
Chapter 5.

ESTIMATION PROCEDURES

In this chapter, we present estimation procedures to the DwACM. Under the frequen-

tist framework, we sketch an EM algorithm to approximate the MLE, and a bootstrap

method to approximate the standard deviation of the MLE. For Bayesian estimation,

we apply MCMC with Gibbs sampler to approximate the posterior distribution of the

parameters of interest.

5.1 Frequentist Inferences

From frequentist point of view, the likelihood summarizes all information about the

collected data, and the MLE is one of the most common-used estimator. Since the

likelihood function (3.3) involves high dimension integrals, and is difficult to get a closed

form, deriving the MLE from the likelihood directly is almost impossible. That motivates

us applying the EM-algorithm, with some modifications, to approximate the MLE.

Recall that we consider N experimental units. For unit i, we take measures for an

auxiliary continuous measurement at ni prespecified times, ti1, · · · , tini
. Let Yij denote

the result and Zi be the final go-nogo dichotomous outcome. The two iterations of the

EM-algorithm are as follows:

E-Step:

Compute expectations of complete data log-likelihood over the latent parts, T ’s, with
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respect to the conditional distribution given the observed parts, which is

Q(θ|θ(p)) = Q1(α0, α1|θ(p)) + Q2(β0, β1, σ
2|θ(p)) −

N∑
i=1

ni log
√

2π,

where

Q1(α0, α1|θ(p)) = N log α0 + α1

N∑
i=1

Wi − α0

N∑
i=1

E
θ(p)[Ti|Yi, Zi] exp(α1Wi), (5.1)

and

Q2(β0, β1, σ
2|θ(p)) =

N∑
i=1

ni∑
j=1

{
−1

2
log(σ2) − (Yij − β0)

2

2σ2
(5.2)

+
β0β1YijEθ(p) [

tij
Ti
|Yi, Zi]

σ2
−

β2
1Eθ(p) [(

tij
Ti

)2|Yi, Zi]

2σ2

 .

In our example, the latent parts appear in both Q1(α0, α1|θ(p)) and Q2(β0, β1, σ
2|θ(p))

are linear, which means the conditional expected complete log-likelihood can be obtained

by replacing the latent parts by their conditional expectations. However, there are no

closed forms for those expectations, and hence, the ordinary EM-algorithm does not

work.

If it was easy to sample from the conditional distributions, the conditional expec-

tions could be approximated by using simple Monte Carlo methods according to the

following procedure. At first, generate T 1
i , · · · , T B

i from fi(T |Yi, Zi). Then approximate

the conditional expectations of a function appearing in log-likelihood, say g(Ti), by

E
θ(p)[g(Ti)|Yi, Zi] ≈ 1

B

B∑
s=1

g(T s
i ).

Such a method is known as Monte Carlo EM (MCEM), cf. Wei and Tanner (1900).
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It is difficult to sample the Monte Carlo replicates from the conditional distributions

directly in our case. Appreciate to the conditional independence of Y, Z given T , we

have

f(T |Y, Z) =
f(T |Z)f(Y|T , Z)

f(Y|Z)
∝ f(T |Z)f(Y|T ).

By this property, we will describe an efficient Monte Carlo simulation. Before doing

so, we first prove that all those conditional expectations exist. Note that the conditional

expectation can be written as

E[g(Ti)|Y i, Zi] =

∫
ΩZi

g(Ti)f(Ti)f(Y i|Ti)dTi∫
ΩZi

f(Ti)f(Y i|Ti)dTi
,

where g(u) is taken as 1, u, 1/u and 1/u2 in the computation of the conditional expected

complete-data log-likelihood. This leads to

∫
ΩZi

g(Ti)f(Ti)f(Y i|Ti)dTi ≤
∫ ∞

0
g(Ti)f(Ti)f(Y i|Ti)dTi

=
∫ ∞

0
g(

1

Si
)f(

1

Si
)

1

σ′
iS

2
i

φ(
Si − µ′

i

σ′
i

)dSi

≤ C(g, θ)E[g(
1

Si
)

1

S2
i

exp(−αi

Si
)]

< E[g(
1

Si

)
1

S2
i

]

< ∞,

where the expectation is taken with respect to the normal distribution with mean, µ′
i

and variance σ
′2
i , and

(µ′
i, σ

′2
i ) =

(∑ni
j=1(Yij − β0)tij

β1
∑ni

j=1 t2ij
,

σ2

β2
1

∑ni
j=1 t2ij

)
.

Here αi = α0 exp(α1Wi) is the failure rate of the lifetime distribution, and C(g, θ) is a
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constant depends on the function g and the parameters. Therefore all the integrals we

need in the E-Step exist.

To implement it, we first generate B random samples T 1
i , · · · , T B

i from the conditional

distribution of Ti given Zi, which is a truncated exponential distribution. Then, the

expected value of a function g(Ti) can be approximated by

E
θ(p)[g(Ti)|Yi] ≈

B∑
s=1

g(T s
i )

ni∏
j=1

φ(
Yij − β

(p)
0 − β

(p)
1

tij
T s

i

σ(p)
)

B∑
s=1

ni∏
j=1

φ(
Yij − β

(p)
0 − β

(p)
1

tij
T s

i

σ(p)
)

. (5.3)

Note that approximation (5.3) may work poorly when the number of measuring time

is large. The reason behind this and a modification of (5.3) will be given in Chapter 6.

M-Step:

Choosing θ = θ(p+1) to maximize Q(θ|θ(p)). By using conditional independence as-

sumption, the maximization in each iteration can be proceeded by maximizing Q1(α0, α1|θ(p))

and Q2(β0, β1, σ
2|θ(p)) separately. Let (α

(p+1)
0 , α

(p+1)
1 ) be the solution of

∂

∂(α0, α1)
Q1(α0, α1|θ(p)) = 0,

which is equivalent to the following system of equations,
N
α0

−
N∑

i=1

E
θ(p) [Ti|Y i, Zi] exp(α1Wi) = 0,

N∑
i=1

Wi − α0

N∑
i=1

E
θ(p)[Ti|Y i, Zi]Wi exp(α1Wi) = 0.

. (5.4)

We can apply a Newton-Raphson method to find a numerical solution of (5.4). The

(β
(p+1)
0 , β

(p+1)
1 , σ2(p+1)) is the solution of

∂

∂(β0, β1, σ2)
Q2(β0, β1, σ

2|θ(p)) = 0,
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and it can be solved analytically as

β
(p+1)
0 =

(
∑N

i=1

∑ni
j=1 Yij)(

∑N
i=1

∑N
i=1 Ei[(

tij
Ti

)2|.]) − (
∑N

i=1

∑ni
j=1 Ei[

tij
Ti
|.])(∑N

i=1

∑N
i=1 Ei[

tij
Ti

Yij|.])
(
∑N

i=1 ni)(
∑N

i=1

∑ni
j=1 Ei[(

tij
Ti

)2|.]) − (
∑N

i=1

∑ni
j=1 Ei[

tij
Ti
|.])2

,

β
(p+1)
1 =

(
∑N

i=1 ni)(
∑N

i=1

∑ni
j=1 Ei[

tij
Ti

Yij|.]) − (
∑N

i=1

∑ni
j=1 Ei[

tij
Ti
|.])(∑N

i=1

∑ni
j=1 Yij)

(
∑N

i=1 ni)(
∑N

i=1

∑ni
j=1 Ei[(

tij
Ti

)2|.]) − (
∑N

i=1

∑ni
j=1 Ei[

tij
Ti
|.])2

,

and

σ2(p+1) =

∑N
i=1

∑ni
j=1(Yij − β

(p+1)
0 − β

(p+1)
1 Ei[

tij
Ti
|.])2∑N

i=1 ni

,

where Ei[g(T )|.] = E
θ(p)[g(T )|Y i, Zi].

To evaluate the accuracy of the MLE, the standard deviation is estimated by the fol-

lowing bootstrap method. The MLE, θ̂, is calculated at first according to the above EM

algorithm. Then, B bootstrap samples are generalized with respect to the distributions

of which parameter, θ, is replaced by θ̂. For each bootstrap sample, the parameters,

θ̂∗1, · · · , θ̂∗B are calculated via the same above EM algorithm. Then, the estimator of the

standard deviation is given by √√√√ 1

B

B∑
b=1

(θ̂∗b − θ̂)2.

For more materials about the bootstrap method, the reader is referred to Chapter 6 of

Efron and Tibshirani (1993) for details.

5.2 Bayesian Inferences

It is more or less risky by only using a statistical method to find out the degrada-

tion measurement. Therefore, follow-up experiments are often suggested to confirm the

degradation model, which is built upon according to previous experiments. It is natural
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to update the information under the Bayesian framework. Here we consider the case in

which there is no covariate. Specifically,

Ti|α ∼ Exp(α) independently,

Yij|(Ti, β0, β1, σ
2) ∼ N(β0 + β1

tij
Ti

, σ2) independently,

and

Zi|Ti = I(tini
,∞)(Ti).

If the prior is π(θ), then the joint distribution can be written as

f(α, β0, β1, σ
2, T , Y , Z) = π(θ)f(T |α)f(Y |T , β0, β1, σ

2)f(Z|T ).

Assuming that the arguments are mutually independent, then we can write the prior

π(.) as

π(θ) ∝ p(α)p(β0)p(β1)p(σ2).

To avoid the improper posterior, we choose those proper priors of α, β0, β1 and σ2 to be

α ∼ G(τ1, τ2),

β0 ∼ N(µβ0, σ
2
β0

),

β1 ∼ N(µβ1, σ
2
β1

),

and

σ2 ∼ IG(λ1, λ2),

where G(τ1, τ2) denotes the gamma distribution with density function

f(x) ∝ exp{− x

τ2
}xτ1−1,

38



and IG(λ1, λ2) denotes the inverse gamma distribution whose reciprocal follows G(λ1, λ2).

The super parameters setting can be done according to experiences. If there is no infor-

mation available, we can choose super parameters to make the prior variance large so

that the effect of the prior is moderated.

Under the prior distributions, the posterior distribution can not be derived analyt-

ically. The Gibbs sampler provides a solution to find the multi-dimensional posterior

distribution. To implement it, we first derive the full conditional distributions, which

are

α|. ∼ G(N + τ1,
τ2

1 + τ2
∑N

i=1 Ti

),

β0|. ∼ N(
σ2

β0

∑N
i=1

∑ni
j=1(Yij − β1

tij
Ti

) + σ2µβ0

σ2
β0

∑N
i=1 ni + σ2

,
σ2

β0
σ2

σ2
β0

∑N
i=1 ni + σ2

),

β1|. ∼ N(
σ2

β1

∑N
i=1

∑ni
j=1(Yij − β0)(

tij
Ti

) + σ2µβ1

σ2
β1

∑N
i=1

∑ni
j=1(

tij
Ti

)2 + σ2
,

σ2
β1

σ2

σ2
β1

∑N
i=1

∑ni
j=1(

tij
Ti

)2 + σ2
),

σ2|. ∼ IG(

∑N
i=1 ni

2
+ λ1,

2λ2

2 + λ2
∑N

i=1

∑ni
j=1(Yij − β0 − β1

tij
Ti

)2
),

and

Ti|. ∝ exp(−αTi +
bi

Ti
+

ci

T 2
i

)Izi
(Ti),

where bi = β1

σ2

∑ni
j=1(Yij − β0)tij, ci = − β2

1

2σ2

∑ni
j=1 t2ij . All the full conditional distributions

but Ti|.’s are standard from which it is easy to sample. To sample Ti, we can use an

one-iteration Metropolis-Hastings algorithm with proposal kernel exp(−αTi) instead of

sampling from exp(−αTi + bi

Ti
+ ci

T 2
i
) directly. Such a hybrid algorithm is called the

“Metropolis-Hastings-within-Gibbs” sampler. The procedure is described as follows.

The Algorithm:
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1. Start a chain at (α(0), T (0), β
(0)
1 , β

(0)
2 , σ2(0)).

2. Update (α(p), T (p), β
(p)
1 , β

(p)
2 , σ2(p)) by

(2.1) Sampling the α(p+1) from G(N + τ1,
τ2

1+τ2
∑N

i=1
T

(p)
i

).

(2.2) Sampling T
(p+1)
i by the following procedure:

(2.2.1) Sampling a candidate T from Exp(α(p+1)) truncated on either (0, tini
] or

(tini
,∞), depending on if Zi = 0 or 1.

(2.2.2) Generate a point U from U(0, 1).

(2.2.3) If U ≤ min[1, exp(b
(p)
i ( 1

T
− 1

T
j(p)
i

) + c
(p)
i ( 1

T 2 − 1

T
j(p)2
i

))], set T
(p+1)
i = T ;

otherwise keep T
(p+1)
i at T

(p)
i , where b

(p)
i =

β
(p)
1

σ2(p)

∑ni
j=1(Yij − β

(p)
0 )tij and

c
(p)
i = − β

(p)2
1

2σ2(p)

∑ni
j=1 t2ij .

(2.3) Sampling the β
(p+1)
0 from

N
(σ2

β0

∑ ∑
(Yij − β

(p)
1

tij

T
(p+1)
i

) + σ2(p)µβ0

σ2
β0

∑N
i=1 ni + σ2(p)

,
σ2(p)σ2

β0

σ2
β0

∑N
i=1 ni + σ2(p)

)
.

(2.4) Sampling the β
(p+1)
1 from

N
(σ2

β1

∑ ∑
(Yij − β

(p+1)
0 )(

tij

T
(p+1)
i

) + σ2(p)µβ1

σ2
β1

∑ ∑
(

tij

T
(p+1)
i

)2 + σ2(p)
,

σ2
β1

σ2(p)

σ2
β1

∑ ∑
(

tij

T
(p+1)
i

)2 + σ2(p)

)
.

(2.5) Sampling the σ2(p+1) from

IG
(∑N

i=1 ni

2
+ λ1,

2λ2

2 + λ2
∑ ∑

(Yij − β
(p+1)
0 − β

(p+1)
1

tij

T
(p+1)
i

)2

)
.

3. Repeat 2. until p = M0.
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By using the standard burn-in procedure for the simulation, we only keep last M-runs

for doing estimation. The M samples can be used to estimate the posterior distribution,

and the posterior mean and the posterior median of the parameter can then be carried

out easily.
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