Appendix 1
 Syntax

Observed Variables
X1-X14
Correlation Matrix
1
.6821
.615 .5881
. 660.706 .5891
. 553 . 549 . 644.5551
. 353 . 341 . 380 . 296 . 3201
. 289 . 263 . 294 . 239. 229.5171
. 348 . 335 . 355 . 306 . 317 . 521 . 6271
. 215 . 221 . 281. 143 . 238. 442 . 403 . 4631
. 297 . 276. 306. 261 . 245 . 372. 496. 433 . 338 1
. 367 . 369. 349. 322 . 320 . 503. 450 . 534 . 430 . 421 1
. 433 . 415 . 409. 421 . 373 . 370.405 .421 . 345 . 4731
. 359 . 343 . 366 . 336. 353 . 483 . 383 . 473. 408 . 291 . 510 . 4181

Sample Size: 2235
Latent Variables
SC SE PV1
Relationships
X1 - X5 = SC
$\mathrm{X} 6-\mathrm{X} 13=\mathrm{SE}$
$\mathrm{X} 14=\mathrm{PV} 1$
$\mathrm{SE}=\mathrm{SC}$
PV1 = SC SE
Set the error variance of X14 to 0
Let the error covariances of X3 and X5 correlate
LISREL Output: SS SC EF RS MI
Path Diagram
Print Residuals
End of Problem

Appendix 2 Goodness of Fit Statistics

> Degrees of Freedom $=74$
> Minimum Fit Function Chi-Square $=1134.67(\mathrm{P}=0.0)$
> Normal Theory Weighted Least Squares Chi-Square $=1141.47(\mathrm{P}=0.0)$
> Estimated Non-centrality Parameter $(N C P)=1067.47$
> 90 Percent Confidence Interval for NCP $=(961.81 ; 1180.55)$
> Minimum Fit Function Value $=0.51$
> Population Discrepancy Function Value $(\mathrm{F} 0)=0.48$
> 90 Percent Confidence Interval for $\mathrm{F} 0=(0.43 ; 0.53)$
> Root Mean Square Error of Approximation $($ RMSEA $)=0.080$
> 90 Percent Confidence Interval for RMSEA $=(0.076 ; 0.085)$
> P-Value for Test of Close Fit $($ RMSEA $<0.05)=0.00$
> Expected Cross-Validation Index $(E C V I)=0.54$
> 90 Percent Confidence Interval for ECVI $=(0.49 ; 0.59)$
> ECVI for Saturated Model $=0.094$
> ECVI for Independence Model $=15.54$
> Chi-Square for Independence Model with 91 Degrees of Freedom $=34698.19$
> Independence $\mathrm{AIC}=34726.19$
> Model AIC $=1203.47$
> Saturated AIC $=210.00$
> Independence CAIC $=34820.16$
> Model CAIC $=1411.54$
> Saturated CAIC $=914.76$
> Normed Fit Index (NFI) $=0.97$
> Non-Normed Fit Index $(\mathrm{NNFI})=0.96$
> Parsimony Normed Fit Index $($ PNFI $)=0.79$
> Comparative Fit Index $(\mathrm{CFI})=0.97$
> Incremental Fit Index $(\mathrm{IFI})=0.97$
> Relative Fit Index $(\mathrm{RFI})=0.96$
> Critical $\mathrm{N}(\mathrm{CN})=208.13$
> Root Mean Square Residual $($ RMR $)=0.051$
> Standardized RMR $=0.051$
> Goodness of Fit Index $(\mathrm{GFI})=0.93$
> Adjusted Goodness of Fit Index $($ AGFI $)=0.90$
> Parsimony Goodness of Fit Index $($ PGFI $)=0.66$

Appendix 3
 Cross Validation Syntax for Original Model

Program for self-concept and self-efficacy
Observed Variables: X1 - X14
Covariance Matrix from file m3
Sample Size: 2235
Latent Variables
SC SE PV1
Relationships
X1 - X5 = SC
X6 - X13 = SE
$\mathrm{X} 14=\mathrm{PV} 1$
$\mathrm{SE}=\mathrm{SC}$
PV1 = SC SE
Set the error variance of X14 to 0
save Sigma in File Model-A
Path Diagram
End of Problem

Program for Two Validation Sample and Compute CVI
Observed variables: X1 - X14
Covariance Matrix from file m4
Sample Size: 2169
Latent Variables
SC SE PV1
Relationships
X1 - X5 = SC
$\mathrm{X} 6-\mathrm{X} 13=\mathrm{SE}$
$\mathrm{X} 14=\mathrm{PV} 1$
$\mathrm{SE}=\mathrm{SC}$
PV1 = SC SE
Set the error variance of X14 to 0
Crossvalidate File Model-A
Path Diagram
End of Problem

Appendix 4 Cross Validation syntax for Modified Model

Program for self-concept and self-efficacy
Observed Variables: X1 - X14
Covariance Matrix from file ma
Sample Size: 2235
Latent Variables
SC SE PV1
Relationships
X1 - X5 = SC
$\mathrm{X} 6-\mathrm{X} 13=\mathrm{SE}$
$\mathrm{X} 14=\mathrm{PV} 1$
$\mathrm{SE}=\mathrm{SC}$
PV1 = SC SE
Set the error variance of X14 to 0
Let the error covariances of X3 and X5 correlate
save Sigma in File Model-A
Path Diagram
End of Problem

Program for Two Validation Sample and Compute CVI
Observed variables: X1 - X14
Covariance Matrix from file mb
Sample Size: 2169
Latent Variables
SC SE PV1
Relationships
X1 - X5 = SC
$\mathrm{X} 6-\mathrm{X} 13=\mathrm{SE}$
$\mathrm{X} 14=\mathrm{PV} 1$
$S E=S C$
PV1 = SC SE
Set the error variance of X14 to 0
Let the error covariances of X3 and X5 correlate
Crossvalidate File Model-A
End of Problem

