Chapter 2

Preliminaries

The diallel cross experiments involving p(p+1)/2 distinct crosses are considered. Let *d* be a block design for a diallel cross experiment with *p* test lines, one control line, and *b* blocks of size *k* each. Let s_{di} denote the number of times line *i* occurs in crosses in *d*, i = 0, 1, ..., p, let $g_{dii'}$ denote the number of times the cross (i, i') appears in *d*, $\forall i \neq i', i, i' = 0, 1, ..., p$, and let n = bk denote the total number of crosses in *d*. The model for design *d* is then assumed to be

$$\vec{Y}_d = \mu \vec{1}_n + \Delta_{1d} \vec{\tau} + \Delta_{2d} \vec{\beta} + \vec{\varepsilon} ,$$

825

where \vec{Y}_d is the $n \times 1$ vector of observed responses, μ is the overall mean, $\vec{1}_n$ denotes the $n \times 1$ vector of 1's, $\vec{\tau} = (\tau_0, \tau_1, \dots, \tau_p)'$ is the vector of p + 1 general combining ability effects, $\vec{\beta} = (\beta_1, \dots, \beta_b)'$ is the vector of b block effects, Δ_{1d}, Δ_{2d} are the corresponding design matrices, that is, the (s,h)th element of Δ_{1d} is 1 if the sth observation pertains to line h, and is zero, otherwise; and the (s,l)th element of Δ_{2d} is 1 if the sth observation pertains to block l, and is zero, otherwise; $\vec{\varepsilon}$ is the $n \times 1$ vector of uncorrelated random errors with mean zero and constant variance σ^2 . The coefficient matrix of the reduced normal equations for estimating $\vec{\tau}$ is

$$C_d = G_d - (1/k)N_d N_d',$$

where $G_d = \Delta'_{1d}\Delta_{1d} = (g_{dii'})$, $g_{dii} = s_{di}$, and $N_d = \Delta'_{1d}\Delta_{2d} = (n_{dij})$, n_{dij} is the number of times line *i* occurs in block *j*. Note that the row sums and column sums of C_d are all zero. In this thesis, our focus is on the estimation of the test line versus control contrasts $(\tau_1 - \tau_0, \dots, \tau_p - \tau_0)'$, and by Bechhofer and Tamhane (1981), and Das, Gupta, and Kageyama (2002), the information matrix, $M_d = (m_{dii'})$, for the estimation of $(\tau_1 - \tau_0, \dots, \tau_p - \tau_0)'$ is obtained by deleting the first row and first column of C_d , and

$$M_{d} = \begin{cases} s_{di} - (1/k) \sum_{j=1}^{b} n_{dij}^{2} , \text{ for } i = i' \\ g_{dii'} - (1/k) \sum_{j=1}^{b} n_{dij} n_{di'j}, \text{ for } i \neq i' \end{cases}$$

Let D(p+1,b,k) be a collection of all connected designs with p test lines, one control line, b blocks of size k. A design $d^* \in D(p+1,b,k)$ is said to be A-optimal if it minimizes $\sum_{i=1}^{p} Var(\hat{\tau}_i - \hat{\tau}_0)$, where $\hat{\tau}_i - \hat{\tau}_0$ is the best linear unbiased estimator (BLUE) of $\tau_i - \tau_0$, i = 1, ..., p, over all designs in D(p+1,b,k), that is, d^* satisfies

$$\sum_{i=1}^{p} Var(\hat{\tau}_{d^{*}i} - \hat{\tau}_{d^{*}0}) = \min_{d \in D(p+1,b,k)} \sum_{i=1}^{p} Var(\hat{\tau}_{di} - \hat{\tau}_{d0}), \text{ or}$$
$$trM_{d^{*}}^{-1} = \min_{d \in D(p+1,b,k)} trM_{d}^{-1}.$$

For a design $d \in D(p+1,b,k)$, applying the averaging technique in Kiefer (1975), Majumdar and Notz (1983), and Jacroux and Majumdar (1989), one can show that

$$trM_d^{-1} \ge tr\overline{M}_d^{-1},$$

where $\overline{M}_d = (1/p!) \sum_{\pi} \pi \overline{M}_d \pi'$, is the average of all possible permutations of the

p test lines on M_d , and π is the corresponding $p \times p$ permutation matrix. We should note that \overline{M}_d is completely symmetric, that is, $\overline{M}_d = aI_p + bJ_{p,p}$, where I_p is the $p \times p$ identity matrix, and $J_{p,p}$ is a $p \times p$ matrix of 1's. Among all designs in D(p+1,b,k), a group of designs having completely symmetric information matrices is called a type *S* block design by Choi, Gupta, and Kageyama (2002).

Definition 2.1. (Choi, Gupta, and Kageyama (2002)) A design $d \in D(p+1,b,k)$ is a type *S* block design if $\forall i \neq i' = 1, ..., p$, $g_{d0i} = g_0$, $g_{dii'} = g_1$, $\sum_{j=1}^{b} n_{d0j} n_{dij} = \lambda_0$, and $\sum_{j=1}^{b} n_{dij} n_{di'j} = \lambda_1$, where g_0, g_1, λ_0 , and λ_1 are integers.

A type *S* block design if it further satisfies that the control line as well as the *p* test lines appears as evenly as possible in each block is called a type S_0 block design by Das, Gupta, and Kageyama (2002), and their A-optimality property has also been shown.

Definition 2.2. (Das, Gupta, and Kageyama (2002)) A type *S* block design *d* is said to be a type S_0 block design, denoted as $S_0(p, b, k, g_0, g_1, \lambda_0, \lambda_1)$, if it satisfies $|n_{d0j} - n_{d0j'}| \le 1$, $|n_{dij} - n_{di'j'}| \le 1$, for i, i' = 1, ..., p; j, j' = 1, ..., b.

Through straightforward calculation, a type S_0 block design d has the following properties.

(i) $s_{d0} = pg_0$, (ii) $s_{d1} = \dots = s_{dp} = g_0 + (p-1)g_1 = s_1$, say,

(iii)
$$pg_0 + (p(p-1)/2)g_1 = bk$$
,
(iv) $\sum_{j=1}^b n_{d0j}^2 = p(2kg_0 - \lambda_0)$,
(v) $\sum_{j=1}^b n_{dij}^2 = 2k(g_0 + (p-1)g_1) - (p-1)\lambda_1 - \lambda_0$, $i = 1, ..., p$,
(vi) $M_d = ((p\lambda_1 + \lambda_0)/k - g_0 - pg_1)I_p + (g_1 - \lambda_1/k)J_p$, and
the eigenvalues μ_{di} , $i = 1, ..., p$, of M_d are $\mu_{d1} = \lambda_0/k - g_0$
 $\mu_{d2} = \dots = \mu_{dp} = (\lambda_0 + p\lambda_1)/k - g_0 - pg_1$.

Let

$$g(s_{d0}; p, b, k) = \frac{p}{s_{d0} - h(s_{d0})/k} + \frac{(p-1)^2}{2bk - s_{d0} - a(s_{d0})/k - (s_{d0} - h(s_{d0})/k)/p},$$

where $a(s_{d0}) = (2bk - s_{d0})(2y_1 + 1) - pby_1(y_1 + 1)$, $h(s_{d0}) = s_{d0}(2y_2 + 1)$ $-by_2(y_2 + 1)$, $y_1 = [(2bk - s_{d0})/pb]$, $y_2 = [s_{d0}/b]$, and [·] is the greatest integer function. Das, Gupta, and Kageyama (2002) show that for a design $d \in D(p+1,b,k)$, $trM_d^{-1} \ge tr\overline{M}_d^{-1} \ge g(s_{d0};p,b,k)$, and the equalities holds when M_d is completely symmetric. Using the above inequality, the A-optimality of type S_0 block design is thus proved.

Theorem 2.1. (Das, Gupta, and Kageyama (2002)) Suppose s_0 is an integer defined by $g(s_0; p, b, k) = \min_{1 \le s_d \le c} g(s_{d0}; p, b, k)$, where c = bk if (i) p = 5, k = 3,

(ii)
$$p = 4$$
, k is odd or (iii) $p = 3$, else $c = b[k/2]$. Then a type S_0 block design
 $S_0(p, b, k, g_0, g_1, \lambda_0, \lambda_1)$ with $g_0 = s_0/p$, $g_1 = (s_1 - g_0)/(p-1)$,
 $\lambda_0 = (2ks_0 - h(s_0))/p$, $\lambda_1 = (2ks_1 - h(s_1) - \lambda_0)/(p-1)$ and $s_1 = (2bk - s_0)/p$

is optimal in D(p+1,b,k).

However, the theorem can be generalized as follows. Let $\mu_{d1} = (ks_{d0} - \sum_{j=1}^{b} n_{d0j}^2)/pk$, then in Das, Gupta, and Kageyama (2002) one has $trM_d^{-1} \ge \mu_{d1}^{-1} + (p-1)^2 (2bk - s_{d0} - a(s_{d0})/k - \mu_{d1})^{-1} = \theta_d$, say.

Lemma 2.2. For given values of p, b, and k, suppose $d \in D(p+1,b,k)$ has $\sum_{i=1}^{p} \sum_{j=1}^{b} n_{dij}^{2} = a(s_{d0})$, and $s_{d0} > b[k/2]$. Then there exists $d^{*} \in D(p+1,b,k)$ having $\sum_{i=1}^{p} \sum_{j=1}^{b} n_{d^{*}ij}^{2} = a(s_{d^{*}0})$ with $s_{d^{*}0} \le b[k/2]$, and satisfying $\theta_{d^{*}} \le \theta_{d}$ unless p = 3.

Proof: In the proof of Lemma 2.4 of Das, Gupta and Kageyama (2002), they set $n_{d^{*0}j} = n_{d0j}$ if $n_{d0j} \le [k/2]$ and $n_{d^{*0}j} = k - n_{d0j}$ if $n_{d0j} > [k/2]$, and show that $\mu_{d1^{*}} = \mu_{d1}$, and $2bk - s_{d0} - l(s_{d0})/k$ decreases as s_{d0} increases except when (i) p = 5, k = 3, (ii) p = 4, k odd, and (iii) p = 3. In the following, one can show that (i) and (ii) can be released.

Let $\psi(s_{d0}) = 2bk - s_{d0} - a(s_{d0})/k$. In (i), $\psi(s_{d0}) = (2/3)(6b - s_{d0})(1 - y_1)$ + $5by_1(y_1 + 1)/3$ where $y_1 = [(6b - s_{d0})/5b]$. For $0 < s_{d0} \le b$, then $y_1 = 1$, and $\psi(s_{d0}) = 10b/3$ is a constant. For $b < s_{d0} < 6b$, then $y_1 = 0$, $\psi(s_{d0}) = 2(6b - s_{d0})/3$ is a decreasing function in s_{d0} . Moreover, $\psi(b) - \psi(b+1) = 2/3$. Hence if $s_{d0} > b[k/2] = b$, there exists a design d * having $s_{d^{*0}} \le b$ and $\theta_{d^*} \le \theta_d$.

Similarly, in (ii), $\psi(s_{d0}) = (2b - s_{d0}/k)(k - 2y_1 - 1) + 4by_1(y_1 + 1)/k$, where

 $y_1 = [(2bk - s_{d0})/4b] = [k/2 - s_{d0}/4b]$. For $0 < s_{d0} \le 2b$, then $y_1 = (k-1)/2$, and $\psi(s_{d0}) = b(k^2 - 1)/k$ is a constant. For $2b < s_{d0} < 2bk$ and fix value y_1 , $\psi(s_{d0})$ is a decreasing function in s_{d0} . Moreover, denote s' = (2 + 4u)b, s'' = (6 + 4u)b, where $u \ge 0$ is an integer, then

$$y_{1} = \begin{cases} (k-1)/2 - u, & \text{when } s_{d0} = s', \\ (k-3)/2 - u, & \text{when } s_{d0} = s'', \end{cases}$$
$$\psi(s') - \psi(s'') = 8b(u+1)/k > 0, \text{ and}$$
$$\psi(2b) - \psi(2b+1) = 2/k.$$

Hence $\psi(s_{d0})$ is a decreasing function whenever $2b < s_{d0} < 2bk$. Thus, if $s_{d0} > b[k/2]$, there exists a design d * having $s_{d*0} \le b[k/2] = b(k-1)/2$ and $\theta_{d*} \le \theta_d$.

A less restrictive and more efficient theorem, in searching for the "best" value of s_{d0} , is given in the following.

Theorem 2.3. For given values of p, b, and k, a type S_0 block design $S_0(p, b, k, g_0, g_1, \lambda_0, \lambda_1)$ is A-optimal if it satisfies

- (i) s_0 is a positive integer such that $g(s_0; p, b, k) = \min_{1 \le s_{d0} \le c} g(s_{d0}; p, b, k)$, where c = bk if p = 3, else c = b[k/2],
- (ii) $s_1 = (2bk s_0) / p$,
- (iii) $g_0 = s_0 / p, g_1 = (s_1 g_0) / (p 1),$
- (iv) $\lambda_0 = (2ks_0 h(s_0))/p, \ \lambda_1 = (2ks_1 h(s_1) \lambda_0)/(p-1).$