
Chapter 3.

DwACM Models

In this chapter, we construct a model to explain two types of data which are a di-

chotomous outcome about if a tested unit is active at the end of the experiment and

a set of observation over time from a continuous measurement. We denote the model

as DwACM, which is an abbreviation of “Dichotomous-data with Auxiliary Continuous

Measurements”. The continuous measurement is regarded as a candidate of a degrada-

tion measurement which may contain some information about the reliability of exper-

imental units. If the relationship of these two types of data is strong, the continuous

measurement can be considered as a good degradation measurement.

3.1 Modeling a Degradation Measurement

An ideal degradation measurement has two characteristics. First, it has to be mono-

tone in time. Otherwise, it is difficult to tell the real condition of a product. Second,

there is a clear critical point, the threshold. Then, the state of a product can be classi-

fied by whether the outcome of the measurement is above or below the given threshold.

For simplicity, we assume all the degradation measurements are decreasing. For those

increasing ones, they can be multiplied by −1 to satisfy the assumption.

To capture the monotone property, we assume that the response of the measurement

is a linear function of time plus a random error. The mean degradation paths (the linear

19



functions) of products have the same intercept and various slopes. It means that the

degradation measurement of all units start at the same value and decay with different

speed because of quality inconsistency. Consider N products. For one specific measure-

ment Y and each individual i, i = 1, · · · , N , Yi1, · · · , Yini
are measured at prespecified

times, ti1, · · · , tini
, respectively. Let

Yij = β0 + βR
i tij + εij, (3.1)

for j = 1, · · · , ni, where β0 is the fixed common intercept and βR
i ’s are random slopes.

Assume that the errors, εij ’s follow independent normal distribution with mean 0 and

variance σ2.

This linear assumption between Y and t might be too strong. However, they can be

transformed in order to fit the linear relationship more. Some basic models for modeling

empirical degradation measurements, such as

Exponential: Y = β0 exp[β1t]ε1,

Power: Y = β0t
β1ε2,

Logarithmic: Y = β0 + β1 log t + ε3,

are all contained in our simple linear model after transformation (taking logarithm to

both sides of exponential and power model), provided ε1 and ε2 follow log-normal dis-

tributions and ε3 follows a normal distribution. Besides, it is well known that for any

monotone function there exists a transformation which transforms the monotone func-

tion into linear. Although there is no guarantee that the transformation can transform

all the degradation paths into linear simultaneously, the transformed paths should have
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similar pattern if they are from similar models. It can be observed, in practice, that the

degradation paths usually decay in parallel. Another reason for using a simple model is

that a complex model is hard to interpret and may not make any sense when there is no

further physics or chemistry knowledge about the measurement. Therefore, the model

(3.1) is applicable.

If Y ’s are observations of a good degradation measurement, the lifetime of product i

will be the time t at which β0 + βR
i t reaches the threshold (the soft failure). According

to the model assumption, the degradation paths of all products have the same starting

values. The difference among slopes, βR
i ’s is the only way to distinguish different paths

and, of course, the reason why β0 + βR
i t as well as the lifetime of product i, Ti, varies

from item to item. Therefore, βR
i should be related to Ti. To derive the relationship, we

assume that the lifetime is the time when its corresponding degradation path reaches

the threshold. Then, βR
i has to be limited to satisfy the condition that

β0 + βR
i Ti = τ,

for all i = 1, · · · , N , where τ denotes the threshold. From the equation above, it can be

derived that the product, βR
i Ti is a constant, τ − β0. As the result,

βR
i =

β1

Ti

,

where β1 equals the fixed constant, τ − β0. Replacing βR
i in (3.1) with β1

Ti
, it can be

rewritten as

Yij = β0 + β1
tij
Ti

+ εij,
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which states that once the lifetime is known the mean degradation process will be de-

termined uniquely. The threshold of the degradation is β0 + β1.

From the derivation above, it can be seen that the mean path contains only one

random coefficient, the slope, is essential. If there are more than one random coefficient,

such as both the slope and the intercept are random, then the one-to-one correspondence

between each random coefficient and the lifetime does not exist. In that case, it is very

difficult to establish the relationship between each random coefficient and the lifetime.

Note that in this dissertation, we use the capital letters to denote both the random

variables and their outcomes. Y is used also to denote the measurement itself depending

on the contexts. If more than one measurements are considered at the same time, we

use different superscripts to distinguish them. The superscript as well as the subscripts

will be dropped out, if there is no confusion.

3.2 The Linkage of Two Types of Data

In our study, the lifetime, Ti, can not be observed. Let us assume Ti follow a dis-

tribution with probability density function (pdf) fi(Ti; θ) and cumulative distribution

function (cdf) Fi(Ti; θ). Many distributions are used to model lifetime data, for ex-

ample, exponential, Weibull, log-normal, etc.. They may also contain covariates. The

proportional hazards model is one possibility in this respect, cf. Lawless (1982).

In this dissertation, we assume lifetime is distributed exponentially. Denote Wi as

the covariate of unit i and consider the following proportional hazards model:

22



fi(Ti; Wi, θ) = α0 exp(α1Wi) exp{−[α0Ti exp(α1Wi)]}. (3.2)

Here, we consider the model with only one covariate. In (3.2) α0 is the hazard rate of the

baseline distribution (Wi = 0), and α1 is the effect caused by of one unit increasing of Wi.

It is that Ti given Wi follows an exponential distribution with mean 1/[α0 exp(α1Wi)].

In our study, we can also observe if product i is active at terminal experimental

time, tini
, in addition to the continuous measurements. Denote Zi as 1 if product i still

performs well at time tini
; 0 otherwise. Thus, if Ti was given, Zi is determined. Recall

that we assume the continuous measurement, Yij, follows a normal distribution with

mean β0 + β1
tij
Ti

and variance σ2.

By using the same idea as that of Sammel, Ryan and Legler (1997), given unobserved

latent variables, we assume that the conditional independence among the continuous

and discrete variables. We apply similar assumption to link Ti, Zi and Yi in one model.

Specifically, if Ti’s were observed, according to the conditional independence assumption,

the complete data log-likelihood for product i would be obtained easily as

log Lc
i(θ; Ti,Yi) = log fi(Ti; θ) + log fθ(Yi|Ti)

= log α0 + α1Wi − α0Ti exp(α1Wi)

−1
2
ni log 2πσ2 − 1

2

∑ni
j=1(

Yij−β1−β2
tij
Ti

σ
)2,

where Y i = (Yi1, · · · , Yini
) and θ = (α0, α1, β0, β1, σ

2). If the responses from different

products are independent, we can get the complete data likelihood

Lc(θ; T ,Y) =
N∏

i=1

Lc
i(θ; Ti,Yi),
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where T = (T1, · · · , TN) and Y = (Y1, · · · ,YN). Integrating out the latent part, the

real likelihood for all products is

L(θ;Y,Z) =
∫
ΩZ

Lc(θ; T ,Y)dT , (3.3)

where Z = (Z1, · · · , ZN) and

ΩZ =
∏

i∈{i|Zi=1}
[tini

,∞) × ∏
i∈{i|Zi=0}

(0, tini
).

When there is no auxiliary measure, the DwACM can be reduced to the binary

response model,

P (Zi = 1) = 1 − F (tini
, α).

However, if there is no binary response, the DwACM can not be reduced to a regular

degradation measurement model. The reason is that in a regular degradation measure-

ment model there must be a known threshold. It can not be determined in the DwACM

if Z is not available. Therefore, the dichotomous response plays an important role. It

provides information about the threshold. We may also say that Z identifies the model.

To illustrate this, we can rewrite the continuous response as

Yij = β0 + β1tijui + εij,

where the reciprocal of ui follows an gamma distribution with mean 1/α and vari-

ance 1/α2. It is obvious that the models with parameter θ = (α, β0, β1, σ
2) and θ∗ =

(α∗, β0, β
∗
1 , σ

2), respectively, are identical when

α∗β∗
1 = αβ1.
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Hence, the model is not identifiable. However, if Zi is also taken into consideration, then

fθ∗(Y i, Zi = 1) =
∫ ∞

t

ni∏
j=1

φ(
Yij − β0 − β∗

1tijui

σ
)fα∗(ui)dui

=
∫ ∞

α∗
α

t

ni∏
j=1

φ(
Yij − β0 − β1tijui

σ
)fα(ui)dui

�= fθ(Y i, Zi = 1),

and so is the case of Zi = 0. Therefore, the model becomes identifiable. Intuitively,

we can get the information about the common intercept and the random slopes from

those responses of the continuous measurement. However, we can not distinguish β1

from 1
Ti

if we do not have the dichotomous results. The dichotomous results provide

the information about the threshold, which is β0 + β1. Once both β0 + β1 and β0 are

estimated, β1 can be estimated easily by simple subtraction. Then, we can tell the fixed

coefficient, β1, from 1
Ti

. Hence, for a product, it is not necessary to have both the binary

result and the auxiliary measures. As long as some of the testing products are with

the dichotomous outcomes which can provide the information about the threshold, the

DwACM works. The DwACM therefore is very flexible.

Most of the time, the likelihood (3.3) does not have a closed form. It is almost

impossible to derive the MLE or the posterior distribution by using classical methods.

Thus, some computational based methods, which are briefly introduced in Chapter 2,

are used. In frequentist setting, the EM algorithm provides a possible approach to obtain

the MLE. If T is also regarded as a unknown parameter, the hierarchical structure can

be found. Hence, we can also consider doing Bayesian analysis, and use MCMC to

approximate the posterior distribution. See Chapter 5 for details.
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