
Chapter 6.

EXPERIMENTAL SETTINGS AND SIMULATION

STUDIES

There are two parts in this chapter. In the first section, we describe real experimental

settings in our study. Since the real data set can not be revealed due to confidential

regulation, in the second section, we generate a simulation data set to study the per-

formance of parameter estimation and the degradation selection criterion. For checking

model assumptions, we provide a procedure which consists of several graphic methods

associated with some naive estimators, to sketch the information contained in the data

set. The procedure can also be considered as a previous analysis of the data set.

6.1 Experiment Settings

As mentioned in Chapter 1, under the military standard, the lifetime of a MK71

electric detonator is typically lasting very long. Under the normal using condition, it

takes long time to observe a failure occurs for the highly reliability products. Because of

the time and cost constrains, it is almost impossible to collect data by only waiting for

a failure occurring. Therefore, an accelerated experiment is conducted to deal with this

problem. In our experiment, temperature is chosen to be the only accelerated factor,

because it is easy to control and is the major effect for lifetime according to experiences.

The temperature setting in each day is cyclic. At the beginning of each cycle the

temperature is increasing from the room temperature (say 25◦C) until reaching the high
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temperature. It maintains at the high temperature for eight hours then decreases to

the low temperature. The same, the temperature maintains at the low temperature

for eight hours then return to the room temperature. It takes four hours to adjust the

temperature gradually and measure (at the measuring times) between the periods of

high and low temperature. Considering the cost and efficiency, 30 experimental units

are applied to each three levels equally. The low temperature is set to be −54◦C, and

the high temperatures are set respectively to be 60◦C, 70◦C, and 80◦C for level 1, 2

and 3, where −54◦C and 80◦C are the lowest and highest temperature under which the

experiment can be done safely.

According to engineer’s experience, the probability of a MK71 electric detonator’s

lifetime exceeding 60 days is less than a half when the experiment is proceed at level

3. For each level, there are 10 measuring times, the 6th, 12th, · · · , 60th day since the

experiment begins. Thus, at the end of experiment, we have a good chance to observe

failures occurring. Finally, all the experimental units fired up to see if they are still

functioning in the end of the experiment.

6.2 Simulation Studies

According to the real experiment setting, we construct a simulation study. In the

simulation study, 30 random samples, T1, · · · , T30, are sampled according to (3.2) with

covariate W1, · · · , W30, respectively. The parameter (α0, α1) is chosen to be (0.01, 0.05),
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and the W ′s are as follows:

Wi =




35 i = 1, · · · , 10,

45 i = 11, · · · , 20,

55 i = 21, · · · , 30,

which means the data are from 3 different groups with covariates 35, 45 and 55, re-

spectively. They denote the temperature differences of the experimental and the room

temperatures. For example, in group 1, the covariate 35 is the experimental temperature

60 minus 25, which is the assuming room temperature. Under the setting, (5.4) can be

solved analytically as




α0 = 30∑30

i=1
E
θ(p) [Ti|Y i,Zi] exp(α1Wi)

,

α1 =
1

20
log

∑10
i=1 E

θ(p)[Ti|Y i, Zi]∑30
i=11 E

θ(p)[Ti|Y i, Zi]
.

The random sample is displayed in Table 1. Note that they are unobservable in reality.

group1 61.51 12.53 9.66 5.07 18.13 21.71 6.99 18.44 10.79 0.18

group2 24.67 3.48 8.03 3.70 1.12 21.63 14.90 0.83 25.68 32.96

group3 0.33 3.02 1.17 7.82 22.78 3.03 3.28 1.96 14.82 1.59

Table 1: The random sample which is used in the simulation study.

We consider 4 auxiliary measurements, Y 1, Y 2, Y 3, and Y 4. For the linear degrada-

tion the lifetime is determined by the slope and the difference between the intercept and

the threshold. Considering the shifting, the intercept itself does not have impacts on the
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lifetime. In the study we, therefore, consider only the effects from the slopes and the

variations of the random errors. The parameter configurations for these four auxiliary

measurements are in Table 2:

measurements (β0, β1, σ
2)

Y 1 (100,−10, 1)

Y 2 (100,−10, 4)

Y 3 (100,−20, 1)

Y 4 (100,−20, 4)

Table 2: The parameter setting in the simulation study.

By rescaling, the measures are taken at (ti1, · · · , ti10) = (1, · · · , 10) for all i. The results

of generalized Yij’s as well as Zi’s (=1 if Ti > 10 = ti10) are displayed in Figure 2.

In each graph of Figure 2, we observe that there is a linear decreasing trend and a

cut point between the circles and crosses (around 90 for Y 1 and Y 2; 80 for Y 3 and Y 4,

especially for Y 3, there is even no overlap). Thus, all of the Y 1, · · · , Y 4 have these two

important characters of an ideal degradation measurement described in section 3.1.

If the unobserved lifetimes were known, they could be used to check the assumptions

about the lifetime distributions and the effects of the covariates (the proportional hazards

model). To gain more information about the potential lifetime distribution, we need, at

first, to estimate the unobserved Ti’s. To do the implementation, we propose a 2-step

method described as follows.
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Figure 1: The simulated Y 1
ij, · · · , Y 4

ij . For each i, Yij are connected with (—) for those i in

group 1, (· · · ·) for group 2 and (·—·) for group 3. At ti10 = 10, the circles denote those with

Zi = 1 and the crosses with Zi = 0.

Step 1: Find a suitable threshold τ̃ .

Divide Yi10’s into two groups according to Zi = 0 or 1. Let Y 0
i10 and Y 1

i10 denote the

classification result. Then, the threshold can be estimated by

τ̃ =
max Y 0

i10 + min Y 1
i10

2
. (6.1)

The estimator in (6.1) usually works better than the Fisher’s discriminant function,
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which is [Y 0
i10 + Y 1

i10]/2, where Y 0
i10 and Y 1

i10 are the averages of two groups, respectively.

The reason is that the sample mean is affected by extreme observations more, and the

variance of observations from different linear degradation paths getting larger as the

observing time increasing. Hence, the Fisher’s discriminant function performs poorly

when an experiment takes longer time.

Step 2: Estimate the lifetime Ti.

For each unit i, consider the linear model separately

Yij = β0 + βitij + εij . (6.2)

Let (β̃0, β̃i) be the least square estimator (LSE) of (β0, βi). Then we estimate Ti by

T̃i =
τ̃ − β̃0

β̃i

.

The residuals can be also used to check the normality assumption of random errors and

to estimate σ2.

Once the Ti’s are estimated, the rest model checking procedure can be done by using

some standard graphic methods. cf. Chapter 6 of Meeker and Escobar (1998).

In our simulation study, we estimate T1, · · · , T30 according to the above 2-step method.

To check the exponential lifetime assumption, in Figure 3, we plot − log(1− Ŝ(T̃ )) over

tij , where Ŝ(T̃ ) is the empirical survival function.

Three parallel lines can be observed in each graph except measurement Y 2 (the circles),
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Figure 2: − log(1 − Ŝ(T̃ )) vs. t pluses are for group 1, triangles for group 2 and circles for

group 3

which means the lifetime in each group follows an exponential distribution with different

means.

To study covariates effect, the reciprocal of the sample mean in each group, which

is the MLE of the hazard rate in an exponential distribution (αg1 for group 1, αg2 for

group 2, and αg3 for group 3), is plotted versus the corresponding covariates as shown

in Figure 4.
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Figure 3: αgk vs Wgk

We can observe that there is an exponential relation between the parameters and the

covariates in Figure 4. Taking the logarithm over all of the α’s, we fit the linear regression

log αgk = γ0 + γ1Wgk + εk, (6.3)

for k = 1, 2, 3, where Wg1 = 35, Wg2 = 45 and Wg3 = 55. Then, the α0 and α1 in (3.2)

can be estimated by

(α̃0, α̃1) = (exp γ̃0, γ̃1),

where (γ̃0, γ̃1) is the LSE of (γ0, γ1) in (6.3).
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Beside the usefulness of model checking for given assumptions, the above procedure

also provides an initial estimator of the parameters, which can be used as the starting

point of the EM algorithm.

In the following, we will make one modification which has mentioned in section

5.1 to implement the EM algorithm. Before that, we note the weight function is very

concentrated on its maximum, which is a main reason to explain why the calculation of

conditional expectations in (5.3) does not work well. To see this, the weight function is a

product of several normal density functions (it is 10 in our simulation study.) Regarded

it as a function of 1/T
(p)
i , it is the normal random variable with mean µ

(p)
i and variance

σ
2(p)
i , with

(µ
(p)
i , σ

2(p)
i ) =

(∑ni
j=1(Yij − β

(p)
0 )tij

β
(p)
1

∑ni
j=1 t2ij

,
σ2(p)

β
(p)2
1

∑ni
j=1 t2ij

)
.

Under our simulation setting, the variance is 2.60 × 10−5, 1.04 × 10−4, 6.49 × 10−6

and 2.60 × 10−5 when Y 1, · · · , Y 4 are used as an auxiliary measurement, respectively.

Therefore, only few draws contribute to the calculation of the conditional expectations

in (5.3), and most of them vanish. Sometimes, the weight is rounded to 0 and overflow

occurs.

To make the calculation more efficient, we add a point T̂
(p)
i , to the Monte Carlo

sample, which is defined as

T̂
(p)
i =




min[ 1

µ
(p)
i

, t10] if Zi = 1,

max[ 1

µ
(p)
i

, t10] if Zi = 0.

Note that this maximizes the weight function, and the modification solves the overflow
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problem. The extra point contributes exp{−1
2
(

1/T̂ (p)
i−µ

(p)
i

σ
(p)
i

)2} (the normalizing constant,

1√
2πσ(p) i

, is omitted) to the denominator of (5.3), which is closed to 1 if T̂
(p)
i is closed to

1

µ
(p)
i

.

The approximation above is similar to the Laplace method. In traditional Laplace

method, the integration is approximated by plugging the maximum of the integrand

into the integrand. Here we plug in the maximum of the weight function. The loss of

efficiency is negligible because the weight function is extremely peaked. What we gain

is that once the maximum of the weight function is obtained, it can be used to calculate

all the expectations which are needed in the E-step. In addition, no calculation of

normalizing constant is needed. The results are reported in Table 3.

If CCP is used as the measurement selection criterion, Y 3 is the best among all the

4 measurements (|β̂1|/σ̂=9.59, 5.51, 20.31 and 9.48 for Y 1, · · · , Y 4, respectively). When

it is used as a degradation measurement, the threshold is estimated by 80.76(β̂0 + β̂1).
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measurements α̃0, α̂0(Ŝtd.) α̃1, α̂1(Ŝtd.)

Y 1 1.97 × 10−2, 7.91 × 10−3(2.54 × 10−2) 3.54 × 10−2, 5.62 × 10−2(2.45 × 10−2)

Y 2 3.56 × 10−3, 9.46 × 10−3(4.60 × 10−2) 6.86 × 10−2, 4.88 × 10−2(2.95 × 10−2)

Y 3 1.13 × 10−2, 9.38 × 10−3(2.18 × 10−2) 4.87 × 10−2, 5.17 × 10−2(2.36 × 10−2)

Y 4 8.38 × 10−3, 5.08 × 10−3(1.34 × 10−2) 5.08 × 10−2, 6.27 × 10−2(2.80 × 10−2)

β̃0, β̂0(Ŝtd.) β̃1, β̂1(Ŝtd.) σ̃2, σ̂2(Ŝtd.) r̃, r̂(Ŝtd.)

100.13, 100.16(0.17) −9.35,−9.20(0.61) 1.22, 0.92(0.23) 8.48, 9.59(1.09)

99.95, 99.98(0.45) −11.07,−11.05(1.49) 5.47, 4.02(0.52) 4.73, 5.51(0.96)

100.03, 99.99(0.14) −19.27,−19.27(0.52) 1.23, 0.90(0.91) 17.38, 20.31(2.71)

99.72, 99.91(0.35) −19.17,−18.68(1.45) 4.93, 3.88(0.41) 8.63, 9.48(1.05)

Table 3: The results of estimation (θ̃, θ̂(Ŝtd.)) stands for the initial estimator, the refined esti-

mator by EM algorithm (the standard deviations are estimated by 1000 bootstrap replicates).
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To see the performance of the estimates, we repeat the procedure above 1,000 times

and the means and the standard deviations of the sampling distributions are in Table

4.

measurements α0 α1

Y 1 1.93 × 10−2(3.53 × 10−2) 5.09 × 10−2(2.54 × 10−2)

Y 2 2.66 × 10−2(3.86 × 10−2) 4.95 × 10−2(3.00 × 10−2)

Y 3 1.91 × 10−2(3.67 × 10−2) 5.04 × 10−2(2.32 × 10−2)

Y 4 1.90 × 10−2(2.82 × 10−2) 5.14 × 10−2(2.61 × 10−2)

β0 β1 σ2 r

100.02(0.17) −9.90(0.65) 0.96(0.28) 10.24(1.21)

100.24(0.44) −9.33(1.36) 4.02(0.50) 4.69(0.81)

100.00(0.15) −19.95(0.56) 0.95(0.62) 21.14(4.23)

100.05(0.34) −19.81(1.40) 3.77(0.53) 10.34(1.66)

Table 4: The means and the standard deviations of the sampling distributions of θ̂ based on

1,000 replicates.

From Table 4, we observe that the estimation of α0 does not perform well, although,

the confidence interval covers the true parameter. The poor performance is due to the

variance caused by extrapolation. To increase the precision, more sample size and more

sophisticated design are needed. There is only once that Y3 is not selected as the best

degradation measurement.
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We generate also a data set to demonstrate the effectness of the MCMC algorithm

described in section 5.2. The parameters and the prior setting are given in Table 5.

parameters true value prior

α 0.1 G(4, 0.025)

β0 100 N(100, 2500)

β1 −20 N(−20, 100)

σ2 1 IG(6, 0.2)

Table 5: The true value and prior setting in the simulation study.

The prior distribution is chosen so that the means are the true values, and the ratios

of mean to its standard deviation is 2. The generated ten latent lifetimes are

1.22 9.84 8.63 14.10 5.50

5.47 9.30 5.39 19.26 7.86

The measuring time is still set to be (1, 2, · · · , 10). The starting values are sampled

from the prior distribution. We iterate the chain 50, 000 (the M0 in section 5.2) times,

and only the last 2, 000 (the M) runs are recorded. The accepted rate of the candidates

from the proposal distribution is about 10% empirically. The results of the final 2, 000

runs are displayed in Figure 5 and the histograms are in Figure 6.
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Figure 4: The final 2000 runs of the Markov chain

From the estimated posterior distribution, the posterior means and the posterior

medians can be obtained as shown in Table 6.

α β0 β1 σ2

Mean 0.1099 99.7700 −20.2019 0.9421

Median 0.1074 99.7713 −20.0218 0.9277

Table 6: The obtained posterior means and the posterior medians in the simulation study.
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Figure 5: The histograms of the posterior distributions.
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