
 37

CHAPTER 4

Experimental Results

4.1 Introduction

We evaluate the time efficiency of the proposed algorithms. Four parameters may affect the

performance of the algorithms for discovering frequent superset [2]. The first is the effect of

minimum support. The second is the number of transactions. The third is the number of

items, and the fourth is the average length of transactions. For each parameter, we both test

the larger and smaller dataset to show the abilities of these six algorithms, Baseline, Apriori-C,

Eclat-C, DCT-Apriori, DCT-Eclat, and DCT-FPGrowth, under the dataset with different size.

In addition, the number of candidates for each pass dominates the performance of

Apriori-based methods, so we performed an experiment to evaluate the number of candidates

in each pass for the Apriori-C and Baseline method.

We choose Apriori, Eclat and FP-Growth as the black box for DCT algorithms to

compare with Apriori-C and Eclat-C. To inspect the performance of these six algorithms,

Baseline, Apriori-C, Eclat-C, DCT-Apriori, DCT-Eclat, and DCT-FPGrowth under the four

parameters, we performed several experiments to measure them on an Intel Xeon 2.4GHz

computer with 2GB main memory, and running FreeBSD 5.2-CURRENT. We first describe

 38

the generation of the synthetic datasets used in the assessment. Then we show the

performance results of the six frequent superset discovery methods.

4.2 Synthetic Data Generation

The synthetic data was generated using the dataset generator from IBM Almaden Quest

research group [16]. To create a dataset, we take the parameters for generation program

shown in Table 4.1. The number of transactions is denoted by |D|, the average size of the

transactions is denoted by |T|, and the number of entire different items is denoted by N. For

example, a dataset D100kT60N100 means that it contains a hundred thousand transactions, a

hundred different items, and the average size of transactions are sixty.

Table 4.1: Parameters for dataset generator.

Table 4.2: Descriptions for the abbreviations of values of parameters.

Name |D| |T| N Size in Megabytes Size of complement
D100kT60N100 100k 60 100 16 12
D100kT50N100 100k 50 100 13 15
D10kT60N200 10k 60 200 1.9 4.6
D100kT25N50 100k 25 50 6.1 7.3
D10kT25N50 10k 25 50 0.63 0.75
D10kT5N40 10k 5 40 0.12 0.79
D10kT5N10 10k 5 10 0.07 0.09
D10kT25N40 10k 25 40 0.6 0.5

Parameters Description
|D| The number of transactions
|T| Average size of the transactions
N Number of items

 39

Table 4.2 gives the descriptions for the abbreviations of values of parameters, and the

summary of larger and smaller datasets we used in following experiments is shown in Table

4.3.

Table 4.3: The larger and smaller datasets used in our experiment studies.

Parameter Larger Dataset Small Dataset
Minimum support D100kT60N100 D10kT10N20

|D| D10kT50N10~D100kT50N100 D10kT5N15~D100kT5N15
N D10kT60N100~D10kT60N200 D10kT5N10~D10kT5N40
|T| D10kT30N100~D10kT70N100 D10kT10N50~D10kT30N50

4.3 Performance Analysis

4.3.1 Minimum Support

To evaluate the effect of different minimum support, we test two datasets, D10kT10N20 and

D100kT60N100. Table 4.4 lists the execution times for taking the complement of these two

datasets.

Table 4.4: Execution time in seconds for taking the complement of two dataset D10kT10N20
and D100kT60N100.

Dataset CPU Time I/O Time Total Time
D10kT10N20 0.00 0.66 0.68
D100kT60N100 0.18 37.12 38.59

Table 4.5 depicts the execution time in seconds for the six algorithms at different

support from 10% to 90%, using the D10kT10N20 dataset. Note that, in this table, we do

not add the extra complement time for DCT methods. According to Table 4.5, although

 40

DCT-FPGrowth is much faster than others, the complement time is even more then the

mining time. It increases much execution time of DCT-FPGrowth. Besides, Eclat-based

methods are also faster than all Apriori-based algorithms when the minimum support is larger

than 80. Because when the minimum support is large, the length of maximum

complement-frequent superset becomes short, and the depth-first search strategy has more

overhead instead.

Table 4.5: Execution time in seconds for different minimum support (D10kT10N20).

Minimum
Suppport (%)

10 20 30 40 50 60 70 80 90

Baseline 150.11 163.37 168.49 171.11 172.32 173.75 173.93 174.08 174.05
Apriori-C 1.66 0.4 0.21 0.07 0.06 0.05 0.05 0.05 0.02
DCT-Apriori 1.72 0.46 0.25 0.1 0.08 0.08 0.08 0.07 0.02
Eclat-C 0.26 0.12 0.08 0.06 0.05 0.05 0.04 0.04 0.04
DCT-Eclat 0.27 0.12 0.09 0.07 0.05 0.06 0.05 0.04 0.05
DCT-FPGrowth 0.05 0.04 0.03 0.03 0.03 0.02 0.03 0.02 0.00

Table 4.6: Execution time in seconds for different minimum support (D100kT60N100).
Minimum
Suppport (%)

40 45 50 55 60 65 70

Apriori-C 146.67 64.06 26.27 6.20 2.03 1.00 0.44
DCT-Apriori 148.16 53.02 18.51 6.36 2.95 1.38 0.54
Eclat-C 2.17 1.09 0.62 0.39 0.29 0.21 0.18
DCT-Eclat 2.21 1.13 0.65 0.42 0.32 0.25 0.21
DCT-FPGrowth 1.44 0.37 0.23 0.17 0.14 0.10 0.10

With the larger dataset, we perform another experiment and Table 4.6 gives the

execution time in seconds for the five algorithms except the Baseline in different minimum

support. Because the Baseline method falls into memory exhausting, we can not show the

 41

results of it. Comparing with the results of smaller dataset, the Apriori-based methods

perform much worse, while the Eclat-based methods still have better performance. All of

the algorithms have less execution time in lower minimum support. It is because that the

lower the minimum support is, the more the shorter minimum frequent superset is, and in turn,

the more the longer complement-frequent superset is.

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70 80 90
Minimum Support(%)

Ex
ec

ut
io

n
Ti

m
e(

se
c) Apriori-C

DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

0
5

10
15
20
25
30
35
40

40 45 50 55 60 65 70
Minimum Support(%)

Ex
ec

ut
io

n
Ti

m
e(

se
c) Apriori-C

DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.1: The execution time in different minimum support threshold for the database (a)
D10kT10N20 and (b) D100kT60N100.

We also show the figures of experimental results in Figure 4.1. Both Eclat-based and

(a)

(b)

 42

DCT-FPGrowth have good scalability for different minimum support values. In conclusion,

Eclat-C is the best method in this test of different minimum support, and DCT-FPGrowth

performances better than Apriori-based methods when the minimum support is small.

4.3.2 Number of Transactions

The second experiment is the evaluation of effect of the number of transactions. First, we

list the execution time for generating the complement dataset in Table 4.7.

Table 4.7: The execution time for generating the complement dataset.
Dataset CPU Time I/O Time Total Time
D10kT5N15 0.01 0.39 0.41
D20kT5N15 0.00 0.80 0.85
D30kT5N15 0.02 1.19 1.24
D40kT5N15 0.02 1.59 1.66
D50kT5N15 0.00 1.99 2.41
D60kT5N15 0.02 2.37 2.41
D70kT5N15 0.00 2.78 2.80
D80kT5N15 0.03 3.18 3.32
D90kT5N15 0.04 3.57 3.85
D100kT5N15 0.04 3.97 4.18
D10kT50N100 0.00 3.44 3.45
D20kT50N100 0.03 6.87 6.90
D30kT50N100 0.03 10.36 10.48
D40kT50N100 0.04 13.74 13.79
D50kT50N100 0.05 17.28 17.36
D60kT50N100 0.08 20.63 20.81
D70kT50N100 0.04 24.15 24.31
D80kT50N100 0.02 27.60 27.69
D90kT50N100 0.14 31.27 31.63
D100kT50N100 0.16 35.42 35.90

 43

Table 4.8 shows the execution time except the complement time for the six algorithms

in different number of transactions from 10k to 100k, the test dataset is T5N15 and the

minimum support is set to 60%. The experiment of larger dataset is given in Table 4.9, the

dataset is T50N100 and the minimum support is also set to 60%. The execution time

increases when the number of transactions increases.

Table 4.8: Execution time in seconds for different number of transactions from 10k to 100k
(dataset=T5N15, minsup=60%).

Number of
Transactions (k)

10 20 30 40 50 60 70 80 90 100

Baseline 2.8 3.04 3.27 3.32 3.42 3.55 3.65 3.68 3.73 3.8
Apriori-C 0.02 0.05 0.08 0.11 0.13 0.16 0.19 0.22 0.25 0.28
DCT-Apriori 0.06 0.11 0.18 0.24 0.29 0.35 0.42 0.48 0.54 0.6
Eclat-C 0.02 0.04 0.07 0.09 0.13 0.14 0.16 0.2 0.23 0.26
DCT-Eclat 0.03 0.08 0.12 0.17 0.21 0.26 0.31 0.36 0.4 0.46
DCT-FPGrowth 0.02 0.03 0.04 0.06 0.08 0.10 0.11 0.12 0.13 0.15

Table 4.9: Execution time in seconds for five algorithms in different number of transactions
from 10k to 100k and the datasets are T50N100.

Number of
Transactions (k)

10 20 30 40 50 60 70 80 90 100

Apriori-C 47.15 95.25 139.48 180.47 222.70 265.28 305.70 348.16 387.80 429.59
DCT-Apriori 49.57 101.96 140.90 192.02 229.54 267.16 317.80 362.30 400.94 457.75
Eclat-C 0.75 1.38 2.05 2.59 3.23 3.85 4.38 4.97 5.57 6.16
DCT-Eclat 0.75 1.38 2.04 2.58 3.24 3.82 4.38 4.95 5.54 6.37
DCT-FPGrowth 0.28 0.52 0.73 0.98 1.21 1.41 1.64 2.13 2.08 2.29

Figure 4.2 depicts the scalability of the six algorithms in small dataset. We can see

that the execution times of Apriori-C and Eclat-C algorithms are increasing linearly with the

number of transactions. The slope of Apriori-C is a little larger than Eclat-C. When the

 44

number of transactions is more than 80, the DCT methods become even worse than Baseline

method. This is because they have to take the complement of dataset before mining, and

when |D|>80, they waste too much time on taking the complement of dataset. However, for

the DCT methods, DCT-FPGrowth is better than others.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100

Number of Transactions(k)

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Baseline
Apriori-C
DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.2: The scalability for six algorithms, Baseline, Apriori-C, DCT-Apriori, Eclat-C,
DCT-Eclat, and DCT-FPGrowth in different number of transactions.

Figure 4.3 shows the scalability of Eclat-C and DCT-FPGrowth when the dataset is

large. The execution time of them is growing linearly with the number of transactions.

However, the slop of Eclat-C is smaller than DCT-FPGrowth, and we recognize that Eclat-C

 45

is the better method while the dataset is huge.

0

50

100

150

200

10 20 30 40 50 60 70 80 90 100
Number of Transaction(k)

Ex
ec

ut
io

n
Ti

m
e(

se
c) Apriori-C

DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.3: The scalability in different number of transaction when the dataset is large.

4.3.3 Number of Items

The third parameter is the total number of items in the transaction database. Basically, when

the number of items increases, the size of the complement of an itemset increases, too. Also,

we list the execution time for transforming dataset into complement in Table 4.10. In this

situation, the variation of execution time for transforming dataset into complement is

smoother than the previous experiment of different number of transactions while the

parameters grow up. This is an advantageous point of DCT method.

The experiment results are shown in Table 4.11 for the execution times of different

number of items from 10 to 40, and use small dataset D10kT5 with the minimum support

60%. When the number of items is more than 25, Baseline falls into memory exhausting,

and we fill in the field with NA.

 46

Table 4.10: The execution time for transforming dataset into complement.

Dataset CPU Time I/O Time Total Time
D10kT5N10 0.00 0.30 0.31
D10kT5N15 0.00 0.40 0.40
D10kT5N20 0.00 0.48 0.51
D10kT5N25 0.00 0.57 0.60
D10kT5N30 0.00 0.65 0.69
D10kT5N35 0.00 0.73 0.77
D10kT5N40 0.01 0.80 0.84
D10kT60N100 0.03 3.67 3.70
D10kT60N120 0.00 4.59 4.59
D10kT60N140 0.02 4.57 4.59
D10kT60N160 0.00 5.10 5.19
D10kT60N180 0.02 5.43 5.51
D10kT60N200 0.01 5.84 5.91

Table 4.11: Execution time in second for different number of itmes from 10 to 40
(dataset=D10kT5, minsup=60%).

Number of Items 10 15 20 25 30 35 40
Baseline 0.08 2.78 226.2 NA NA NA NA
Apriori-C 0.02 0.02 0.03 0.06 0.44 7.61 55.53
DCT-Apriori 0.02 0.05 0.09 0.22 0.99 6.88 62.75
Eclat-C 0.02 0.01 0.03 0.06 0.1 0.28 0.94
DCT-Eclat 0.01 0.04 0.54 0.08 0.14 0.33 0.99
DCT-FPGrowth 0.01 0.02 0.03 0.04 0.06 0.09 0.19

The result of other experiment with larger dataset is given in Table 4.12, the dataset is

D10kT60, and the minimum support is set to 60%. For large dataset, DCT-FPGrowth is the

best algorithm, and even adding the complement time, it performs better than Eclat-C while

the number of items larger than 140. No matter what the dataset is, both of the two

experimental results of small and large datasets show that when the number of items increases,

 47

the execution time increases acutely. Figure 4.5 and 4.6 also show the graphs of the results.

Table 4.12: Execution times in second for different number of items from 100 to 200
(dataset=D10kT60, minsup=60%).

Number of Items 100 120 140 160 180 200
Apriori-C 2.04 219.34 4470.14 NA NA NA
DCT-Apriori 3.35 197.10 NA NA NA NA
Eclat-C 0.31 3.15 38.79 737.16 NA NA
DCT-Eclat 0.29 3.17 38.56 731.66 NA NA
DCT-FPGrowth 0.13 0.65 5.34 106.56 3593.15 NA

Although we just change the number of items, the average size of transactions of their

complement dataset also been changed, too.

0.01

0.1

1

10

100

10 15 20 25 30 35 40
Number of Items

Ex
ec

ut
io

n
Ti

m
e

in
 L

og
(s

)

Baseline
Apriori-C
DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.4 Results of the different number of itmes (dataset=D10kT5, minsup=60%).

 48

0.1

1

10

100

1000

10000

100 120 140 160 180 200
Number of Items

Ex
ec

ut
io

n
Ti

m
e

in
 L

og
(s

)

Apriori-C
DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.5 Results of the different number of itmes (dataset=D10kT60, minsup=60%).

Example 4.1 Consider a dataset D with d transactions, and there are n different items. If the

average size of transaction is t, that is t
d

lll d =
+++ ...21 , where li is the length of the i-th

transaction, the average size of transaction of complement dataset D’ is

tn
d

lll
n

d
llldn

d
lnlnln ddd −=

+++
−=

+++−
=

−++−+− ...)...()(...)()(212121 .

Owing to that the proposed algorithm are related to the complement view of point, we

test the datasets, D10kT40N100, D10kT60N120,…, and D10kT140N200. They all have the

fixed (N-|T|)=60, the average size of transactions of complement dataset. Intuitively, the

average size of transactions influences the time of one database scan. With the size of

 49

transactions growing up, we have to pay more efforts to scan the database. However, Table

4.13 shows the different results of execution time against our recognition. When the number

of items increasing, the performance of these five algorithms become more efficient. The

result is opposite to the previous result with fixed |T|.

Considering the occurrence probability of candidate 1-complement-supersets,
N
T || .

If the probability increases, the candidates become fewer, maximum complement-frequent

superset becomes shorter, and the execution time becomes less. Actually, the ratio of |T| to

N increases with N.

Proof Given four natural numbers N1, N2, T1, and T2, where N1 < N2, and (N1-T1) = (N2-T2) = k,

k > 0.

Q 21 NN <
21 N

k
N
k

>⇔
21

11
N
k

N
k

−<−⇔
2

2

1

1

N
kN

N
kN −
<

−
⇔

2

2

1

1

N
T

N
T

<⇔

∴The ratio of |T| to N increases with N.

For example, the probability of N=80 and |T|=40 is 0.5, and N=100 and |T|=60 is 0.6.

In fact, this is a tradeoff between transaction size and candidates occurrence probability.

Table 4.14 gives the result of the other dataset, and only Eclat-C becomes worse with the

number of items increasing. This is because the reduction of the number of candidates is

less important than the size of transactions. The datasets are D10kT40N80, D10kT60N100, …,

and D10kT140N180. The execution time of generating complement datasets is listed in

Table 4.15.

 50

Table 4.13: Execution time for different number of items from 100 to 200 (N-|T|=60, |D|=10k,
minsup=60%).

Number of Items 100 120 140 160 180 200
Apriori-C 801.34 319.65 135.50 75.74 65.87 2.82
DCT-Apriori 734.26 234.99 115.01 53.76 52.76 3.33
Eclat-C 4.58 3.33 1.56 1.07 1.03 0.65
DCT-Eclat 4.64 3.25 1.54 0.97 0.91 0.44
DCT-FPGrowth 1.19 0.70 0.46 0.40 0.35 0.28

Table 4.14: Execution time for different number of items from 80 to 180 (N-|T|=40, |D|=10k,
minsup=60%).

Number of Items 80 100 120 140 160 180
Apriori-C 2.52 2.02 1.53 1.28 1.20 1.29
DCT-Apriori 4.09 2.94 1.83 1.36 1.05 1.07
Eclat-C 0.28 0.30 0.38 0.37 0.39 0.45
DCT-Eclat 0.29 0.28 0.29 0.24 0.22 0.21
DCT-FPGrowth 0.15 0.14 0.13 0.12 0.12 0.12

Table 4.15: Execution time for generating complement dataset.

Dataset CPU Time I/O Time Total Time
D10kT40N100 0.02 3.16 3.19
D10kT60N120 0.03 4.11 4.15
D10kT80N140 0.00 5.10 5.11
D10kT100N160 0.00 6.05 6.11
D10kT120N280 0.01 6.99 7.01
D10kT140N200 0.01 7.93 7.94
D10kT40N80 0.01 2.74 2.77
D10kT60N100 0.02 3.67 3.73
D10kT80N120 0.00 4.65 4.68
D10kT100N140 0.01 5.58 5.62
D10kT120N160 0.00 6.53 6.61
D10kT140N180 0.05 7.42 7.50

 51

While Table 4.13 and Table 4.14 do not consider the complement time of DCT

algorithms, Figure 4.7 and 4.8 add the complement time to the execution time. The

complement time of DCT-Eclat and DCT-FPGrowth make the performances becoming worse

while the average size of transactions increases. However, the influence of occurrence

probability on performance is more significant for Apriori-based algorithms than other

depth-first algorithms, because only the performances of Apriori-based algorithms have

dependence on the number of candidates. In addition, from the two figures, Figure 4.7 and

Figure 4.8, the influence of occurrence probability increasing for the former is greater than the

later, because the slopes of Apriori-C and DCT-Apriori in Figure 4.7 are larger then the ones

in Figure 4.8. Besides, the slope of Eclat-C becomes positive in Figure 4.8.

0
5

10
15
20
25
30
35
40
45
50

100 120 140 160 180 200
Number of Items

Ex
ec

ut
io

n
Ti

m
e

(s
) Apriori-C

DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.6: Execution time in seconds for different number of items (N-|T|=60, |D|=10k,
minsup=60%).

 52

0
1
2
3
4
5
6
7
8
9

80 100 120 140 160 180
Number of Items

Ex
ec

ut
io

n
Ti

m
e

(s
)

Apriori-C
DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.7: Execution time in seconds for the different number of items (N-|T|=40, |D|=10k,
minsup=60%).

4.3.4 Average Size of Transactions

The forth is the evaluation of the average size of transactions. When the average size of

transactions increases, the average size of transactions of the complement dataset decreases.

And for DCT algorithms, they mine frequent subset from a smaller database, the execution

becomes faster. For Apriori-C and Eclat-C, when the average size of transactions increases,

the appearance probability of supersets increase, and leads to the number of candidate

complement-frequent supersets decrease.

Table 4.16 and Table 4.17 show the results of different datasets, and we can see that

DCT-Apriori and DCT-Eclat have better performances when the average size of transactions

is larger. Note that, we just consider the execution of the black box for DCT algorithms

currently. Besides, the algorithms with depth-first search strategy, Eclat-based and

 53

DCT-FPGrowth, are better then Apriori-based methods when the average size of transactions

is small. Because when the average size of transactions is small, the complement-frequent

superset becomes longer, and the depth-first methods have more superiority.

Table 4.16: Execution time in seconds for different average size of transactions from 10 to 30
(dataset=D10kN50, minsup=60%).

Average Size of Transactions 10 15 20 25 30
Baseline NA NA NA NA NA
Apriori-C 473.37 26.42 1.08 0.24 0.17
DCT-Apriori 518.99 19.25 1.71 0.37 0.17
Eclat-C 4.88 0.53 0.22 0.12 0.11
DCT-Eclat 4.92 0.57 0.23 0.13 0.09
DCT-FPGrowth 0.80 0.19 0.11 0.06 0.05

Table 4.17: Execution time in seconds for different average size of transactions from 30 to 70
(dataset=D10kN100, minsup=60%).

Average Size of Transactions 30 35 40 45 50 55 60 65 70
Apriori-C NA 2361.89 612.26 188.7 57.26 11.13 2.15 0.89 0.70
DCT-Apriori NA NA 591.03 168.47 43.72 7.92 2.97 1.06 0.52
Eclat-C 84.08 16.41 4.49 1.58 0.73 0.41 0.31 0.25 0.23
DCT-Eclat 84.51 16.46 4.56 1.63 0.75 0.41 0.28 0.20 0.15
DCT-FPGrowth 13.63 3.15 1.10 0.50 0.29 0.20 0.14 0.10 0.08

The execution time for generating complement dataset is shown in Table 4.18.

Figure 4.9 and 4.10 show the scalabilities for different average size of transactions with the

execution time of complement for DCT methods in small and larger datasets. According to

Figure 4.9 and 4.10, when the average size of transaction is large, DCT-Apriori has better

performances than Apriori-C. Furthermore, DCT-FPGrowth becomes the best algorithm

when then dataset is large.

 54

Table 4.18: Execution time for generating complement datasets.

0

2

4

6

8

10

12

14

10 15 20 25 30
Average Size of Transactions

Ex
ec

ut
io

n
Ti

m
e

(s
)

Apriori-C
DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.8: Execution time for different average size of transactions (smaller dataset).

Dataset CPU Time I/O Time Total Time
D10kT10N50 0.00 1.26 1.35
D10kT15N50 0.00 1.40 1.43
D10kT20N50 0.00 1.53 2.36
D10kT25N50 0.02 1.64 1.69
D10kT30N50 0.02 1.75 1.83
D10kT30N100 0.01 3.16 3.18
D10kT35N100 0.02 3.44 3.47
D10kT40N100 0.01 3.44 3.46
D10kT45N100 0.00 3.81 3.81
D10kT50N100 0.00 3.78 3.79
D10kT55N100 0.01 3,83 3.90
D10kT60N100 0.01 3.74 3.76
D10kT65N100 0.01 3,96 3.98
D10kT70N100 0.00 4.41 4.42

 55

0

10
20

30
40

50
60
70
80
90

100

30 35 40 45 50 55 60 65 70
Average Size of Transactions

Ex
ec

ut
io

n
Ti

m
e

(s
)

Apriori-C
DCT-Apriori
Eclat-C
DCT-Eclat
DCT-FPGrowth

Figure 4.9: Execution time for different average size of transactions (larger dataset).

4.3.5 Number of Candidates

Finally, we evaluate the performance of Baseline and Apriori-C by comparing the number of

candidates generated in each passes shown in Figure 4.8 and 4.9. The test dataset is

D10kT5N20 with minimum support 50%. Obviously, the Baseline method prunes much

fewer candidates than Apriori-C, and needs more passes to finish mining. We think that

number of candidates and number of passes are main reasons for Apriori-C to have much

better performance. Note that the definition of candidates in the Baseline and Apriori-C are

different. In the Baseline algorithm, it means candidate superset, but in Apriori-C, it means

candidate complement-superset.

 56

0

50

100

150

200

1 2 3 4 5 6
Passes

N
um

be
r o

f C
an

di
da

te
s

Apriori-C

Figure 4.10: Number of Candidates in each pass (Apriori-C).

0

50000

100000

150000

200000

1 4 7 10 13 16 19
Passes

N
um

be
r o

f C
an

di
da

te
s

Baseline

Figure 4.11: Number of Candidates in each pass (Baseline).

