is continuous on (t3, t1), we only have the following two cases: (1)

y(t) < g−m(t) for t ∈ (t2, t1), and (2) y(t) > g−m(t) for t ∈ (t2, t1).

We first consider case (1). We have wx < 0 on Cd by (c) of Theorem 3.6. Since

f ′(t) = wx(y(t), t)(m + v(y(t), t)) < 0 for t ∈ (t2, t1) by (3.14) and (3.15), this implies

that

v(y(t), t) > −m, for t ∈ (t2, t1). (3.17)

Since g−m(t1) = y(t1) = s(t1) and y(t) < g−m(t) < s(t) for t ∈ (t2, t1), there is

a δ > 0 such that y′(t) > g′(t) > s′(t) for t ∈ (t1 − δ, t1). Since y′(t) = m, we

have v(s(t), t) = −s′(t) > −y′(t) = −m for t ∈ (t1 − δ, t1). Let Ω = {(x, t)|y(t) <

x < s(t), t1 − δ < t < t1}. We apply extensions of maximum principle, [20], to

(3.16) on Ω. Since v(y(t), t) > −m for t ∈ (t2, t1) by (3.17) and v(s(t), t) > −m for
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t ∈ (t1 − δ, t1), this implies that v(x, t) > −m for (x, t) ∈ Ω. This contradicts to that

v(g−m(t), t) = −m for t ∈ (t1 − δ, t1). So case (1) dose not hold.

Now we consider case (2). We have know that the level curves Γα of a parabolic

equation is continuous. We consider the line y(t) for t ∈ (t2, t1)∪(t3, t0). In (3.17), we

have v(y(t), t) > −m for t ∈ (t2, t1). And then, we also have f(t0) = 0 and f(t) > 0 for

t ∈ (t3, t0). This implies that there is a δ2 > 0 such that f ′(t) < 0 for t ∈ (t0− δ2, t0).

Since f ′(t) = wx(y(t), t)(m + v(y(t), t)) and f ′(t) < 0 for t ∈ (t0 − δ2, t0), we have

v(y(t), t) > −m for t ∈ (t0 − δ2, t0). Now we can select a suitable δ > 0 such that

v(y(t), t) > −m for t ∈ (t0 − δ, t0)∪ (t1 − δ, t1). Since v(y(t0), t0) = −m = v(y(t1), t1)

and v(y(t), t) > −m for t ∈ (t0 − δ, t0)∪ (t1 − δ, t1), there exists a t′ ∈ (t0 − δ, t0) and

a t′′ ∈ (t1 − δ, t1) such that

v(y(t′), t′) = β = v(y(t′′), t′′), for aome β > −m.

Since the level curves of a parabolic equation is continuous, there is a level curve

Γβ connecting (y(t′), t′) and (y(t′′), t′′). On the other hand, we have (y(t′′), t′′) ∈ Ω1,

where Ω1 = {(x, t) ∈ C|g−m(t) ≤ x < s(t), t0 < t < t1}. This contradicts to that

Γ−m ∩ Γβ 6= ∅. So case (2) does not hold.

Since both case (1) and case (2) do not hold, we conclude that there is no such

point t0 with s′′(t) > 0 for t > 0. Thus, s(t) is a concave function.

3.4 Application to American Call Option

In this section, we apply our results to vanilla American option. Let x denote

the stock price and K > 0 be the strike price. The payoff function, ψ(x), is given
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as max{0, x −K} for a call option and is given as max{0, K − x} for a put option.

Then ψ is a strictly increasing function for a call option when x ≥ K and is a strictly

decreasing function for a put option when x ≤ K.

When the evolution of the stock price satisfies the geometric Brownian motion,

Black and Scholes [6] showed that the option’s fair price satisfies the fundamental

equation

LV = 0, (3.18)

with the initial condition

V (x, 0) = ψ(x)

in the domain {(x, τ)|0 ≤ τ ≤ T, 0 ≤ x < ∞}, T < ∞. In the BS framework, the

operator is given as L = L0 − ∂
∂τ

and

L0 =
1

2
σ2x2 ∂2

∂x2
+ (r − q)x

∂

∂x
− r,

where q, σ2 and r denote respectively the constant dividend yield, the volatility of

the asset, and the risk-free interest rate in the market, respectively.

Merton [59] derived that the fair price of the American option satisfies (3.18) in

the continuation region; moreover the value v together with s(τ) is a solution of the

following FBP

Lv = 0 on C,

v(x, 0) = ψ(x) for x ≥ 0,

v(0, τ) = ψ(0) for 0 ≤ τ < T,

v(τ, s(τ)) = ψ(s(τ)) for 0 ≤ τ < T,

vx(τ, s(τ)) = ψ′(s(τ)) for 0 ≤ τ < T.

(3.19)



Chapter 3: Single Asset American Style Option Pricing Problems 31

So far, many authors, such as [11], [12] and [17], write (3.19) in a non-dimensional

form by letting

k = 2r/σ2, h = 2d/σ2, x = Key,

v(x, t) = Kp(y, t), s(t) = Kez(τ).

(3.20)

They showed that z(t) is a monotonically decreasing convex function. Hence, s(t) =

ez(τ) for an American put is a monotonically increasing convex function of t since

ex is a strictly increasing convex function. Now we consider the American call by

using the same method. Although we can show that z(τ) is a concave function for

the American call, we do not know the concavity of s(t) = ez(τ). Therefore, their

methods do not work for showing the concavity of s(t) = ez(τ) for the American call.

By applying the results in the previous two sections, we will provide a rigorous proof

for the concavity of s(τ) for an American call.

Let CK = {(x, τ)|K < x < s(τ), 0 < t ≤ T}, T < ∞. We apply L0 to ψ and

obtain L0ψ = rK − qx in CK . This implies that

L0ψ(x)





> 0, x < r
q
K

< 0, x > r
q
K

in CK for the case of r > q. On the other hand, we have L0ψ(x) > 0 in CK for the

case r < q. We also have that ψ(x)(= x−K) is a smooth positive increasing function

in CK . Let

M0 =
1

2
σ2x2 ∂2

∂x2
+ (r − q + σ2)x

∂

∂x
− q,

and M = M0 − ∂
∂τ

. Then we have M0ψ
′(x) = −q < 0 for x > K.

In order to apply Theorem 3.8, we need the following lemma.
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Lemma 3.9. Let (s, v) be a solution of (3.19) and w = v − ψ be respectively defined

on CK if r < q and on C r
q
K if r > q. Then

(a) s(τ) is a strictly increasing function.

(b) s(τ) is bounded above.

(c) wτ (s(τ), τ) = 0 and wx(s(τ), τ) = 0.

(d) wx < 0 in CK if r < q or in C r
q
K if r > q.

Proof. In this lemma, we show the case of r > q and the same method can be applied

to the case of r < q. To show this lemma, we apply Lemma 3.2, Theorem 3.6 to (3.19).

Since 1
2
σ2x2 > 0 if x > K, −r < 0 and lim supx→∞ L0ψ(x) = lim supξ→∞(rK − qx) <

0, this implies that s(t) is a bounded strictly increasing function by (a) in Theorem

3.6 and (d) in Lemma 3.2. Since ux(s(τ), τ) = ψ′(s(τ)), we have wx(s(τ), τ) = 0

and wτ (s(τ), τ) = 0 by Lemma 3.7. Since −r < 0, ψ′(x) = 1 > 0 if x > K and

M0ψ
′(x) = −q < 0, we have vx < ψ′(x) in C r

q
K . Hence wx(x, τ) = vx(x, τ)−ψ′(x) < 0

in C r
q
K .

By using Lemma 3.9 directly, we obtain the following theorem.

Theorem 3.10. Let {s, v} be a solution of (3.19). Then s(τ) is a strictly increasing

concave function for τ > 0.
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3.5 An Asymptotic Solution for the Early Exercise

Boundary

Following the spirit of [12], the concavity of s(τ) provides useful information to

obtain its asymptotic formula as time near to expiration. In order to obtain the

asymptotic formula, we rewrite (3.19) in the following non-dimensional form by letting

(3.20):

Lp = 0, on C,

p(y, 0) = max{ey − 1, 0}, for y ≥ 0,

p(τ, s(τ)) = ez(τ) − 1, for 0 ≤ τ < T,

py(τ, s(τ)) = ez(τ), for 0 ≤ τ < T,

where L = L0 − ∂
∂τ

and

L0 =
∂

∂y2
+ (k − d− 1)

∂

∂y
− k.

Here, we define k = 2r
σ2 and d = 2q

σ2 .

The fundamental solution Γ(y, τ) of this operator is

Γ(y, τ) =
1

2
√

πτ
exp[− y2

4τ
− (

k − d− 1

2
)y − (k − d− 1)2 + 4k

4
τ ]

and the solution of this problem is

p(y, τ) =

∫ ∞

0

(eζ − 1)Γ(y − ζ, τ)dζ +

∫ τ

0

∫ ∞

z(τ−λ)

(deζ − k)Γ(y − ζ, λ)dζdλ. (3.21)

Applying the integration by parts and LΓ = 0 to the first integral of (3.21), we obtain

that (see [70])

p(y, τ) = max{ey − 1, 0}+

∫ τ

0

Γ(y, τ) +

∫ z(τ−λ)

0

(k − deζ)Γ(y − ζ, λ)dζdλ.
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Since pτ (z(τ), τ) = 0, we have

lim
y→z(τ)

{
Γ(y, τ) +

∫ z(0)

0

(k − deζ)Γ(y − ζ, τ)dζ

+

∫ τ

0

(k − deη)Γ(y − z(η), τ − η)z′(η)dη

}
= 0,

(3.22)

where η = t− λ.

Let B(τ, η; y) = y−z(η)
2
√

τ−η
and θ(τ, η; y) = y−z(η)

2(τ−η)z′(η)
. In abbreviation, we write

B = B(τ, η; z(τ)) and θ = θ(τ, η; z(τ)) when y = z(τ). Since s(τ) = Kez(τ) is

a strictly increasing concave function, we have z′′(τ) < 0 and z′(τ) is a positive

decreasing function. This implies that θ = z′(ξ)
2z′(η)

∈ (0, 1/2) where ξ ∈ (η, τ) by using

the mean value theorem. Hence µ(τ) in (3.23) is bounded. Then we obtain the

following lemma by using the concavity of z(τ).

Lemma 3.11. Let

µ(τ) =
1√
π

∫ α(τ)

0

e−B2 eδ(z(η))

1− θ
dB, (3.23)

where α(τ) = z(τ)
2
√

τ
and δ(z(η)) = (k−d−1

2
z(η)+( (k−d−1)2

4
)η). Then µ(τ) → 1 as τ → 0.

Since the argument for deriving this lemma has been provided by [12], we omit

the proof of this lemma.

Now, Lemma 3.11 can be used to obtain the following asymptotic formula of z(t).

Evans et al. [18] also obtain the similar formula by dealing with the different equality

of z(τ).

Theorem 3.12. Near to expiry, the optimal exercise boundary of an American call

option on an asset with dividends satisfies

s(τ) = Kez(τ) ∼ K + Kz(τ) ∼ K + 2Kτ 1/2
[
log σ2

4(r−q)
√

πτ

]1/2

, for q > r,

s(τ) = Kez(τ) ∼ K + Kz(τ) ∼ K + 2Kτ 1/2
[
log σ2

8
√

πrτ

]1/2

, for q = r.
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Proof. Applying (b) in Lemma 3.2, we have s(0) = K when q ≥ r. This implies that

z(0) = 0 when q ≥ r. We first consider the case of q > r ≥ 0. Since z(0) = 0, (3.22)

can be written as

Γ(z(τ), τ) +

∫ τ

0

(k − dez(η))Γ(z(τ)− z(η), τ − η)z′(η)dη = 0.

Dividing by

exp[−(
k − d− 1

2
)z(τ)− (k − d− 1)2 + 4k

4
τ ],

yields

1

2
√

πτ
e−α2(τ) + k

∫ τ

0

z′(η)

2
√

π(τ − η)
ea(η)dη − d

∫ τ

0

z′(τ)

2
√

π(τ − η)
eb(η)dη = 0,

where

a(η) = −B2(η) + k−d−1
2

z(η)− (k−d−1)2+4k
4

η,

b(η) = −B2(η) + k−d+1
2

z(η)− (k−d−1)2+4k
4

η.

Expanding eb(η) at a(η) by using the Taylor expansion, we have

1

2
√

πτ
e−α2(τ) + (k − d)

∫ τ

0

z′(η)

2
√

π(τ − η)
ea(η)dη ∼ 0,

as τ near to 0. Calculating dB
dη

directly, we have

1

1− θ
dB =

−z′(η)

2
√

τ − η
dη.

Therefore, we have

∫ τ

0

z′(η)

2
√

π(τ − η)
ea(η)dη =

∫ α(τ)

0

e−B2 eδ(z(η))

1− θ
dB ∼ 1,

as τ → 0, by using Lemma 3.11. Consequently, we have

e−α2(τ)

√
π

∼ 2(k − d)
√

τ .
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This implies that

s(τ) = Kez(τ) ∼ K + Kz(τ) ∼ K + 2Kτ 1/2

[
log

σ2

4(r − q)
√

πτ

]1/2

.

since k = 2r
σ2 and d = 2q

σ2 .

On the other hand, we consider the case of r = q > 0 and we have z(0) = 0 in

this case. (3.22) can be rewritten as

lim
y→z(τ)

{Γ(y, τ) + k

∫ τ

0

(1− ez(η))Γ(y − z(η), τ − η)z′(η)dη} = 0.

This implies that

lim
y→z(τ)

{
1

2
√

πτ
e−α2(τ) + k

∫ τ

0

z′(η)

2
√

π(τ − η)
(ea(η) − eb(η))dη

}
= 0,

where

a(η) = −B2(τ, η; y)− 1

2
z(η)− 1 + 4k

4
η

and

b(η) = −B2(τ, η; y) +
1

2
z(η)− 1 + 4k

4
η.

By using the Taylor expansion to eb(η) at a(η), we have the following approximation

formula

lim
y→z(τ)

{
1

2
√

πτ
e−α2(τ) − k

∫ τ

0

z′(η)z(η)√
π(τ − η)

e−B2(η;y)eδ(η)dη

}
= 0, as τ → 0,

where δ(η) = −(1
2
z(η) + 1+4k

4
η). Rewriting −z′(η)z(η) = z′(η)(y − z(η))− yz′(η), we

have

lim
y→z(τ)

{
1

2
√

πτ
e−α2(τ) − k

∫ τ

0

yz′(η)√
π(τ − η)

e−B2(η;y)eδ(η)dη

+k

∫ τ

0

z′(η)(y − z(η))√
π(τ − η)

e−B2(η;y)eδ(η)dη

}
= 0.

(3.24)
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Taking limit at z(τ) and applying Lemma 3.11, the first integral of above equation

approximates to 2z(τ) as τ → 0.

Now we claim that the second integral of (3.24) approximates to 0 as t → 0. Since

z(η) is a strictly increasing function, we set ξ = z(η). Then η = z−1(ξ). The second

integral of (3.24) can be written as

∫ z(τ)

0

B(τ, z−1(ξ); y)e−B2(τ,z−1(ξ);y)eδ(z−1(ξ))dξ,

where B(τ, z−1(ξ); y) = y−ξ

2
√

πτ(1−z−1(ξ)/τ)
. Since z(η) is a strictly increasing function

from 0 to z(τ), for any y there exists a unique η0, which depends on y, such that

y = z(η0) = ξ0. This implies that B(τ, z−1(ξ0); y) = 0, B(τ, z−1(ξ); y) > 0 for any

ξ ∈ (0, ξ0) and B(τ, z−1(ξ); y) < 0 for any ξ ∈ (ξ0, s(τ)).

Since z(η) is a strictly increasing function from 0 to z(τ), we have η = z−1(ξ) lies

between 0 and τ . This implies that z−1(ξ)
τ

lies between 0 and 1. As a result, we have

B2(τ, ξ; y) →∞

as t → 0 for ξ 6= ξ0 and

B2(τ, ξ0; y) = 0

for all τ .

So we have that exp(−B2(τ, ξ; y) + δ(z−1(ξ))) → 0 as τ → 0 for ξ 6= ξ0 and

exp(−B2(τ, ξ0; y) + δ(z−1(ξ0))) = exp(δ(z−1(ξ0))) → 1 as τ → 0. Hence the main

contribution of the second integral in (3.24) comes form the neighbor of ξ0 as t is

close to 0. When ξ nears to ξ0, the expansion of B at ξ0 is

B(τ, z−1(ξ); y) = B(τ, z−1(ξ0); y) + Bξ(τ, z
−1(ξ0); y)(ξ − ξ0) + · · ·

= Bξ(τ, z
−1(ξ0); y)(ξ − ξ0) + · · · .



Chapter 3: Single Asset American Style Option Pricing Problems 38

Since B(τ, z−1(ξ0); y) = 0, we have

∫ τ

0

z′(η)(y − z(η))

2
√

π(τ − η)e−B2(η;y)eδ(η)
dη

∼ B(τ, z−1(ξ0); y)

∫ z(τ)

0

(ξ − ξ0)e
−B2(τ,z−1(ξ);y)dz → 0

as τ → 0.

Hence, we have

e−α2(τ)

2k
√

πτ
− 2z(τ) ∼ 0.

Since z(τ) = 2
√

τα(τ), we have

e−α2(τ) ∼ 4
√

πkτα(τ).

Therefore, the solution of (3.24) for α is

α(τ) ∼
√

log
1

4
√

πkτ
.

This implies that

s(τ) = Kez(τ) ∼ K + Kz(τ) ∼ K + 2Kτ 1/2

[
log

σ2

8
√

πrτ

]1/2

.


