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CHAPTER 2 

Review of Frequent Itemset Mining 
 

2.1 Overview 

The algorithms for discovering frequent itemset are systematized in Figure 2.1 [9].  The 

characterization is based on two facts.  The first is the strategy to traverse the search space, 

which can be divided into two types: depth-first search and breadth-first search.  The second 

is the strategy to determine the support values of each itemset, and also can be categorized 

into two classes: counting occurrence and transaction-ID intersecting.  The algorithms for 

frequent itemset mining can be categorized into four types, and the representatives 

respectively are Apriori, Partition, FP-Growth, and Eclat. 

The brute force way for discovering frequent itemsets is to generate the itemsets with 

every combination of items, and then determine whether they are frequent or not.  However, 

in this chapter, we introduce three efficient algorithms, Apriori, Eclat and FP-Growth in the 

following three sections respectively.  All of them can reduce the search space efficiently.  

Besides, these are three of the most significant methods to discover frequent itemset.  

Especially, the FP-Growth is the most efficient algorithm nowadays.  We also give a brief 

summary in the last section. 
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Figure 2.1: The algorithms for frequent itemset mining can be categorized into four types [9]. 

Before illustrating the mining algorithms, some definitions have to be presented. 

Definition 2.1 Let I be a set of literals, called items, and D={T1, T2, …, Tk} be a transaction 

database, where transaction Ti is a set of items such that Ti⊆ I, and i=1~k.  If there is an 

itemset X⊆
jiT , 1 ≤ ij ≤ k, where j=1, 2, …, m, the support of X is m, denoted as 

support(X)=m. 

 

 

 

Figure 2.2: Example for mining frequent itemset. 

TID Items 
1 1, 3, 4 
2 2, 3, 5 
3 1, 2, 3, 5 
4 2, 5 
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Example 2.1 Let I={1, 2, 3, 4, 5} be a set of items, and D be a transaction database shown in 

Figure 2.2.  The support of the itemset X={2, 5} is three, because X is contained in 

transaction 2, 3 and 4. 

Definition 2.2 Let D be a transaction database, and the minimum support is h.  If the support 

of an itemset X is m, and m ≥ h, X is a frequent itemset of D. 

Example 2.2 Considering the database in Figure 2.2.  If the minimum support is two, the 

frequent itemsets are {1}, {2}, {3}, {5}, {1, 3}, {2, 3}, {2, 5}, {3, 5} and {2, 3, 5}. 

Definition 2.3 Let D be a transaction database, Xi are frequent itemsets of D, where i=1, 2,…, 

k.  If Xi⊄Xj, j=1, 2, …, k, and i ≠ j, Xi are maximum frequent itemsets of D [10]. 

Example 2.3 Considering the database in Figure 2.2.  If the minimum support is two, the 

maximum frequent itemsets are {1, 3} and {2, 3, 5}. 

Definition 2.4 Let D be a transaction database, Xi is a frequent itemset of D.  If Xi⊆Xj and 

support(Xi) ≠ support(Xj), where i ≠ j, Xi is defined as a closed frequent itemset of D. 

Example 2.4 Considering the database in Figure 2.2.  If the minimum support is two, the 

closed frequent itemsets are {3}, {1, 3}, {2, 5}, and {2, 3, 5}. 

2.2 Algorithm Apriori 

Apriori algorithm is a level-wise technique to discover frequent subsets.  In the category of 

[9], Apriori is a BFS and counting occurrence strategy.  Each level is a join-and-prune 

process based on the property: all nonempty subsets of a frequent subset must also be frequent.  
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Figure 2.3 gives the algorithms for Apriori.  At the k-th pass, Apriori joins the frequent 

(k-1)-subset to generate candidate by the function apriori-gen and stores the candidate 

k-subsets in a hash-tree.  Figure 2.4 shows the function of apriori-gen.  Next, Apriori counts 

the supports of each candidate through the subset function in line 5, Figure 2.3.  For each 

transaction, the subset function can obtain which candidates are contained in it.  And finally, 

prunes the infrequent subsets to determine the frequent k-subset.  Figure 2.5 shows an 

example for Apriori to find frequent subset while the minimum support is two. 

 

 

 

 

 

Figure 2.3: Apriori algorithm [2]. 

 

 

 

 

Figure 2.4: Apriori-gen function in algorithm Apriori [2]. 

1)  L1 = {large 1-itemsets}; 
2)  for (k = 2; Lk-1 ≠φ ; k++) do begin 
3)    Ck = apriori-gen(Lk-1);  // New candidates 
4)    forall transactions t∈D do begin 
5)      Ct = subset(Ck, t);  // Candidates contained in t 
6)      forall candidates c∈Ct do 
7)        c.count++; 
8)    end 
9)    Lk = {c∈Ck  | c.count ≥  minsup} 
10)  end 

11) Answer = U k kL  

insert into Ck 
select p.item1, p.item2, …, p.itemk-1, q.itemk-1 
from Lk-1 p, Lk-1 q 
where p.item1 = q.item1, …, p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1; 
forall itemset c∈Ck do 
  forall (k-1)-subsets s of c do 
    if (s ∉  Lk-1) then 
      delete c from Ck; 
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Figure 2.5: An example for Apriori [2]. 

Figure 2.6 depicts the hash tree that stores the candidate 2-subsets.  The leaf node 

contains a list of itemsets, while the interior node contains a hash table.  The matching 

method starts from root node, and finds all the candidates contained in a transaction t as 

follows.  For the root, it hashes on every item in t, and for the interior node, it hashes on each 

item that comes after the item reached currently.  If it is at the leaf node, it adds the 

corresponding itemsets into answer set.  For example, when scanning database in transaction 

200 ({2, 3, 5}), it starts at the root node, and hashes the items, 2, 3, and 5.  Next, at the hash 
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table linked by the item 2 of root node, it hashes the items 3 and 5, which come after item 2.  

When it is at the leaf node {2, 3} and {2, 5}, it adds these two itemset into answer set.  

Utilizing the same rules, it can easily add the three 2-itemset {2, 3}, {3, 5}, and {2, 5} in to 

answer set. 

Figure 2.6: The candidate 2-itemsets in Figure 2.5 is stored in this hash tree and the dark 

nodes of hash tables are traversed when scanning the transaction 200, {2, 3, 5}. 

To determine the maximum frequent itemset, there is an additional trick at the join 

step.  When generating candidate k-itemset Xk from frequent (k-1)-itemsets 1
1
−kX  and 1

2
−kX , 

a data structure is considered to create two links from Xk to 1
1
−kX  and to 1

2
−kX .  If the 

itemset Xk is determined as a frequent itemset, the itemsets linked by it, that is 1
1
−kX  and 

1
2
−kX  will be removed directly.  But for the determination of closed frequent itemset, the 

support of 1
1
−kX  and 1

2
−kX  will be considered.  If support( 1−k

iX ) = support(Xk), 1−k
iX  

will be removed for i=1 and 2. 
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2.3 Algorithm Eclat 

Eclat is categorized as a DFS and intersecting strategy by [9].  It is beneficial for mining 

frequent subset when the patterns are long [11], owing to its depth-first and transaction-ID list 

intersection mechanisms [4][9].  The search of Eclat follows a depth-first traversal of a 

prefix tree while the one of Apriori follows a breadth first traversal as it is shown in Figure 

2.7. 

The transaction-ID list is a vertical layout of transaction [12] which consists of a list of 

items.  Eclat maintains the transaction-ID list for each frequent itemset. Each transaction-ID 

list records the set of transaction-ID corresponding to the itemset.  Figure 2.8 depicts the 

horizontal and vertical layout of the example dataset shown in Figure 2.2. 

 

Figure 2.7: The traversal method for Apriori and Eclat. 
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Figure 2.8: Horizontal and vertical database layout. 

When generating 2-itemset, Eclat intersects two transaction-ID lists to obtain the 

transaction-ID list of each 2-itemset.  For example, given two 1-itemsets {2} and {3}, and 

their transaction-ID lists are (200, 300, 400) and (100, 200, 300) respectively.  When joining 

2-itemset, the transaction-ID list of {2, 3} is (200, 300), and it means the support of {2, 3} is 

two.  Figure 2.9 depicts an example for Eclat to discover frequent subset, while the 

minimum support is two. 

Another technique to represent the transaction-ID list is using a bit matrix [13], in 

which each row corresponds to an item and each column to a transaction. For example, 

suppose the transaction-ID list of two 1-itemsets {2} and {3} are (200, 300, 400) and (100, 

200, 300) respectively. The bit matrices of these two 1-itemsets are [01110] and [11100]. 

When generating 2-itemset {2, 3}, we just need an AND operator for the above two bit 

matrices and the joined bit matrix is [01100] representing the transaction-ID list of (200, 300). 

Figure 2.10 gives an example of Eclat which represents transaction-ID list as a bit matrix. 

Items

Trans. 

1 2 3 4 5 

100 100  100 100  
200  200 200  200
300 300 300 300  300
400  400   400

Items 

Trans. 

1 2 3 4 5 

100 1  3 4  
200  2 3  5 
300 1 2 3  5 
400  2   5 
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Figure 2.9: An example for Eclat. 

 

 

 

 

 

Figure 2.10: An example for Eclat that represent transacton-ID list as a bit matrix. 
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2.4 Algorithm FP-Growth 

FP-Growth is a divide-and-conquer algorithm and belongs to a DFS and counting occurrence 

strategy for the discovery of frequent itemset without candidate generation [3][8][9].  The 

database is compacted as a prefix tree in main memory and does not need to be scanned while 

the process of mining.  FP-Growth contains two major phases.  The first phase is to 

construct a tree data structure called FP-Tree, which is a prefix tree, to substitute the original 

database.  The second phase is frequent pattern growth, which divides FP-Tree into 

conditional FP-Trees, and mines frequent itemsets from each conditional FP-Tree separately. 

 

 

 

 

 

 

 

 

 

Figure 2.11: An example for FP-Tree construction. 
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Figure 2.11 is an example to construct the FP-Tree from database.  The construction 

can be divided into two steps.  First, it finds the frequent 1-itemset by scanning database 

once and then sorts them in frequency descending order.  Next, it scans database again to 

construct the prefix tree of each transaction.  Each node of the FP-Tree has a link that 

connects to the header table, which contains the frequent 1-itemset. 

After constructing the FP-Tree, the mining process is started.  First, for each frequent 

1-itemset, constructing the conditional pattern base.  The conditional pattern base is the set 

of prefix paths which have the same frequent 1-itemset as their suffix in FP-Tree, and the 

frequent 1-itemset is called suffix pattern.  For example, the conditional pattern base of the 

suffix pattern “m” is {fca:2, fcab:1}, because “m” is the suffix of the two paths <f:4, c:3, a:3, 

m:2> and <f:4, c:3, a:3, b:1>.   

For each conditional pattern base, accumulating the count for each item, and 

constructing the prefix tree of the frequent items.  The prefix tree is the corresponding 

conditional FP-Tree to the conditional pattern base.  For example, Figure 2.12 is the 

conditional FP-Tree of the suffix pattern “m”.  The FP-Growth concatenates the suffix 

pattern with the frequent patterns generated from the conditional FP-Tree.  Taking the 

conditional FP-Tree of “m” as example, given the minimum support is 3 transactions.  The 

frequent patterns are {f}, {c}, {a}, {f, c}, {f, a}, {c, a}, and {f, c, a}, which can be generated 

by recursively mining the conditional FP-Tree.  Finally, the frequent itemsets that have the 

frequent 1-itemset “m” as their suffix are {f, m}, {c, m}, {a, m}, {f, c, m}, {f, a, m}, {c, a, m}, 

and {f, c, a, m}. 
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Figure 2.12: The frequent conditional FP-Tree of “m”. 

The frequent itemsets are mined in each frequent conditional FP-Tree.  Table 2.1 

shows the results of mining frequent itemset.  The first column is the frequent items 

(1-itemset), the second column is the conditional pattern base of these frequent items, the 

third column is the frequent part of the previous column, and the last column is the answer. 

 Table 2.1: The frequent itemset mined by FP-Growth. 

The elements in a set are not ordered in theory.  In order to represent a set (itemset), a 

total order of the elements must been applied.  The Apriori and Eclat algorithm discussed in 

previous sections are both using the lexicographic order, while the FP-Growth algorithm uses 

the frequency descending order as the total order relation.  Figure 2.13 compares the size of 

FP-Trees constructed by frequency descending order and lexicographic order.  The left 

FP-Tree uses the frequency descending order, and contains 11 nodes (except the root node) 

while the right one uses lexicographic order, and contains 13 nodes.   

Item Conditional Pattern Base Frequent Cond. Frequent Itemset 
f φ  φ  φ  
c f:3 f:3 fc:3 
a fc:3 fc:3 fca:3,fa:3,ca:3 
b fca:1,f:1,c:1 φ  φ  
m fca:2,fcab:1 fca:3 fcam:3 ,fcm:3,fam:3,cam:3, fm:3,cm:3,am:3
p fcam:2,cb:1 φ  φ  

{}

f:3

c:3

a:3
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Using the frequency descending order can reduce the size of FP-Tree, because it 

merges the frequent items in fewer nodes effectively.  For example, the “f” node is presented 

once in the (a) tree, but 3 times in (b) tree, in Figure 2.13. 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Comparing the size of FP-Tree with the order of support of items and the 

lexicographic. (a) is for frequency order and (b) is for lexicographic order. 
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2.5 Summary 

The problem of association rule mining was introduced by Rakesh Agrawal et al. in 1993 [1].  

They published the first algorithm, AIS, to solve the problem of frequent itemset mining.  In 

1994, they improved the AIS algorithm, and proposed the well-know algorithm, Apriori [2].  

Apriori reduces the number of database scan into the length of maximum frequent itemset, 

and the search space by lessening the number of candidate itemsets in each pass.  Recently, 

there are many algorithms successfully reduce the number of database scan, improve the 

strategy of traverse search space, and reform the strategy of determine the support value of 

itemset. 

For the breadth-firset search strategy, owing to all of the candidate itemsets for each 

level have to be discovered, the longer the maximum length of frequent itemset is, the more 

the candidate itemsets are generated.  When discovering the long patterns, the depth-first 

search strategy is employed to reduce the candidate generation.  Eclat is such an algorithm 

that utilizes the depth-first search strategy.   

Moreover, Eclat takes the advantages of depth-first search strategy and utilizes the 

transaction-ID intersecting strategy to achieve the fewest times of database scan.  Eclat 

maintains transaction-ID lists for every frequent item.  The support value of an itemset is 

calculated from the length of trasaction-ID list of it.  Although the partition algorithm [14] 

also takes the advantages of transaction-ID list intersecting, the breadth-first search strategy 

causes the expensive computing cost to determine the frequent 2-itemset by intersecting all of 

the 1-itemset transaction-ID lists [4]. 
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FP-Growth reduces the number of times of database scan in to twice.  The first time 

is to determine the frequent 1-itemset, and the second time is to construct the FP-Tree.  Like 

the other algorithms with depth-first search strategy, FP-Growth finds the maximum frequent 

itemset firstly.  However, FP-Growth does not search the maximum frequent itemsets from 

1-itemst, 2-itemset, and so on, but generates them by search the prefix path suffixed by 

frequent 1-itemset in the FP-Tree.  Therefore, FP-Growth economizes the time of generating 

candidate itemsets, and becomes the most efficient algorithm for frequent itemset mining at 

present. 

 

 

 

 


