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CHAPTER 3 

 

CooTutor System 

 

The CooTutor (Coordinate Tutor) system proposed in this study is an adaptive Web-based 

learning environment with interactive 3D media for SGT learning. How to design architecture 

and user interface to consider both the media and method concerns will be the main issue that 

we concern in this section. 

3.1 System architecture 

Since CooTutor is developed to fit the Web, the inherent server-client architecture affects 

the design of the system. The contemporary E-Learning standard, SCORM (Sharable Content 

Object Reference Model) offers a good reference of generic Web-based Learning Environ-

ment (WBLE) architecture [1]. CooTutor’s run-time environment is shaped to meet the inte-

gration need of interactive 3D media. The proposed architecture is illustrated in Figure 3.1. 

As Figure 3.1 shows, at the client side, three main elements form the user interface of the 

learning area. The main document area presents main contents, including textual presentation 

and mathematical symbols. By embedding scripting codes in the document, we can visualize 

3D presentations (e.g. 3D models, animation scripts) in the 3D blackboard module. In Coo-

Tutor, these functionalities are implemented by using Java 3D technology and FastScript3D 

toolkits [47]. The interactivity between textual documents and 3D contents are achieved by 

the communication between these two modules. 
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All learning resources at the server side are delivered through the HTTP protocol to the 

client side. In addition, the tutor model and the student model are used to achieve adaptivity, 

established by the collaborative communication between server and client. 

3.2 User interface with Interactive 3D Media 

The graphical user interface of the system, as illustrated in Figure 3.2, consists of three 

parts: the tutor console, main document area, and the 3D blackboard. 

The tutor console takes the responsibility of client-side management including lunching 

learning materials, recording learners’ behavior (e.g., staying time, button pressed etc.), and 

further communicating with the server. The tutor console acts like a control center residing at 

the client side to assure that this media-rich environment works compactly. 
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Figure 3. 1: CooTutor system architecture. 



 19

The 3D blackboard is the module that provides 3D visualization and interactivity for learn-

ers to attain better reasoning. The term, interactive 3D media, is used to emphasize its charac-

teristics of interactivity and 3D visualization. 

It is worth noting that pure 3D representation might be not enough for learning from the 

viewpoint of multiple media representations [67]. Though most students today prefer pictorial 

material with visual effects rather than plain textual representation, we cannot ignore the po-

tential advantages of using textual and mathematical symbols in learning science contexts. In 

our system, by incorporating suitable interactivity between different media in this system, we 

can make the integration of multiple representations more meaningful and effective on learn-

ing. 

 
Figure 3. 3: Describing spatial relations with 3D navigation. 
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Figure 3. 2: User interface with 3D blackboard. 
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Two kinds of interactions are considered. One is the interaction between 3D blackboard 

and learners. Learners are allowed to navigate the scene with different modes, e.g. zoom, pan 

and rotate, to obtain a good view for better understanding of the content. The other kind of 

interaction is between textual documents and the 3D blackboard. Learners read the textual 

content in the main document area, and directly manipulate objects in 3D scenes by adopting 

interaction objects (e.g. buttons, input fields) embedded in the Web pages. The links between 

textual descriptions and 3D instantiations are made according to the needs of understanding 

particular topics. By the theory of anchored instruction [67], the main document area is used 

to provide the contexts of the topic. The interaction between the main document and the 3D 

blackboard allows learners to explore the scene and do experiments freely. This type of user 

interfaces provides an environment for learner-centered construction. 

Figure 3.3 shows how CooTutor presents spatial relations by using the 3D blackboard. 

Learners are allowed to change the viewpoint by dragging the mouse in the scene or by 

pressing default buttons (e.g., “change viewpoint to the X-Y plane”) to a better location for 

better understanding of the spatial configuration. 

3.3 Adaptivity in CooTutor 

Adaptivity is the common feature of ITSs and AEHs. In the proposed concept of intelligent 

media, the design of computerized adaptivity directly refers to the “method” concern men-

tioned in Chapter 1 that attempts to capture instructional methods and strategies originally 

possessed by human tutors. CooTutor adopts the course sequencing approach to attain adap-

tivity [12][13]. In brief, the task is to select a set of learning materials for learners according 

to the student model and learning materials’ features. Figure 3.4 shows the adaptive mecha-

nism of CooTutor. Three main levels exist: concept sequencing, material selection and cli-

ent-side tuning. 

Server-side decision making is divided into two levels. Both processes are performed by 

the tutor model as Figure 3.1 shows. First, we sequence the concepts in accordance with 

learners’ knowledge status. The objects to be sequenced at this level are not learning materials 

directly, but concepts. Therefore, this phase is also called concept sequencing. After deter-

mining what concept should be delivered, material selection proceeds. Appropriate learning 
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materials are subsequently selected to illustrate the concept. This is similar to the two levels 

of curriculum sequencing (i.e. knowledge sequencing and task sequencing) mentioned by 

Brusilovsky in [11]. 

Our approach could achieve adaptivity on both levels. Different aspects of adaptivity are 

considered in each level. For the level of concept sequencing, we account for learners’ prior 

knowledge. That is, we consider what concepts should be delivered next. For the level of ma-

terial selecting, we will take learners’ traits and preferences into account and select the kind of 

learning materials and presentation that would benefit particular learners most. 

We have described the overall view of the adaptive mechanism. In the following 

sub-sections, details behind the mechanism will be revealed. 

3.3.1 Domain modeling 

In typical procedure-based systems e.g. CAI (computer-assisted instruction), the system 

firmly specify the sequence of learning materials in general. The approach greatly lacks flexi-

bility. In contrast, model-based systems (i.e. ITS. AEH) could attain personalized learning 

with generalization. That is, different kinds of factors involved in computerized tutoring are 

grouped and modeled explicitly. A rather concise definition of “model” in intelligent systems 

was: “A model can be defined as an abstraction of reality, faithful to the reality in ways 

deemed important. [37]” For intelligent tutoring, the modeling task is largely to consider how 

to design a sensible, inspectable and computable (the most important one in the case of intel-

ligent tutoring) knowledge representation for factors involved, such as the learner, the learn-

Learning
goal

Concept 
sequencing Material selecting Fine tuningrecommendations 

server clientDomain model
(prerequisite graph)

Overlay 
model

Learning
materials

Learners’
traits

concept
sequence

Learning
goal

Concept 
sequencing Material selecting Fine tuningrecommendations 

server clientDomain model
(prerequisite graph)

Overlay 
model

Learning
materials

Learners’
traits

concept
sequence

 
Figure 3. 4: The flow of adaptivity in CooTutor. 
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ing domain and the pedagogical strategies. The knowledge representation could be of the 

form of data structure, or could be embedded as latent intentions underlying the process of 

decision making. Just as the example of procedure-based systems, each time the system 

pushes their learners to follow a specific learning flow locally based on a single test, it is 

similarly that user modeling is performed implicitly. However, for intelligent tutoring and 

adaptive systems, researchers preferred to employ explicit modeling if possible. Implicit mod-

eling are also used partially for reducing the complexity of user modeling, such as the method 

of stereotyped user modeling. Next section will describe this point further. 

 Here the first factor to be modeled is the learning domain. We employ the graph structure 

as the method of knowledge representation in this case. Then we could use algorithms or 

agent techniques to attain adaptive effects.  

The domain to be learned (i.e., the learning domain) in CooTutor is organized as a prereq-

uisite graph, a directed acyclic graph (DAG) similar to that proposed in [38]. Vertices in the 

prerequisite graph represent concepts in the domain. Edges in the graph represent the con-

junctive relations. For example, assume that we are given a prerequisite graph G=(V, E), 

where V is a set of vertices and E is a set of edges. Suppose there exists three vertices, u, v, w 

∈ V and we have (u, w) ∈ E, and (v, w) ∈ E. This indicates that both concepts u and v should 

be known (i.e. learned) before learning concept w. Note that these vertices are concepts, not 

learning materials, as usually used in other researches. When the nodes are learning material, 

disjunctive relations are usually required. However, such a model with disjunction relations is 

usually too complex and inflexible because the computational complexity of adaptivity 

increases rapidly [38]. When the domain knowledge is modeled at a more abstract level, it is 

sufficient to adopt conjunctive prerequisite graph, as used in CooTutor, to find the feasible 

concept sequence for learning targeting a specific objective. 
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Figure 3.5 demonstrates part of the domain model in CooTutor. The arcs between nodes 

specify the conjunctive prerequisite relationship. For instance, for learning the concept “ge-

neric transformation matrix”, “spatial coordinate system” and “matrix multiplication” are 

prerequisites required to be learned as the background. 

We have emphasized that nodes of the domain model represent concepts, which is the ab-

straction of underlying learning materials (or items). Hence we have to consider an appropri-

ate linkage between learning materials and concept nodes. Brusilovsky et al. described such a 

relation in [13], as Figure 3.6 illustrated. Moreover, for the needs of making adaptation to 
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Figure 3. 5: Organizing concepts as a prerequisite graph (partial). 

 

Figure 3. 6: Linkage between the domain model and learning items, 
adopted from [13]. 
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learners’ traits, each learning material should be indexed by its features (or attributes). Con-

ceptually, we could treat each learning item as a specific point in the feature space, as Figure 

3.7 shows. By identifying these features of learning materials, we can organize them in a sys-

tematic manner. We will describe features of learning materials in section 3.3.4. 

3.3.2 Student modeling 

Student modeling, as a branch of user modeling, could be a complicated task actually. In 

some application context, user modeling could even be an intractable problem as indicated by 

[59]. One may think that student modeling is merely to record learners’ data into the database. 

This is just partially correct. The salient point of student modeling is not about data itself, but 

how to make use of such data in terms of the view of adaptivity. Therefore, suitable represen-

tation, summarization, generalization and inference are needed in this task. 

In CooTutor, there are three distinct types of information related to a learner should be no-

ticed. They are: 

(1) learners’ prior knowledge, i.e., what concepts an individual has already known. An in-

dividual’s prior knowledge changes often during the learning process in general. This infor-

mation could be determined via tests or quizzes. Specifically, computerized adaptive test is 

recognized potential on this issue to minimize the time required for testing and maximize the 

accuracy of testing. It is also viable to detect learners’ prior knowledge by observation. This is 
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Figure 3. 7: Learning items as points in the attribute space (partial). 
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the approach that stereotype user modeling usually employ. For example, in an on-line book-

shop, for a user who bought a book about advanced engineering mathematics, it could be in-

ferred as that the user has learned and known about calculus in mathematics. However, such 

approach is obviously not accurate, especially when the grain-size of the learning domain is 

not that large at the level of curriculum. Besides, in the on-line bookshop case we illustrated, 

learners’ knowledge and interest is compound. To employ which kind of method to derive the 

information of knowledge would depend on the purpose, needs and concerns of the system. 

(2) learners’ traits are relatively stable characteristics of an individual and unlikely to 

change during a learning session. For example, personal interests, learners’ capabilities of ac-

quisition, learning styles and spatial ability2 belong to this type of information. The main so-

lution to derive this type of information is by using psychometric instruments [62], such as a 

survey of learning styles [61] and the spatial ability test [9]. At present, there is no suitable 

theory to support the idea of deriving this type of information by observing small amount of 

user behaviors. However, the subject to be modeled is a population of users not an individual, 

it seems possible to use methods of data mining to summarize and derive useful messages in 

terms of learners’ traits. 

(3) learners’ low-level behavior is information about how the user interacts with the user 

interface, such as navigating in 3D scene, pressing buttons, dragging the mouse, and the stay-

ing time in each page. This implicit profiling approach gradually receives researchers’ notices 

due to the prevention of unnecessary intervention to users for asking questions explicitly [34]. 

The main problem would be that such implicit information is not as reliable as the explicit 

answers/scores directly derived from users. Also, how to properly interpret users’ behavior 

into their intention is another problem because many operations performed by the users might 

mean nothing actually. Just as what we have mentioned, no suitable theory could interpret 

such low-level behaviors in a sensible manner. Hence CooTutor does not rely on this type of 

information at present. But we also recognize that users’ interaction patterns with the 3D 

scene would probably encode amount of meaningful information implicitly, what is worth to 

be explored in future. We think it is possible to employ such type of information to refine the 

                                                 
2 Though many studies (including this study) have proposed that spatial ability could be properly enhanced (i.e. could be 

changed), but the range of enhancement seems quite small in comparison with other typical domains. For the purpose of 
adaptivity, we treat it as a stable trait. 
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student model. This point will be described in section 3.3.5. 

The comparison of these three types of learner information is shown in Table 3.1. Different 

modeling techniques are used according to the characteristic of the type of information. Here 

we discuss these techniques employed in CooTutor, including overlay student modeling and 

stereotyped student modeling. 

 

                                                 

3 We do not address the stability of behavior patterns in this study. The meaning of low-level behavior is ambiguous. This is 
an issue worth to be explored further, but beyond our scope. 

Table 3. 1: The comparison of three types of learner information. 
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 Overlay Student Model 

For prior knowledge that is assessed via tests, we represent each learner’s known concepts 

as a subset of domain model, the prerequisite graph. This is also known as the overlay model-

ing technique [15][37]. Let Gdm=(V, E) as a prerequisite graph to model the domain, where 

V=(c1, c2, …cn-1, cn) is the ordered set of concepts in this model. We can describe an individ-

ual’s knowledge about the domain at a particular timestamp t as an ordered set SMt = (s1, 

s2, …sn-1, sn ), where each element si represents the learning state regarded to its correspond-

ing concept in V. That is, 

 

 sk ∈ {known, intermediate, unknown}, k=1 … n 

 

Note that |SMt| = |V|, thus the learner’s knowledge status of the domain is exactly overlaid on 

the domain model. Though there are only three possible learning states of each concept here, 

describing the state as a numeric value is also allowed by this model. 

 Stereotyped Student Model 

For learners’ stable traits, we simply record it. While the system is going to make decisions, 

these data are employed as triggers for stereotypic inference. This technique is known as 

stereotyped student modeling. 

A stereotype is a collection of characteristics that occur together conceptually. For example, 

if someone works in HsinChu Science Park, this person is probably majored in electrical en-

gineering, 25 to 35 years old, and is a male. In this case, we only know about where the per-

son works at, that is so called trigger in stereotypic inference. A collection of information 

called stereotype is further inferred. In this example, the stereotype named as People_in_HSP: 

<major=EE, age=25-35, sex=male> is inferred. An on-line shop such as amazon.com could use 

this stereotype to make personalized recommendations. 

It is obvious that stereotypes might make incorrect assertion with respect to the truth. Even 
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so, people use stereotypes in their daily life to make simplification and categorization of com-

plex scenarios in order to make decisions efficiently [57]. Note that stereotypes are usually 

used to initialize a default model efficiently. Researchers also employ theory refinement or 

machine learning techniques to enhance the accuracy of the model. The main advantage of 

stereotypic inference is its efficiency. Especially when the system could only observe limited 

facts, this approach is powerful to construct the user model. To address stereotyped student 

model more formally, as Judy Kay described in [46]: 

“Stereotype-based reasoning takes an initial impression of the student and uses this to 

build a detailed student model based on default assumptions.” 

The main components of a stereotype M are identified as [46][68]: 

(1) a set of triggers, {tMi}, which activate a stereotype, 

(2) a set of retraction conditions, {rMi}, employed to deactivate an active stereotype, and 

(3) a set of stereotypic inferences, {sMi}. 

A formalized mathematical description given by Kay is briefly summarized as follow [46]: 

 

Stereotypic inference {sMi}, the main action of the stereotype, is: 

 

if )(, MactivetruetMi i →=∃ .                                     (3.1) 

 

What means that if any trigger becomes true, the system would activate the stereotype 

M. Similarly, if any condition in {rMi} is observed, stereotype M should be deacti-

vated. Once M is activated, consequent stereotypic inference {sMk} can be made, and 

so on. 

 

The concept of stereotyped modeling is applied to generate adaptation based on learners’ traits. 

As Table 3.1 shows, spatial ability and learning styles are used as triggers in stereotype mod-

eling. Stereotypes are used to select appropriate materials fitted to particular learners. That is, 
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the mechanism of material selection. We will describe it further in section 3.3.4. 

3.3.3 Concept sequencing 

From the view of educational psychology, the prime principle of learning should be to build 

the connections between prior knowledge and the topic to be learned (or taught). No matter 

the type of education used is teacher-centered instruction or learner-centered construction, 

most educators will agree on this point. Just as Ausubel et al. mentioned, “the most important 

single factor influencing learning is what the learners already knows.”[5] 

For realizing adaptive educational systems on the Web, the role of prior knowledge is spe-

cifically essential. The process of learning in this type of environment is expected to be 

self-paced by learners. Learners own the right to determine which hyperlink to be launched, 

how much time to be spent on viewing content, and when to finish the learning session. 

Therefore, the system should offer adequate recommendations to prevent unnecessary detour 

and disorientation in the information space. Some preliminary studies have shown the effec-

tiveness of considering prior knowledge to generate adaptive presentation and adaptive navi-

gation support [24]. 

As we have mentioned in section 3.3.1, CooTutor defines the prerequisite relations of con-

cepts in the domain model. Learners’ prior knowledge is modeled as an overlay model on top 

of the domain. Thus we can derive the proper learning sequence accordingly. Targeting a spe-

Concept_Seq ( GoalConcept g, 
PrerequisiteGraph Gdm, 
OverlayStudentModel sm ) 

1 List topo_order ← Topological_Sort (Gdm); 
2 List seq ← topo_order – {known concepts in sm}; 
3  for every node c in seq do 
4   if (exist a path from c to g in Gdm) then 
5    retain c in seq; 
6   else 
7     remove c from seq; 
8  return seq; 

Figure 3. 8: The algorithm for concept sequencing, Concept_Seq 
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cific goal concept, learners with enough prior knowledge could skip fundamental concepts 

over, whereas a beginner to this domain can receive fundamental lessons first as necessary 

complements. 

Figure 3.8 presents the algorithm for concept sequencing in CooTutor. Given a goal con-

cept g, the task is to find out a best sequence of concepts according to the domain model Gdm 

and the overlay student model sm, where Gdm=(V, E), g ∈V. The goal g could be specified by 

learners or inferred by the system. At line 1 of the algorithm, topological sort algorithm for 

graphs is performed. A topological sort of a DAG G=(V, E) generates a linear sequence S={v1, 

v2, …, v|v|} of all vertices in G. For every pair of vertices vi and vj in the sequence S, if (vi , vj) 

∈ E, then i<j is established [22][55]. Therefore, we could assure that the resulting sequence 

seq generated at line 1 conforms to the constraint of prerequisite relations defined by Gdm. At 

line 2, it removes concepts that the learner has known from the sequence. From line 3 to 7, the 

algorithm checks that if each concept in seq is relevant to learn the given goal. This step could 

be done by performing depth-first or breadth-first searches for the graph. At the end, we de-

rive the final result, concept sequence seq. Once the concept sequence is derived, 

re-sequencing is needed only when the goal is changed. 

3.3.4 Material selection 

Learning materials could be authored as typical Web pages, 3D-integrated pages, PDF 

documents, etc. With the advances of Web hypermedia, there have been amounts of multime-

dia technologies appearing that could be used in authoring and enriching learning materials. 

Available technologies nowadays, including Macromedia’s Flash, W3C’s SVG (Scalable 

Vector Graphics), and video streaming technologies etc., have been already used in educa-

tional purposes widely. It is observed that by using these media technologies, learning materi-

als on the Web could be of various “flavors”, or more formally, pedagogical styles. Though it 

is still rather limiting to realize every instructional method and pedagogical style at the level 

of learning materials, it is recognized beneficial to have a systematic method to address this 

concern. However, less study has been undertaken for the needs [62]. The proposed method in 

CooTutor is the mechanism of material selection. 

We can treat a learning material as a self-contained content object associated with features 
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or metadata. Learners’ traits, including spatial ability and learning styles are transformed into 

corresponding needs of particular types of materials, which could be formulated as a query to 

retrieve appropriate learning materials. Therefore material selection could be abstracted as a 

task of information retrieval (IR).  

However, this task still differs a lot to typical IR, such as Web retrieval or IR for digital li-

brary. Note that in most cases of text retrieval, documents are indexed by a feature vector of 

terms (i.e., keywords) appearing in documents. IR in these cases is thus the task of computing 

the proximity between the query given by users and the feature vector associated to docu-

ments, in the vector space of keywords [6]. The underlying logic is to find out documents 

containing part/all keywords of the query. Nevertheless, in the case of material selection, it is 

not intended to retrieve documents at the level of keyword-matching. Material selection aims 

to select materials matching learners’ traits, such as spatial ability and learning styles. That is, 

this type of IR is to retrieve documents at the level of pedagogical styles. Here we describe 

what features are used to index learning materials, and how to formulate learners’ traits as 

queries properly. 

 Features of learning materials 

Each learning material (or content objects) is indexed by features shown in Table 3.2. The 

feature of main representation indicates how the object presents contents. For example, 3D 

content will be presented in the 3D blackboard. The feature of abstractness refers to the de-

grees of abstraction each material adopts to describe the concept. The feature of activity type 

marks up the underlying pedagogical method of each content object. The feature of 

level-of-details means how detailed the object describes a particular concept. 

Table 3. 2: Features of learning materials. 

(unidirectional)Level of details
Lecture / ExperimentActivity type
Concrete / AbstractAbstractness

2D-based / 3D-basedMain representation
Values (numeric between 0 and 1)Features

(unidirectional)Level of details
Lecture / ExperimentActivity type
Concrete / AbstractAbstractness

2D-based / 3D-basedMain representation
Values (numeric between 0 and 1)Features
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Note that the feature of main representation, abstractness and activity type are bidirectional. 

For example, a research paper with plenty mathematical descriptions is thought to be more 

abstract. Then the feature of abstractness would be assigned a high value, such as 0.8. Simi-

larly for concrete and practical learning materials, a lower value would be assigned on the 

same feature. That is, we use only one field to record such bidirectional characteristic of the 

feature. This is viable since these bidirectional features are deemed to be continuous between 

the two ends of that dimension.  

These features are selected by considering whether it is a proper discriminant for classify-

ing learning materials. For example, level-of-difficulty is not recognized as a proper discrimi-

nant in CooTutor, though this feature has been proposed frequently by other studies. Our rea-

son is that for fundamental concepts in our domain, it is natural to consider the learning 

materials as “simple” ones, i.e., low level-of-difficulty. Similarly, for advanced topics all 

learning materials are necessarily to be “difficult”. Instead of level-of-difficulty, abstractness 

is probably a better one to be used with respect to the characteristics of our domain, SGT. We 

imports previous observation made by [63] as a reference to select these features. 

Besides the features described above, “concept” is another feature that has to be specified 

obviously, as we have shown in Figure 3.6 and Figure 3.7. Note that the use of this feature is 

somewhat different from others. Recall that the first phase of decision making in CooTutor is 

the task of concept sequencing. The task we are discussing—material selection, is performed 

after a specific concept is chosen to be delivered. Therefore, the feature of concept is used by 

the system to project materials in the content repository into a sub feature space in terms of 

the specific concept. So materials irrelevant to learning the specific concept will not be con-

sidered in the process of material selection. 

 Query formulation from learners’ traits 

In CooTutor, learners’ traits including spatial ability and learning styles are considered as 

the sources for material selection. Psychometric studies have proposed formal tools to assess 

human spatial ability [9][53]. We employ the spatial ability test, Purdue Visualization of Rota-

tion Test (PVRT test) in CooTutor to assess such competence [9].  
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Besides PVRT for spatial ability, the Index of Learning Styles Questionnaire (ILS ques-

tionnaire) proposed by Soloman et al. in [61] is used to assess learners’ learning styles. This 

instrument consists of 40 question items. Four dimensions of learning styles can be assessed 

by the questionnaire. Each dimension of learning style is measured by 10 items evenly. The 

four dimensions are visual/verbal learning style, sequential/global learning style, sens-

ing/intuitive learning style, and active/reflective learning style. Since we intend to use spatial 

ability as features that also address the visual/verbal concern, items of the questionnaire tar-

geting to measure the visual/verbal dimension of learning style are not used. Similarly, since it 

seems not viable to address the sequential/global learning style at the level of learning materi-

als, items for this dimension of learning style are not employed either. After all, we assess 

learners’ spatial ability, sensing/intuitive learning style, and active/reflective learning style for 

material selection. 

Learners’ traits are used to trigger stereotypes of pedagogical styles. These stereotypes are 

then employed as queries to retrieve learning materials that best fit learners’ needs in terms of 

traits. The process of query formulation is shown schematically in Figure 3.9. By using learn-

ers’ quantitative scores of spatial ability and learning style as external inputs, with default as-

sumptions, then the stereotype of pedagogical styles is derived as the result. Recalling that in 

Chapter 2 we have mentioned that there is still no consensus on what kind of instructional 

methods would be beneficial to tackle learning styles. Therefore, the process of query formu-
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Figure 3. 9: The process of query formulation. 
The output stereotype is used as the query. 
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lation is conceptually equivalent to using default assumptions to generate stereotypical 

decision making. 

The default assumptions used are enumerated here: 

A. Spatial ability: according to our analysis in Chapter 2, the higher a learner’s spatial 

ability is, the less degree of visualization she/he will need. 

B. Sensing/intuitive learning style: sensing learners would prefer concrete or practical 

learning materials, while intuitive learners prefer theoretical and abstract materials, 

such as mathematical descriptions. 

C. Active/reflective learning style: active learners would prefer doing experiments, while 

reflective learners would prefer learning materials in the form of typical lecture. 

D. Level-of-details is set as medium (numeric value 0.5) initially. 

In other words, the assumptions given above are pedagogical heuristics. We import such 

heuristics offered by [61] in order to make our decision more sensible and pedagogically 

valid. 

The form of stereotypes is illustrated below, which is represented as a vector consisted of 

seven elements: 

Q = <is_2D, is_3D, is_concrete, is_abstract, is_lecture, is_experiment, level_of_details> 

Each element has a numerical value varies from 0 to 1. Following rules of complement estab-

lish as well: 

is_2D + is_3D = 1, 

is_concrete + is_abstract = 1, and 

is_lecture + is_experiment = 1. 

The job of the stereotype generator shown in Figure 3.9 is to transform learners’ traits into the 

query Q. The process of inference is a simple matching. The default assumption A shown 

above is applied to determine the value of elements is_2D and is_3D; default assumption B is 

applied to is_concret and is_abstract; default assumption C is applied to is_lecture and 
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is_experiment; while finally default assumption D is applied to level_of_details. Note that the 

representation of stereotype is as the same form with what we will describe next—the feature 

vector of learning materials. 

 Computing similarity for material selection 

We have described the features used to mark-up learning materials and how we formulate 

the queries. Subsequently, the (dis)similarity measures (i.e., distance between objects) used in 

clustering algorithms in machine learning is employed to select learning materials. A similar 

approach is used in [68]. But the objective is somewhat different. 

In typical IR, it is quite popular to use the cosine measure between vectors as the similarity 

measure. A detailed comparison of different methods of measuring similarity has been pre-

sented in [65]. By considering the characteristics of our task, here we intend to use extended 

Jaccard coefficient to measure the similarity between content objects [33][65]. The advantage 

of using extended Jaccard coefficient is evident that it can tackle binary values and numerical 

values both. To compute the measure, each object should be represented as a feature vector. In 

our case, features of learning materials are transformed to the feature vector which consists of 

seven elements: 

M = <is_2D, is_3D, is_concrete, is_abstract, is_lecture, is_experiment, level_of_details> 

As mentioned, this feature vector is of the same form as the query. Each element of the 

vector has a numerical value varies from 0 to 1. It is clear that the first two elements is_2D 

and is_3D stemming from the feature of Main_representation shown in Table 3.2. For exam-

ple, for the feature-value pair, Main_representation = 0.8, it could be transformed as is_2D = 

0.2 and is_3D = 0.8. Similarly, elements is_concrete and is_abstract are transformed from the 

feature of Abstractness. While the elements, is_lecture and is_experiment are from the feature 

of Activity_type. Finally, we directly adopt the numeric values of the feature, Level-of-details 

as the value of the last element. No expansion is needed because this feature is itself an 

unidirectional one. 

Given two vectors of distinct objects x and y, the extended Jaccard coefficient is computed as 

[65]: 
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In this case, to compute the similarity of the query Q and each learning material’s feature 

vector Mi: 
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the higher the measure derived by equation (3.3), the more similar it is between this learning 

material and the query. In other words, this content object will be ordered with higher priority. 

By repeatedly measuring the similarity measure of the query and all candidate learning mate-

rials. A threshold could be set to divide learning materials into two categories, “recom-

mended” and “not recommended”. That is: 

 

 { | 0 1}thresholdS h h= ∈ ≤ ≤                                                (3.4) 

 

Note that such a threshold is set arbitrarily, and should be determined by considering charac-

teristics of the set of learning materials, the learning domain and pedagogical strate-

gies/instructional designs intended to be applied. Then, the category CM  of each learning 

material Mi can be determined by: 
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CM=                                                                    (3.5) 

 

It is believed that besides spatial ability and learning styles, there are still other types of fea-

tures could be imported into this framework for selecting materials in terms of pedagogical 

styles and strategies. So the task of material selection, or more precisely, features identifica-

tion, can be used to reflect educational concerns at the system level. This mechanism also 

demonstrates a positive support on the benefits of using model-based approach in com-

puter-based educational systems [75]. 

3.3.5 Client-side tuning 

Client-side computing could be quite beneficial in CooTutor. The use of client-side com-

puting could be two-folded. They are (1) to collect browsing behaviors for refining the student 

model (i.e., theory refinement, as shown in Table 3.1) (2) to realize client-side adaptivity by 

the use of local adaptation rules. Now we describe these two aspects of use respectively. 

First, learners’ browsing patterns recorded by the tutor console module could help to de-

termine how learners interact with 3D objects, if learners are satisfied with the recommenda-

tions, etc. However, as mentioned previously in section 3.3.2, interpreting low-level behavior 

patterns and using it sensibly are still difficult. Therefore, CooTutor’s system architecture re-

tains the flexibility for such an extension but does not rely on this type of information heavily. 

When learners finish learning a concept and proceed to the next one, such information is en-

coded in HTTP requests to refine the original student model. It is suspecting that techniques 

employed by pattern recognition (PR) could be employed to address this issue. For example 

[45] has proposed a user behavior model based on the Hidden Markov Model (HMM) ap-

proach. 

,,     
iQ M thresholdrecommended if S S≥

 ,          not recommended otherwise
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Though in current version of CooTutor, the use of low-level behaviors is not the salient 

point, a design of simple theory refinement by directly asking the learner has been imple-

mented. It is recognized necessary to incorporate proper mechanism of theory refinement due 

to the nature that stereotypical decision making is based on default assumptions mentioned in 

section 3.3.4, and is likely to be inaccurate. As shown in Figure 3.10, after the learner finish-

ing a concept, she/he is enquired if she/he wants to tune the pedagogical styles of the presen-

tation, such as by asking them more or less graphics (math)? The underlying action of theory 

refinement refers to adjusting the stereotype of pedagogical styles (i.e., the query vector, Q) 

associated to the learner. Some heuristics are used to tune elements of Q accordingly, such as: 

 If learner_response=more_math then add value to the element is_abstract, and 

 If learner_response=more_graphics then add value to the element is_3D 

Note that such refinement is incremental, and thus may not best reflect learners’ needs imme-

diately. Besides, if we intend to use learners’ browsing pattern as the basis for theory refine-

         

Dialogue
window
Dialogue
window

 

Figure 3. 10: A snapshot demonstrating theory refinement from users’ response. 
The dialogue window is asking the learner “More Mathematics?” 
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ment, it is obvious that formulating corresponding heuristics, though possible, is not easy. 

 Second, it is tenable to incorporate local adaptation rules to perform sensitive adaptivity 

at the client side. Note that learning materials selected by CooTutor to illustrate a specific 

concept are delivered to the client side in the form of a set of URLs, which is packaged and 

serialized as an activities bean object at run time for delivery. When the tutor console module 

located at the client-side receives this object, it will extract and arrange these URLs from the 

object for the needs of presentation. Figure 3.11 depicts the class, ActivitiesBean and its at-

tributes. In this class, the attribute, activitiesURL is of the type as a List object, which consists 

of ordered URLs of learning materials that have been arranged by server-side decision making. 

Evidently, we could attach some local adaptation rules in this class, which specifies the condi-

ActivitiesBean

activitiesURL: List
activitiesDesc: List
localAdaptationRules

ActivitiesBean

activitiesURL: List
activitiesDesc: List
localAdaptationRules

 

Figure 3. 11: The static class diagram of the class, ActivitiesBean (partial) 
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(a)                 (b) 

 
Figure 3. 12: The screenshots illustrating the effect of the adaptive technique—stretch-text, 

(a) collapsed presentation (b) stretched presentation. 
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tions and actions of client-side adaptivity. This idea has not yet been implemented in current 

version of CooTutor, and will be realized in future. 

For example, the author may apply the well-known technique of adaptive presentation, 

stretch-text [10] in their learning materials. Figure 3.12 illustrates how the adaptation effect 

looks like. The technique aims to make some parts of learning materials initially collapsed 

(i.e., hidden) in order to prevent learners for being perplexed by overloaded information, es-

pecially those not fit to their knowledge or traits. The author may want to realize a pedagogi-

cal strategy that once the learner chooses to expand these hidden parts, then the system should 

always expand hidden parts subsequently as the default setting. This type of concerns could 

be collected and authored properly in the form of local adaptation rules. Though not yet been 

implemented in current version of CooTutor, it is recognized realizable and beneficial as an 

extension of the system. We also note that our activities bean objects could be conceptually 

interpreted as Learning Objects (LO) appearing in the SCORM specification [1]. Especially, it 

is possible to make CooTutor as a SCORM-compatible platform in the future. Then we can 

employ and transform the Simple Sequencing specification used by SCORM as the local 

adaptation rules. At the long run, it is expectable to realize the integration of LO and AH into 

an adaptive and reusable learning platform under the framework we proposed [75]. 

 

 

 

 

 

 

 




