
Chapter 4

American Exchange Option Pricing

Problems

In Chapter 3, we have proposed an FBP for pricing of the single asset American

option and shown that the optimal exercise boundary of an American call is a strictly

increasing function of remaining time. The results provide a useful information for

finding an asymptotic formula of the optimal exercise boundary. In this chapter,

we extend this method to consider the pricing of the American exchange options

(AEO) that are two-variate in nature. Namely, the option value is determined by

the stochastic behaviors of two underlying asset prices and the correlations between

these asset prices.

An AEO is an option which give the holder a right to exchange one asset to another

at any time prior the expiration date T . In Section 4.1, we derive the parabolic FBP

arising from the AEO pricing problems. In Section 4.2, we show that (1) the value of

the AEO and the optimal exercise ratio are both strictly increasing functions of the

remaining time; and (2) the value of the alive AEO is an increasing function of S1

and a decreasing function of S2. We deduce an IE for the exercise ratio and provide

an asymptotic solution of this IE in Section 4.3 and Section 4.4. For the infinite
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time horizon AEO, the exact value of the exercise ratio and the AEO are given in

Section 4.5. In Section 4.6, the single asset integral recursive method [36] is extended

to solve the IE numerically. We find that our asymptotic solution is very close to the

numerical solution.

4.1 The Formulation of AEO

In this section, we shall derive a two variables FBP for pricing of the AEOs under

the perfect market assumptions.

Let S1 and S2 be the price of asset 1 and asset 2. Under the risk neutral probability

measure, the stochastic processes for the asset price is assumed to be

dSi

Si

= (r − qi)dt + σidwi, i = 1, 2,

where r, qi, and σi are the constant risk-free interest rate, the continuous dividend

rate of the asset i and the volatility the i-th asset, respectively. Here, dw1 and dw2

are the Wiener processes of asset 1 and asset 2 respectively, and their correlation

coefficient is corr(dw1, dw2) = ρdt.

To derive the pricing operator of the exchange option, we first recall the European

exchange option (EEO) pricing problems [55]. According to the definition of the

exchange option, the final payoff of an EEO is given by

V (S1, S2, T ) = max(S1 − S2, 0), (4.1)

where V (S1, S2, t) denotes the value of EEO at the time t ≤ T . As the suggestion of

Margrabe [55], the value of EEO satisfies the linear homogeneous property in S1 and
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S2, that is

V (λS1, λS2, t) = λV (S1, S2, t).

We apply Euler theorem to the function V (S1, S2, t) and obtain the following equation:

V − S1
∂V

∂S1

− S2
∂V

∂S2

= 0. (4.2)

This means that a portfolio of holding ∂V
∂Si

units of asset i, i = 1, 2, becomes a

replication of EEO.

By applying Itô Lemma to (4.2) and considering the instantaneous return with

the dividend rate of both assets, we obtain the following pricing equation

Vt + LBSV = 0, t < T, (4.3)

where the operator LBS is defined as

LBSV =
1

2
σ2

1S
2
1VS1S1 + ρσ1σ2S1S2VS1S2 +

1

2
σ2

2S
2
2VS2S2 − q1S1VS1 − q2S2VS2 .

The EEO’s price is then the solution of (4.3) with terminal condition (4.1).

For the AEO pricing problem, since this style of option can be exercised at any

time t < T , the AEO pricing problem in [7] is formulated as an FBP. Let P (S1, S2, t)

be the value of an AEO, then P (S1, S2, t) must satisfy the following inequality under

the no arbitrage condition:

P (S1, S2, t) ≥ max(S1 − S2, 0), 0 ≤ t ≤ T.

Let Xf (t) be the smallest value of S1

S2
such that

P (S1, S2, t) > max(S1 − S2, 0), 0 ≤ t ≤ T.
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Then, at any given time t, the (S1, S2)-plane can be separated into two distinct regions

as follows:

S(t) =

{
(S1, S2) ∈ R+ ×R+|S1

S2

≥ Xf (t)

}
, (4.4)

C(t) =

{
(S1, S2) ∈ R+ ×R+|S1

S2

< Xf (t)

}
, (4.5)

where R+ denotes the set of nonnegative real numbers. The regions S and C are

called the early exercise region and the holding region, and the ratio Xf (t) is called

the optimal exercise ratio.

According to the argument of no arbitrage, we need the following two conditions

P (S1, S2, t) = S1 − S2,
∂P

∂S1

(S1, S2, t) = 1 and
∂P

∂S2

(S1, S2, t) = −1 (4.6)

when S1

S2
= Xf (t). Condition (4.6) is commonly called the high contact conditions,

so named because (4.6) indicates that P (S1, S2, t),
∂P
∂S1

(S1, S2, t) and ∂P
∂S2

(S1, S2, t) are

continuous across the optimal exercise boundary. Thus, the value P (S1, S2, t) of an

AEO together with the optimal exercise ratio X(t) are the solution of the following

FBP.

LP = 0, (S1, S2) ∈ C(t), 0 < t < T, (4.7)

P (S1, S2, T ) = (S1 − S2)
+, t = T (4.8)

P (S1, S2, t) = S1 − S2, (S1, S2) ∈ ∂C(t), 0 < t < T, (4.9)

P (0, S2, t) = 0, 0 < S2 < ∞, 0 < t < T, (A) (4.10)

P (S1, 0, t) = S1, 0 < S1 < ∞, 0 < t < T, (4.11)

PS1(S1, S2, t) = 1, (S1, S2) ∈ ∂C(t) 0 < t < T, (4.12)

PS2(S1, S2, t) = −1, (S1, S2) ∈ ∂C(t) 0 < t < T. (4.13)
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Here, ∂C(t) denotes the boundary of C(t).

4.2 Properties of the Free Boundary

Let Q = (0,∞)×(0,∞) and Ω = {(S1, S2) ∈ Q|q1S1−q2S2 > 0, S1 > S2}, then Ω

is an open subset of Q such that Lψ(S1, S2) > 0 for (S1, S2) ∈ Ω and Lψ(S1, S2) < 0

for (S1, S2) ∈ Q − Ω, where ψ(S1, S2) = max{S1 − S2, 0}. In the following theorem,

we will provide the properties of problem A.

Let τ = T − t be the remaining time.

Theorem 4.1. Let {P, X} be the solution of problem A. Then

(a) C(0) = Ω.

(b) P (S1, S2, τ) is an increasing function of τ .

(c) {C(τ)}T
τ=0 is a strictly increasing sequence, that C(τ1) ⊂ C(τ2) for τ1 < τ2.

Proof. For (a), we first suppose that there exists an (S1, S2) ∈ C(0)− Ω such that

lim
τ→0

∂P

∂τ
(S1, S2, τ) = lim

τ→0
LP (S1, S2, τ) = Lψ(x) < 0.

This contradicts to (4.12). Now, we suppose that C(0) ⊂ Ω. Then there exists a τ1

such that C(τ) ⊂ Ω for 0 ≤ τ ≤ τ1. Let D = {(S1, S2, τ)|(S1, S2) ∈ C(τ), 0 < τ < τ1}

and define v = P − ψ. Then

vτ − L0v = Lψ > 0 for (S1, S2, τ) ∈ D.
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We apply boundary point form maximum principle to this equation. Since v(S1, S2, τ) ≥

0 for (S1, S2, τ) ∈ D and v(S1, S2, τ) = 0 for (S1, S2) ∈ ∂C(τ), 0 < τ < τ1, it shows

that vS1(S1, S2, τ) < 0. This contradicts to (4.12). So we have shown that C(0) ≡ Ω.

For (b), we observe (4.9) and obtain

PS2(S1, X(τ)S1, τ)S1X
′(τ) + Pτ (S1, X(τ)S1, τ) = −S1X

′(τ).

This implies that Pτ (S1, X(τ)S1, τ) = 0 for 0 < S1 < ∞, 0 < τ ≤ T by (4.12). We

also have Pτ (S1, S2, 0) = LP (S1, S2, 0) = Lψ(S1, S2) > 0 on C(0) and Pτ (0, S2, τ) =

limS2→∞ Pτ (S1, S2, τ) = 0. The final equation is obtained by

lim
h→0

P (0, S2, τ + h)− P (0, S2, τ)

h
= 0

lim
h→0

( lim
S2→∞

P (0, S2, τ + h)− P (0, S2, τ)

h
) = 0.

since P (0, S2, τ) = limS2→∞ P (S1, S2, τ) = 0. Since Pτ − L0P = 0 in C =
⋃T

τ=0 C(τ)

and the coefficients of L0 do not depend on τ , we have

(Pτ )τ − LPτ = 0 on C.

We apply maximum principle to this equation. This shows that Pτ (S1, S2, τ) ≥ 0 on

C.

For (c), let (S1, S2) ∈ C(τ1). Then

P (S1, S2, τ2) ≥ P (S1, S2, τ1) > ψ(S1, S2), for τ2 > τ1.

This implies that (S1, S2) ∈ C(τ2). So we obtain that C(τ1) ⊆ C(τ2).

We now suppose that there exist τ1 and τ2 such that

∂C(τ1) ∩ ∂C(τ2) 6= ∅,
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say (S∗1 , S
∗
2) ∈ ∂C(τ1) ∩ ∂C(τ2). This implies that for any τ ∈ (τ1, τ2) we have

(S∗1 , S
∗
2) ∈ ∂C(τ). Let D = {(S1, S2, τ)|Pτ − LP = 0, τ1 < τ < τ2} and w = ψ − P .

Since D ⊂ C, we have wτ − Lw = −Lψ > 0 in D by (4.7). We apply boundary

point form of maximum principle to this equation. Since w(S∗1 , S
∗
2 , τ) = ψ(S∗1 , S

∗
2)−

P (S∗1 , S
∗
2 , τ) = 0, we have wS1 < 0. This implies that PS1(S

∗
1 , S

∗
2 , τ) > ψS1(S

∗
1 , S

∗
2) = 1

which contradicts to (4.12). So there exists no such point (S∗1 , S
∗
2) ∈ ∂C(τ1)∩ ∂C(τ2)

for any τ1 and τ2. Thus, we have {C(τ)}T
τ=0 is a strictly increasing sequence of τ .

Consequently, we have the following corollary.

Corollary 4.2. Let {P, X} be a solution of problem A. Then X(t) is a strictly de-

creasing function with X(T ) = max{1, q1/q2}.

4.3 The Integral Equation

Before discussing the solution of the AEO in the next section, we first derive an

integral equation by defining new variables yi = −1
σi

(qi +
1
2
σ2

i )τ + 1
σi

ln(Si), i = 1, 2 and

τ = T − t. Let p(y1, y2, τ) = P (S1, S2, t) and xf (τ) = Xf (t), then the original pricing

problem (4.7)-(4.9) can be written in the following dimensionless form:

∂p

∂τ
= Lp, in 0 < τ < T, y1 − σ2

σ1

y2 ≤ xf (τ), (4.14)

p(y1, y2, 0) = (eσ1y1 − eσ2y2)+, at τ = 0, (4.15)

p(y1, y2, τ) = e(q1+ 1
2
σ2
1)τ+σ1y1 − e(q2+ 1

2
σ2
2)τ+σ2y2 , at y1 − σ2

σ1

y2 = xf (τ), (4.16)

where L is the operator given as

L =
1

2

(
∂2

∂y2
1

+ 2ρ
∂2

∂y1∂y2

+
∂2

∂y2
2

)
.
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Under this transformation, the relation between Xf (t) and xf (τ) is defined as

xf (τ) =
1

σ1

(
ln(Xf (T − τ)) + (q2 +

1

2
σ2

2 − q1 − 1

2
σ2

1)τ

)
. (4.17)

By imposing (4.16) into (4.14), the problem (4.14)-(4.16) can be converted into a

non-homogeneous equation as follows:

pτ − Lp =





0, if y1 − σ2

σ1
y2 ≤ xf (τ),

q1e
(q1+ 1

2
σ2
1)τ+σ1y1 − q2e

(q2+ 1
2
σ2
2)τ+σ2y2 , if y1 − σ2

σ1
y2 ≥ xf (τ).

(4.18)

Before solving the FBP of (4.7)-(4.9), we shall find out the representation of xf (t).

Theorem 4.3. The optimal exercise ratio xf (t) satisfies the following integral equa-

tion:

e(q1+ 1
2
σ2
1)τ+σ1xf (τ) − e(q2+ 1

2
σ2
2)τ = eσ1xf (τ)+ 1

2
σ2
1τN(

ā1

σ
)− e

1
2
σ2
2τN(

ā2

σ
)

+eσ1xf (τ)+ 1
2
σ2
1τ

∫ τ

0

q1e
q1sN(

ā3

σ
)ds

−e
1
2
σ2
2τ

∫ τ

0

q2e
q2sN(

ā4

σ
)ds,

(4.19)

where

ā1 = 1√
τ
(σ1xf (τ) + (σ2

1 − ρσ1σ2)τ),

ā2 = 1√
τ
(σ1xf (τ) + (ρσ1σ2 − σ2

2)τ),

ā3 = 1√
τ−s

(σ1(xf (τ)− xf (s)) + (σ2
1 − ρσ1σ2)(τ − s)),

ā4 = 1√
τ−s

(σ1(xf (τ)− xf (s)) + (ρσ1σ2 − σ2
2)(τ − s)),

and N is the cumulative distribution function of a standard normal random variable

N(0, 1).

In order to prove the theorem, we need the following two lemma:
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Lemma 4.4. [42] The Green’s function φ(x, y, τ) for (4.18) is given by

φ(y1, y2, τ ; ξ1, ξ2, s)

= 1
2π(τ−s)

1√
1−ρ2

exp(− (y1−ξ1)2−2ρ(y1−ξ1)(y2−ξ2)+(y2−ξ2)2

2(1−ρ2)(τ−s)
).

Lemma 4.5. Let

ϕ(u1, u2) =
1

2π

1√
1− ρ2

exp(−u2
1 − 2ρu1u2 + u2

2

2(1− ρ2)
)

be the probability density function of the standard bivariate normal distribution with

covariant correlation ρ. Then, we have

∫ ∞

−∞

∫ a+
σ1
σ2

u2

−∞
ϕ(u1, u2)du1du2 =

∫ σ1
σ

a

−∞

1√
2π

e−
v2

2 dv = N
(σ1

σ
a
)

,

for any real number a.

Proof.

∫ ∞

−∞

∫ a+
σ2u2

σ1

−∞

1

2π
√

1− ρ2
ϕ(u1, u2)du1du2

=

∫ a

−∞

∫ ∞

−∞

1

2π
√

1− ρ2
e−

σ2
1v2

1
2σ2 e

− σ2

2σ2
1(1−ρ2)

(v2+
σ1σ2−σ1ρ

σ2 v1)
2

dv2dv1

=

∫ a

−∞

1√
2π

e−
(σ1v1)2

2σ2
σ1

σ

∫ ∞

−∞

1√
2π

e−
w2

2 dwdv1

=

∫ aσ1
σ

−∞

1√
2π

e−
v2

2 dv = N(
aσ1

σ
)

where v1 = u1 − σ2

σ1
u2, v2 = u2, and w =

σ(v2+
σ1σ2−σ1ρ

σ
v1)

σ1

√
1−ρ2

.

Proof of Theorem 4.3 We apply Green’s function to p(x, y, τ) as well as the fact

that φ is in a domain bounded by the optimal exercise boundary and the line τ = 0
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obtaining that

p(y1, y2, τ) =

∫ ∞

−∞

∫ ∞

σ2
σ1

ξ1

(eσ1ξ1 − eσ2ξ2)φ(y1, y2, τ ; ξ1, ξ2, 0)dξ1dξ2

+

∫ τ

0

∫ ∞

−∞

∫ ∞

σ2
σ1

ξ1+xf (s)

(q1e
σ1ξ1 − q2e

σ2ξ2)φ(y1, y2, τ ; ξ1, ξ2, s)dξ1dξ2ds

(4.20)

We separate (4.20) into the following four integrals:

p(y1, y2, τ) =

∫ ∞

−∞

∫ ∞

σ2
σ1

ξ1

eσ1ξ1φ(y1, y2, τ ; ξ1, ξ2, 0)dξ1dξ2

−
∫ ∞

−∞

∫ ∞

σ2
σ1

ξ1

eσ2ξ2φ(y1, y2, τ ; ξ1, ξ2, 0)dξ1dξ2

+

∫ τ

0

∫ ∞

−∞

∫ ∞

σ2
σ1

ξ1+xf (s)

q1e
σ1ξ1φ(y1, y2, τ ; ξ1, ξ2, s)dξ1dξ2ds

−
∫ τ

0

∫ ∞

−∞

∫ ∞

σ2
σ1

ξ1+xf (s)

q2e
σ2ξ2φ(y1, y2, τ ; ξ1, ξ2, s)dξ1dξ2ds

= I(1)(y1, y2, τ)− I(2)(y1, y2, τ) + I(3)(y1, y2, τ)− I(4)(y1, y2, τ).

(4.21)

In order to rewrite the integrals I(1)-I(4), we let
√

τu1 − σ1τ = y1 − ξ1 and
√

τu2 −

ρσ1τ = y2 − ξ2 in I(1),
√

τu1 − ρσ2τ = y1 − ξ1 and
√

τu2 − σ2τ = y2 − ξ2 in I(2),

√
τ − su1 − σ1(τ − s) = y1 − ξ1 and

√
τ − su2 − ρσ1(τ − s) = y2 − ξ2 in I(3) and

√
τ − su1 − ρσ2(τ − s) = y1 − ξ1 and

√
τ − su2 − σ2(τ − s) = y2 − ξ2 in I(4), and then

the integrals I(1)-I(4) can be written as the following equations:

I(1) = e(σ1y1+ 1
2
σ2
1τ)

∫ ∞

−∞

∫ a1(y1,y2,τ)+bu2

−∞
ϕ(u1, u2)du1du2,

I(2) = e(σ2y2+ 1
2
σ2
2τ)

∫ ∞

−∞

∫ a2(y1,y2,τ)+bu2

−∞
ϕ(u1, u2)du1du2, (4.22)

I(3) = e(σ1y1+ 1
2
σ2
1τ)

∫ τ

0

q1e
q1s

∫ ∞

−∞

∫ a3(y1,y2,τ,xf (τ))+bu2

−∞
ϕ(u1, u2)du1du2ds,

I(4) = e(σ2y2+ 1
2
σ2
2τ)

∫ τ

0

q2e
q2s

∫ ∞

−∞

∫ a4(y1,y2,τ,xf (τ))+bu2

−∞
ϕ(u1, u2)du1du2ds,
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where

a1(y1, y2, τ) =
1√
τ
(y1 − σ2

σ1

y2 + (σ1 − ρσ2)τ),

a2(y1, y2, τ) =
1√
τ
(y1 − σ2

σ1

y2 + (ρσ2 − σ2
2

σ1

)τ),

a3(y1, y2, τ, s, xf (s)) =
1√

τ − s
(y1 − σ2

σ1

y2 + (σ1 − ρσ2)(τ − s)− xf (s)),

a4(y1, y2, τ, s, xf (s)) =
1√

τ − s
(y1 − σ2

σ1

y2 + (ρσ2 − σ2
2

σ1

)(τ − s)− xf (s)),

b =
σ2

σ1

.

Here, ϕ(u1, u2) is a probability density function of the bivariate standard normal

distribution with correlation correlation ρ. By using Lemma 4.5, we get

∫ ∞

−∞

∫ ai+bu2

−∞
ϕ(u1, u2)du1du2 = N(

σ1ai

σ
), i = 1, 2, 3, 4.

Hence from (4.22), we have

I(1) = e(σ1y1+ 1
2
σ2
1τ)N

(
σ1a1(y1, y2, τ)

σ

)
,

I(2) = e(σ2y2+ 1
2
σ2
2τ)N

(
σ1a2(y1, y2, τ)

σ

)
, (4.23)

I(3) = e(σ1y1+ 1
2
σ2
1τ)

∫ τ

0

q1e
q1sN

(
σ1a3(y1, y2, τ, s, xf (s))

σ

)
ds,

I(4) = e(σ2y2+ 1
2
σ2
2τ)

∫ τ

0

q2e
q2sN

(
σ1a4(y1, y2, τ, s, xf (s))

σ

)
ds.

If the value of S1

S2
reaches the optimal exercise ratio at the first time, that is

S1

S2
= Xf (T − τ) or σ1y1 − σ2y2 = σ1xf (τ), it is optimal to exercise the AEO. By

(4.16), (4.21) and (4.23), we get (4.19).

After replacing xf (τ) by Xf (τ), Theorem 4.3 can be rewritten in the following

form:
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Theorem 4.6. The optimal exercise ratio Xf (t) satisfies the following integral equa-

tion:

Xf (T − τ)− 1 = Xf (T − τ)e−q1τN(â1)− e−q2τN(â2)

+Xf (T − τ)e−q1τ

∫ τ

0

q1e
q1sN(â3)ds

−e−q2τ

∫ τ

0

q2e
q2sN(â4)ds,

(4.24)

where

â1 = 1
σ
√

τ
(ln Xf (T − τ) + 1

2
(σ2 − 2q1 + 2q2)τ),

â2 = 1
σ
√

τ
(ln Xf (T − τ)− 1

2
(σ2 + 2q1 − 2q2)τ),

â3 = 1
σ
√

τ−s
(ln

Xf (T−τ)

Xf (T−s)
+ 1

2
(σ2 − 2q1 + 2q2)(τ − s)),

â4 = 1
σ
√

τ−s
(ln

Xf (T−τ)

Xf (T−s)
− 1

2
(σ2 + 2q1 − 2q2)(τ − s)),

σ2 = σ2
1 + σ2

2 − 2ρσ1σ2.

4.4 An Asymptotic Solution of Finite-Lived AEO

The explicit solution of (4.24) is not easy to obtain when the expiration date T is

finite. In this section we will apply the properties of the complementary error function

to provide an asymptotic solution for (4.24).

Let erfc(x) denotes the complementary error function, i.e.

erfc(x) =
2√
π

∫ ∞

x

e−t2dt.

The relation between error function and normal distribution function is

N(x) = 1− 1

2
erfc(

x√
2
). (4.25)

By using the Taylor expansion and integration by parts, the complementary error
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function is asymptotic to

erfc(x) =
e−x2

√
πx

(1− 1

2x2
+− · · · ) ∼ e−x2

√
πx

, as x →∞. (4.26)

In this section, we will replace N(x) in terms of erfc( x√
2
) and provide an asymptotic

solution for the optimal exercise ratio X(T − τ) as the remaining time near to zero.

Before deriving the asymptotic expression of X(T −τ), we introduce the following

lemma which has been provided in [18].

Lemma 4.7. Let B(z, τ) be a monotone decreasing function of z on [0, 1]. Suppose

that there is a z0 ∈ [0, 1] such that B(z0, τ) = 0 for all τ and that B2(z, τ) → ∞

for all z 6= z0 as τ → 0. Then, as τ is near to 0, we have following two asymptotic

formulas:

∫ 1

0

A(z)e−B2(z)dz ∼ A(z0)

√
π

|Bz(z0)| , (4.27)

1√
π

∫ 1

0

B−1e−B2

dz ∼ − Bzz(z0)

2|Bz(z0)|3 . (4.28)

Proof. Since B2(z, τ) → ∞ for all z 6= z0 as τ → 0 and B2(z0, τ) = 0 for all τ then

e−B2(z,τ) → 0 for all z 6= z0 as τ → 0 and e−B2(z0,τ) = 1 for all τ . This implies that the

neighborhood of z0 provides the main contribution to the value of the Laplace integral

as τ is near to 0. Thus, we expand B2(z, τ) at z = z0 by using Taylor expansion and

obtain that

B2(z, τ) = B2(z0, τ) + 2B(z0, τ)Bz(z0, τ)(z − z0) + B2
z (z0, τ)(z − z0)

2 + · · ·

∼ B2
z (z0, τ)(z − z0)

2

since B(z0, τ) = 0. And then, we use this expansion formula in the exponent. As τ
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is near to 0, the Laplace integral will approximate to the following Gaussian integral

∫ 1

0

A(z)e−B2(z,τ) ∼ A(z0)

∫ 1

0

e−B2
z(z0,τ)(z−z0)2dz.

Now, we rewrite the above Gaussion integral by its asymptotic formula and obtain

that

A(z0)

∫ 1

0

e−B2
z(z0,τ)(z−z0)2dz ∼ A(z0)

√
π

|Bz(z0, τ)| .

Since B(z0) = 0 then B−1 → ∞ as z → z0. The above result can not be applied

when A(z) = B−1(z, τ). Now, we rewrite B−1(z, τ) as follows:

B−1 = B−1 − [Bz(z0, τ)(z − z0)]
−1 + [Bz(z0, τ)(z − z0)]

−1

=
Bz(z0)(z − z0)−B(z)

B(z)Bz(z0)(z − z0)
+ [Bz(z0)(z − z0)]

−1

∼ −Bzz(z0, τ)

2B2
z (z0)

+ [Bz(z0)(z − z0)]
−1

Here, the final term of above equation is obtain by applying Tayor expansion to B(z)

at z = z0. Now, we use this asymptotic formula to substitute B−1 and obtain the

following formula

1√
π

∫ 1

0

B−1e−B2

dz ∼ 1√
π

∫ 1

0

(
−Bzz(z0, τ)

2B2
z (z0)

+ [Bz(z0)(z − z0)]
−1

)
e−B2

z(z0)(z−z0)2dz

∼ − Bzz(z0)

2|Bz(z0)|3 .

We now begin to derive the asymptotic expression of X(T − τ) as τ is near to 0.

Theorem 4.8. The asymptotic solution of (4.24), when τ is close to zero, is as

follows:
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1. For q1 > q2,

X(T − τ) ∼ (1 +
σ2τ( q1

q1−q2
) + d

1 + σ2τ( q1

q1−q2
)2

)e(q1−q2)τ , (4.29)

where d =
√

σ4τ 2( q1

q1−q2
)2 − 2σ2τ log[ (q1−q2)π

√
2τ

σ2 ](1 + σ2τ( q1

q1−q2
)2).

2. For q1 = q2,

X(T − τ) ∼ e−[−2σ2τ log(
√

2πτσ−2q1)]
1/2

. (4.30)

Proof. By defining Y (T − τ) = X(T − τ)e(q2−q1)τ , (4.24) can be converted as follows:

Y (T − τ)eq1τ − eq2τ = Y (T − τ)N(
ã1(τ)

σ
)−N(

ã2(τ)

σ
)

+Y (T − τ)

∫ τ

0

q1e
q1sN(

ã3(τ, s)

σ
)ds

−
∫ τ

0

q2e
q2sN(

ã4(τ, s)

σ
)ds,

(4.31)

where

ã1(τ) = log Y (T−τ)√
τ

+ 1
2
σ2
√

τ = ã2(τ) + σ2
√

τ ,

ã3(τ, s) =
log

Y (T−τ)
Y (T−s)√
τ−s

+ 1
2
σ2
√

τ − s = ã4(τ, s) + σ2
√

τ − s.

By applying (4.25), we express (4.31) in terms of the complementary error function

as follows:

Y (T − τ)erfc( 1√
2
( log Y (T−τ)

σ
√

τ
+ 1

2
σ
√

τ))− erfc( 1√
2
( log Y (T−τ)

σ
√

τ
− 1

2
σ
√

τ))

= lim
y→Y (T−τ)

{y
∫ τ

0

q1e
q1serfc(

1√
2
(
log y

Y (T−s)

σ
√

τ − s
+

1

2
σ
√

τ − s))ds

−
∫ τ

0

q2e
q2serfc(

1√
2
(
log y

Y (T−s)

σ
√

τ − s
− 1

2
σ
√

τ − s))ds}.

(4.32)

As τ near to zero, since X(T − τ) > X(T ) ≥ 1 and Y (T − τ) = X(T − τ)e(q2−q1)τ

then 1√
2
( log Y (T−τ)

σ
√

τ
± 1

2
σ
√

τ) = 1√
2
( log X(T−τ)

σ
√

τ
± 1

2
(σ + q2−q1

σ
)
√

τ) tends to infinity Thus,

component of LHS of (4.32), erfc( 1√
2
( log Y (T−τ)

σ
√

τ
± 1

2
σ
√

τ)), has the following asymptotic



Chapter 4: American Exchange Option Pricing Problems 54

form:

erfc(
1√
2
(
log Y (T − τ)

σ
√

τ
± 1

2
σ
√

τ))

∼ 1√
π

1
log Y (T−τ)

σ
√

τ
± 1

2

√
σ2τ

e
− 1

2
(
log Y (T−τ)

σ
√

τ
± 1

2
σ
√

τ)2
,

(4.33)

as τ → 0. By applying the integral mean value theorem, the integrand of RHS of

(4.32) can be rewritten as

erfc(
1√
2
(
log y

Y (T−s)

σ
√

τ − s
± 1

2
σ
√

τ − s))

= erfc(
1√
2
(
log y

Y (T−s)

σ
√

τ − s
))∓ 2√

π

∫ 1√
2
(
log

y
Y (T−s)

σ
√

τ−s
± 1

2
σ
√

τ−s)

1√
2
(
log

y
Y (T−s)

σ
√

τ−s
)

e−η2

dη

= erfc(
1√
2
(
log y

Y (T−s)

σ
√

τ − s
))∓ 1√

π
σ
√

τ − se−c2 ,

where c lies between 1√
2
(

log y
Y (T−s)

σ
√

τ−s
) and 1√

2
(

log y
Y (T−s)

σ
√

τ−s
± 1

2
σ
√

τ − s). By setting s = τz,

and considering τ near to zero, we have c ∼ 1√
2
(

log y
Y (T−s)

σ
√

τ−s
) and eqiτ ∼ 1, i = 1, 2. Then

the RHS of (4.32) has the following asymptotic form

lim
y→Y (T−τ)

{(q1y − q2)τ

∫ 1

0

erfc(
1√
2

log y
Y (T−τz)√

σ2τ(1− z)
)dz

−(q1y − q2)
σ2τ

3
2√

π

∫ 1

0

√
1− ze

− log2 y
Y (T−τz)

2σ2τ(1−z) dz}.

Therefore, we derive the following asymptotic equation of (4.32):

√
2

π

σ2τ
3
2

log2 Y (T − τ)
e
− 1

2
(
log Y (T−τ)√

σ2τ
− 1

2

√
σ2τ)2

∼ lim
y→Y (T−τ)

{(q1y − q2)τ

∫ 1

0

erfc(
1√
2

log y
Y (T−τz)√

σ2τ(1− z)
)dz

−(q1y − q2)σ
2τ

3
2

∫ 1

0

√
1− z

π
e
− log2 y

Y (T−τz)

2σ2τ(1−z) dz}.

(4.34)

Note that

Y (T ) = max(1,
q2

q1

).
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Now we consider the case of q1 ≥ q2 and let

α(τ) =
− log Y (T − τ)√

τ
, for q1 ≥ q2,

and then (4.34) can be converted as follows:

σ2τ 3/2

τα2(τ)
e−

τα2(τ)

2σ2τ

∼ limy→Y (T−τ)

√
π

2

(
q1e

−√τα(τ) − q2

)
τ

∫ 1

0

erfc (B(z, α(zτ), y)) dz

−
(
q1e

−√τα(τ) − q2

) σ2τ 3/2

√
2

∫ 1

0

√
1− ze−B2(z,α(zτ),y)dz,

(4.35)

where

B(z, α(τz), y) =

√
zα(τz)− log

q2
q1y√
τ

σ
√

2(1− z)
.

By applying the definition of α(τ) and take the limit under the integral, we have

B(z, α(τz), α(τ)) =

√
zα(τz)− α(τ)

σ
√

2(1− z)
.

For convenient we denote B(z, τ, y) as B(z). Since Y (T−τz) is a monotone increasing

function of z, then there is an unique number z0 such that

Y (T − τz0) = y

and Y (T − τz0) < y for z < z0 and Y (T − τz) > y for z > z0. This implies that

B(z, τ, y) → ∞ for all z in [0, z0) and B(z, τ, y) → −∞ for all z in (z0, 1], as τ → 0.

Thus, we replace erfc(B(z)) by using (4.26) for B(z, τ) → ±∞ when τ is small. Then

the first integral of (4.35) can be rewritten as the following asymptotic formula :

∫ 1

0

erfc(B(z))dz ∼ 1√
π

∫ z0(x)

0

B−1(z)e−B2(z)dz +

∫ 1

z0(x)

(2 + B−1(z)
e−B2(z)

√
π

)dz

= 2[1− z0] +
1√
π

∫ 1

0

B−1(z)e−B2(z)dz.
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In order to find out the asymptotic solution of (4.35), we consider that y ap-

proaches to Y (T − τ) and sets z0 = 1. The remainder is to evaluate the following two

integrals

1√
π

∫ 1

0

B−1(z)e−B2(z)dz and

∫ 1

0

√
1− ze−B2(z)dz.

Since B(z0, τ) = 0 for all τ and, for z 6= z0, B2(z, τ) →∞ as τ → 0 then

1√
π

∫ 1

0

B−1(z)e−B2(z)dz ∼ − Bzz(z0)

2|Bz(z0)|3 , (4.36)

∫ 1

0

√
1− ze−B2(z)dz ∼ √

1− z0

√
π

|Bz(z0)| , (4.37)

by using lemma 4.7.

The limit of the first integral in (4.35) is asymptotic to the RHS of (4.36). We see

that this asymptotic expression is

∫ 1

0

erfcB(z)dz ∼ 2
√

π

α2(τ)
(4.38)

as z0 → 1. By applying (4.37), the second integral of (4.35) tends to zero as z0 → 1.

So we obtain the following equation:

e−
α2(τ)

2σ2 ∼
√

2τπ

σ2

(
q1e

−√τα(τ) − q2

)
. (4.39)

Since Y (T − τ) = e−
√

τα(τ), (4.39) can be rewritten as

e−
log2 Y (T−τ)

2σ2τ ∼
√

2τπ

σ2
(q1Y (T − τ)− q2). (4.40)

Let Y (T − τ) = 1 + y(τ), then (4.40) can be rewritten as

e−
log2(1+y(τ))

2σ2τ ∼
√

2τπ

σ2
(q1y(τ) + q1 − q2).
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And then, we have

− log2(1 + y(τ))

2σ2τ
∼ log[

(q1 − q2)π
√

2τ

σ2
] + log(

q1

q1 − q2

y(τ) + 1).

Multiplying above equation by 2σ2τ and expanding log2(1+y(τ)) and log( q1

q1−q2
y(τ)+

1) at 1, we obtain that

−y2(τ) ∼ 2σ2τ log[
(q1 − q2)π

√
2τ

σ2
] + 2σ2τ(

q1

q1 − q2

y(τ) +
q2
1

2(q1 − q2)2
y2(τ)).

This implies that

[1 + σ2τ
q2
1

(q1 − q2)2
]y2(τ) + 2σ2τ(

q1

q1 − q2

)y(τ) + 2σ2τ log[
(q1 − q2)π

√
2τ

σ2
] = 0,

and that the solution of this quadratic equation is

y(τ) =
σ2τ( q1

q1−q2
) + d

1 + σ2τ( q1

q1−q2
)2

,

where

d =

√
σ4τ 2(

q1

q1 − q2

)2 − 2σ2τ log[
(q1 − q2)π

√
2τ

σ2
](1 + σ2τ(

q1

q1 − q2

)2).

Here, we select positive term to make sure y(τ) ≥ 0. So, we have

Y (T − τ) = 1 +
σ2τ( q1

q1−q2
) + d

1 + σ2τ( q1

q1−q2
)2

,

and

X(T − τ) = (1 +
σ2τ( q1

q1−q2
) + d

1 + σ2τ( q1

q1−q2
)2

)e(q1−q2)τ .

However, the above approximation can not be applied to the case q1 = q2. We use

first order approximation to q1e
−√τα(τ) − q2 and obtain

q1e
−√τα(τ) − q1 ∼ −q1

√
τα(τ), as τ → 0.
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Now, (4.39) can be rewritten as follows:

e−
α2(τ)

2σ2 ∼ −
√

2πτσ−2q1α(τ).

Beginning the iteration scheme from the initial value α0 = 0, we obtain that

α(τ) ∼
[
−2σ2 log

(√
2πτσ−2q1

)]1/2

.

Then

Y (T − τ) ∼ e−[−2σ2τ log(
√

2πτσ−2q1)]
1/2

,

and

X(T − τ) ∼ e−[−2σ2τ log(
√

2πτσ−2q1)]
1/2

.

Finally, we convert (4.21) in terms of S1, S2 and Xf (T − τ) as follows:

P (S1, S2, τ) = S1e
−q1τN(

a1

σ
)− S2e

−q2τN(
a2

σ
)

+q1S1e
−q1τ

∫ τ

0

eq1sN(
a3

σ
)ds− q2S2e

−q2τ

∫ τ

0

N(
a4

σ
)ds,

(4.41)

where

a1 = 1√
τ

(
ln(S1

S2
) + δ1τ

)
,

a2 = 1√
τ

(
ln(S1

S2
)− δ2τ

)
,

a3 = 1√
τ−s

(
ln( S1

S2Xf (τ−s)
) + δ1(τ − s)

)
,

a4 = 1√
τ−s

(
ln( S1

S2Xf (τ−s)
)− δ2(τ − s)

)
.

4.5 The Exact Solution of the Perpetual AEO

A perpetual option is an option which does not have an expiry date but rather

an infinite time horizon. Namely, the expiry date T for a perpetual option is equal
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to infinity at the initial. The optimal exercise ratio for the perpetual AEO in (4.24)

is a time-invariant constant [36], denoted as Xf (∞). Since τ is any point in (0, T )

and 0 < s < τ , Xf (T − τ) and Xf (T − s) in (4.24) are both replaced by Xf (∞).

Therefore, the optimal exercise ratio Xf (∞) satisfies the following equation

Xf (∞)− 1 = Xf (∞)e−q1τN(â1)− e−q2τN(â2)

+Xf (∞)e−q1τ

∫ τ

0

q1e
q1sN(â3)ds− e−q2τ

∫ τ

0

q2e
q2sN(â4)ds,

(4.42)

where

â1 =
ln Xf (∞) + δ1τ

σ
√

τ
, â2 =

ln Xf (∞)− δ2τ

σ
√

τ
,

â3 =
δ1

σ

√
τ − s, â4 =

−δ2

σ

√
τ − s,

δ1 =
1

2
(σ2 − 2q1 + 2q2), δ2 =

1

2
(σ2 + 2q1 − 2q2).

Theorem 4.9. The value of the optimal exercise ratio Xf (∞) is

Xf (∞) =

(
1 +

√
δ2
2

δ2
2+2q2σ2

)

(
1−

√
δ2
1

δ2
1+2q1σ2

) . (4.43)

Proof. Let u = τ − s, then â3 = δ1
σ

√
u. Using integration by parts to the third term

on the RHS of (4.42), we obtain

∫ τ

0

q1e
q1(τ−u)N

(
δ1

σ

√
u

)
du

= −N(
δ1

σ

√
τ) +

1

2
eq1τ +

1

2
eq1τ δ1

σ

∫ τ

0

1√
2πu

e
−(q1+(

δ1√
2σ

)2)u
du.

(4.44)

Applying the same argument to the forth term in (4.42), we also obtain

∫ τ

0

q2e
q2(τ−u)N

(
−δ2

σ

√
u

)
du

= −N(−δ2

σ

√
τ) +

1

2
eq2τ − 1

2
eq2τ δ2

σ

∫ τ

0

1√
2πu

e
−(q2+(

δ2√
2σ

)2)u
du.

(4.45)
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Substituting (4.44)-(4.45) into (4.42), and letting the remaining time τ tend to infinity,

since the terms e−q1τN
(

δ1
√

τ
σ

)
and e−q2τN

(
−δ2

√
τ

σ

)
both tend to zero, then we get

the following equation

(
1

2
− δ1

2σ

∫ ∞

0

1√
2πu

e−(
δ21
2σ2 +q1)udu

)
Xf (∞)

=

(
1

2
+

δ2

2σ

∫ ∞

0

1√
2πu

e−(
δ22
2σ2 +q2)udu

)
.

(4.46)

By the well-known result

1√
2π

∫ τ

0

1√
u
e−cudu →

√
1

2c
, as τ →∞

and (4.46), we get (4.43).

Note that Xf (∞) in the above theorem is a constant when the parameters σ1, σ2,

q1, q2 and ρ are given. Substituting Xf (∞) into (4.21), the early exercise premium

for the perpetual AEO can be obtained as follows:

Theorem 4.10. The early exercise premium of the perpetual AEO is

(
S1

2

(
δ1

D1

− 1

)
e−(D1+δ1

σ2 ) +
S2

2

(
δ2

D2

+ 1

)
e−(D2−δ2

σ2 )
)(

S1

S2Xf (∞)

)
,

where Di =
√

δ2
i + 2qiσ2, i = 1, 2.

In order to prove this theorem, we need to use the moment generating function of

Inverse Gaussian distribution. This function is given as follows, see Berg [5]:

Lemma 4.11. Let X be an Inverse Gaussian random variable with mean µ and

variance µ2/ν and its probability density funciton is written as

h(x|µ, ν) =
( µν

2πx3

)1/2

e−
ν(x−µ)2

2µx
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then the moment generating function of Inverse Gaussian random variable is

E
[
etX

]
=

∫ ∞

0

etxh(x|µ, ν)dx = eν−η(t),

where η(t) =
√

ν2 − 2tµν.

Proof of Theorem 4.10. We first express (4.21) in terms of S1, S2 and Xf (T − τ)

as follows:

P (S1, S2, τ) = S1e
−q1τN(

ln(S1

S2
) + δ1τ

σ
√

τ
)− S2e

−q2τN(
ln(S1

S2
)− δ2τ

σ
√

τ
)

+q1S1e
−q1τ

∫ τ

0

eq1sN(
a3

σ
)ds− q2S2e

−q2τ

∫ τ

0

eq2sN(
a4

σ
)ds,

(4.47)

where

a3 = 1√
τ−s

(
ln( S1

S2Xf (τ−s)
) + δ1(τ − s)

)
,

a4 = 1√
τ−s

(
ln( S1

S2Xf (τ−s)
)− δ2(τ − s)

)
.

Replacing Xf (τ − s) by Xf (∞) and letting u = τ − s, the early exercise premium of

the perpetual AEO is reduced to

P (S1, S2) = S1

∫ ∞

0

q1e
−q1uN(

a3

σ
)du− S2

∫ ∞

0

q2e
−q2uN(

a4

σ
)du, (4.48)

where

a3(S1, S2) =
1√
u

(ln(
S1

S2Xf (∞)
) + δ1u),

a4(S1, S2) =
1√
u

(ln(
S1

S2Xf (∞)
)− δ2u),

when the remaining time τ tends to infinity. Here, the first two terms of RHS in (4.47)

are both converge to zero since N(x) is bounded, and e−q1τ , e−q2τ both converge to

zero.
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Applying integration by parts to the first integral of (4.48), we obtain that

q1

∫ ∞

0

e−q1uN

(
δ1u + δ1

σ
√

u

)
du

=
−A

2σ

[∫ ∞

0

e−q1u

(
1

2πu3

)1/2

e−
(δ1u+A)2

2σ2u du

]

+
δ1

2σ

[∫ ∞

0

e−q1u

(
1

2πu

)1/2

e−
(δ1u+A)2

2σ2u du

]
,

(4.49)

where A = ln
(

S1

S2Xf (∞)

)
.

Let µ1 = −A
δ1

and ν1 = −Aδ1
σ2 , then µ1ν1 = A2

σ2 . Using Lemma 4.11 to the first term

of RHS in (4.49), we obtain that

∫ ∞

0

e−q1u
( µ1ν1

2πu3

)1/2

e
−ν1

(u−µ1)2

2µ1u du = e

�
ν1−
√

ν2
1+2q1ν1µ1

�
= e

δ1+D1
σ2 A, (4.50)

where D1 =
√

δ2
1 + 2q1σ2.

By expanding (δ1u + A)2 and letting u = v2, we have

δ1

2σ

∫ ∞

0

e−q1u

(
1

2πu

)1/2

e−
(δ1u+A)2

2σ2u du =
δ1e

− δ1A

σ2

σ

∫ ∞

0

1√
2π

e−(α1v2+βv−2)dv

in (4.49), where α1 =
δ2
1

2σ2 + q1 and β = A2

2σ2 . Note that the following identity can be

obtained from the integral table:

∫ ∞

0

e−(α1v2+βv−2)dv =
1

2

√
π

α1

e−2
√

α1β

for any positive real number α1, β. Hence, we obtain

δ1

2σ

∫ ∞

0

e−q1u

(
1

2πu

)1/2

e−
(δ1u+A)2

2σ2u du =
δ1

2D1

e−
(D1+δ1)A

σ2 . (4.51)

in (4.49). By (4.49), (4.50) and (4.51), we get

∫ ∞

0

q1e
−q1uN(

a3

σ
)du =

1

2

(
δ1

D1

− 1

)
e−(D1+δ1

σ2 )
(

S1

S2Xf (∞)

)
.
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in (4.48).

The same process can also be applied to the second integral of (4.48) and we have

derived an explict pricing formula for the early exercise premium of AEO.

To demonstrate the pricing formula in Theorem 4.2, let us consider the following

example.

Example 4.12. The current price and the constant volatility of asset 1 are given as 40

and 40%. For asset 2, the current price and the constant volatility are given as 35 and

40%. The correlation coefficient between two assets is given as ρ = 10%. Consider the

following three cases: (q1, q2)=(0.1, 0.01), (0.05, 0.01) and (0.02, 0.01). From case

1 to case 3, the optimal exercise ratio are 2.1644, 3.5219, and 10.0365, respectively,

and the early exercise premium are 12.5432, 9.2213, and 3.4067, respectively.

4.6 Integral Recursive Methods

Many numerical methods have been discussed for the FBP derived from American

style options (Kim [36], Ju and Zhong [35]). We use the integral recursive (IR)

method, which was proposed by Kim [36], to calculate a numerical solution of (4.19).

In our numerical procedure, all integrals in (4.19) are approximated by the trape-

zoid rule. Let {τi}n
i=0 be a partition of [0, τ ], ∆τ ≡ τi+1 − τi = τ/n and xi denote

the numerical solution of x(τi), i = 1, 2, · · · , n. We have known that x0 = x(τ0) =

max(0, σ1 log( q2

q1
)). As i = 1, x1 is approximated by solving the following nonlinear
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algebra equation

e(q1+ 1
2
σ2
1)τ1+σ1x1 − e(q2+ 1

2
σ2
2)τ1

= eσ1x1+ 1
2
σ2
1τ1N(

a1(x1, τ1)

σ
)− e

1
2
σ2
2τ1N(

a2(x1, τ1)

σ
)

+eσ1x1+ 1
2
σ2
1τ1

∆τ

2
(q1N(

a3(x0, τ0, x0)

σ
) + q1e

q1τ1N(
a3(x1, τ1, x0)

σ
))

−e
1
2
σ2
2τ1

∆τ

2
(q2N(

a4(x0, τ0, x0)

σ
) + q2e

q2τ1N(
a4(x1, τ1, x0)

σ
)),

(4.52)

where a1(x, τ) = 1√
τ
(x+(σ2

1−ρσ1σ2)τ), a2(x, τ) = 1√
τ
(x+(ρσ1σ2−σ2

2)τ), a3(x, τ, y) =

1√
τ
(x + (σ2

1 − ρσ1σ2)τ − y), and a4(x, τ, y) = 1√
τ
(x + (ρσ1σ2 − σ2

2)τ − y). Here, x1,

which is the only unknown number in (4.52), can be obtained by using the root-finding

method.

Recursively, the general algebra equation for xi, i = 2, 3, . . . , n can be reduced by

e(q1+ 1
2
σ2
1)τi+σ1xi − e(q2+ 1

2
σ2
2)τi

= eσ1xi+
1
2
σ2
1τiN(

a1(xi, τi)

σ
)− e

1
2
σ2
2τiN(

a2(xi, τi)

σ
)

+eσ1xi+
1
2
σ2
1τi

∆τ

2
{N(

a3(x0, τ0, x0)

σ
) + 2

i−1∑
j=1

q1e
q1τjN(

a3(xj, τj, xj−1)

σ
)

+q1e
q1τiN(

a3(xi, τi, xi−1)

σ
)} − e

1
2
σ2
2τi

∆τ

2
{N(

a4(x0, τ0, x0)

σ
)

+2
i−1∑
j=1

q2e
q2τjN(

a4(xj, τj, xj−1)

σ
) + q2e

q2τiN(
a4(xi, τi, xi−1)

σ
)},

where xi, i = 1, 2, · · · , n are solved sequentially. As n large enough, the optimal

exercise ratio x(τ) can be approximated to sufficient accuracy as desired.

Now we substitute {xi}n
i=0 into (4.47). The value of AEO can be approximated
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by following equation.

pn(y1, y2, τn)

= p̄(y1, y2, τn) + eσ1y1+ 1
2
σ2
1τn

∆τ

2
(N(

a3(y1, y2, τ0, x0)

σ
)

+2
n−1∑
j=1

(q1e
q1τjN(

a3(y1, y2, τj, xj−1)

σ
)) + q1e

q1τnN(
a3(y1, y2, τn, xn)

σ
))

−eσ1y1+ 1
2
σ2
2τn

∆τ

2
(N(

a4(y1, y2, τ0, x0)

σ
) + 2

n−1∑
j=1

(q2e
q2τjN(

a4(y1, y2, τj, xj−1)

σ
))

+q2e
q2τnN(

a4(y1, y2, τn, xn)

σ
)),

where p̄(y1, y2, τ) = e(σ1y1+ 1
2
σ2
1τ)N(σ1a1(y1,y2,τ)

σ
)− e(σ2y2+ 1

2
σ2
2τ)N(σ1a2(y1,y2,τ)

σ
). And then,

we convert (pn(y1, y2, τn), x(τn)) back to (Pn(S1, S2, τn), X(τn)) and obtain the price

of AEO numerically. Obviously, the limit of Pn tends to P (S1, S2, τ) as n tends to

infinity. Here, we do not approximate (4.24) directly because of that the integral

region in (4.24) is described by the nonlinear function log S1.

4.7 Numerical Results

In this section, the numerical solution obtained from IR method is compared to our

asymptotic formula. Figure 4.1 displays the graph of the case of that σ1 = σ2 = 0.5,

q1 = 0.02, q2 = 0.01 and ρ = 0.5. Figure 4.2 displays the graph of the case of that

σ1 = σ2 = 0.5, q1 = q2 = 0.01 and ρ = 0.5. The solid curve is numerically computed

by IR method and the dash curve is computed by asymptotic formulas (4.43). These

figures show that the results from our asymptotic formula and IR method are very

close as time near to expiration date.
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Figure 4.1: The optimal exercise ratio X(τ) as a function of τ = T − t for q1 = 0.02,
q2 = 0.01 with given by (4.29)(dash curve) and recursive integration method(solid
curve)
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Figure 4.2: The optimal exercise ratio X(τ) as a function of τ = T − t for q1 = q2 =
0.01 with given by (4.30)(dash curve) and recursive integration method(solid curve)


