
Chapter 2 

Preliminaries 

The diallel cross experiments involving 2/)1( +pp  distinct crosses are 

considered. Let d be a block design for a diallel cross experiment with p test lines, 

one control line, and b blocks of size k each. Let  denote the number of times 

line i occurs in crosses in d, i = 0, 1, … , p, let  denote the number of times 

the cross  appears in d, 

dis

idig ′

),( ii ii′ ′≠∀ , i,  i′= 0, 1, … , p, and let n = bk denote 

the total number of crosses in d. The model for design d is then assumed to be 

εβτµ KGKKK
+∆+∆+=Y 1 ddnd 21 , 

where dY
K

 is the  vector of observed responses, µ is the overall mean, 1×n n1
K

 

denotes the  vector of 1’s, 1×n ),,,( 10 ′= pττττ "K  is the vector of p + 1 general 

combining ability effects, ),,( 1 ′= bβββ "
K

 is the vector of b block effects, 

 are the corresponding design matrices, that is, the (s,h)th elememt of 

 is 1 if the sth observation pertains to line h, and is zero, otherwise; and the 

(s,l)th element of  is 1 if the sth observation pertains to block l, and is zero, 

otherwise; 

dd 21 , ∆∆

d1∆

d2∆

εK  is the    vector of uncorrelated random errors with mean zero 

and constant variance . The coefficient matrix of the reduced normal 

equations for estimating 

1×n

2σ

τK  is 

dddd NNkGC ′−= )/1( , 
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where )(11 ididdd gG ′=∆∆′= , didii sg = , and )(21 dijddd nN =∆∆′= ,  is the 

number of times line i occurs in block j. Note that the row sums and column sums 

of  are all zero. In this thesis, our focus is on the estimation of the test line 

versus control contrasts 

dijn

dC

),,( 001 ′−− ττττ p" , and by Bechhofer and Tamhane 

(1981), and Das, Gupta, and Kageyama (2002), the information matrix, 

, for the estimation of )( idid mM ′= ),,( 001 ′−− ττττ p"  is obtained by deleting 

the first row and first column of , and dC
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Let  be a collection of all connected designs with p test lines, 

one control line, b blocks of size k. A design 

),,1( kbpD +

),,1(* kbpDd +∈  is said to be 

A-optimal if it minimizes , where )ˆˆ( 01 ττ −∑ =
p
i iVar 0ˆˆ ττ −i  is the best linear 

unbiased estimator (BLUE) of 0ττ −i , i = 1, … , p, over all designs in 

, that is, d* satisfies ),,1( kbpD +

),,1( kbpDd +∈

),,1( +∈ kbpDd

),,1( kbpDd +∈

)ˆˆ(min)ˆˆ( 010*1 * d
p
i did

p
i id VarVar ττττ −=− ∑∑ == , or 

.min 11
*

−− = dd trMtrM  

For a design , applying the averaging technique in Kiefer 

(1975), Majumdar and Notz (1983), and Jacroux and Majumdar (1989), one can 

show that 

,11 −− ≥ MtrtrM dd  

where ππ ′= ∑ MpM )!/1( π dd , is the average of all possible permutations of the 
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p test lines on , and π is the corresponding dM pp×  permutation matrix. We 

should note that dM  is completely symmetric, that is, pppd bJaIM ,+= , where 

 is the pI pp×  identity matrix, and  is a ppJ , pp×  matrix of 1’s. Among all 

designs in , a group of designs having completely symmetric 

information matrices is called a type S block design by Choi, Gupta, and 

Kageyama (2002). 

),,1( kbpD +

Definition 2.1. (Choi, Gupta, and Kageyama (2002)) A design  

is a type S block design if 

),,1( kbpDd +∈

'ii ≠∀ = 1, … , p, ,00 gg id = 1gg idi =′ , 

, and , where  ,01 0=j dijjd 11=j jiddij 0 1 0λ=∑b nn λ=∑ ′
b nn g ,g λ , and 1λ  are integers. 

A type S block design if it further satisfies that the control line as well as the 

p test lines appears as evenly as possible in each block is called a type  block 

design by Das, Gupta, and Kageyama (2002), and their A-optimality property has 

also been shown. 

0S

Definition 2.2. (Das, Gupta, and Kageyama (2002)) A type S block design d is 

said to be a type S0 block design, denoted as ),,,,,,( 10100 λλggkbpS , if it 

satisfies  1,1|| ≤− nn 00 ′jdjd || ≤− ′′jiddij nn , for i, i′= 1, … , p; j, = 1, … , b. j′

Through straightforward calculation, a type S0 block design d has the 

following properties. 

(i)  , 00d

1101 dpd

pgs =

(ii) )1( sgpgss =−+===" , say, 
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(iii) bkgpppg =−+ )2/)1(( ,10

001 0=j jd

01101=j dij

ppd 111001

 

(iv) , )2(2 λ−=∑ kgpnb

(v)  i = 1, … , p,  ( ) ,)1()1(22 λλ −−−−+=∑ pgpgknb

(vi) ( ) JkgIpggkpM )/(/)( λλλ −+−−+= , and 

the eigenvalues diµ , pi ,,1…= , of  are dM 001 / gkd −= λµ , 

10102 dpd /)( pggkp −−+=== λλµµ " . 

Let  

,
/)/)((/)(2

)1(
/)(

),,;(
0000

2

00
0 pkshsksasbk

p
kshs

pkbpsg
dddddd

d −−−−
−

+
−

=   

where )1()12)(2()( 11100 +−+−= ypbyysbksa dd ,  

, , 

)12()( 200 += yssh dd

)1( 22 +− yby [ ]pbsbky d /)2( 01 −= [ ]bsy d /02 = , and [ ] is the greatest 

integer function. Das, Gupta, and Kageyama (2002) show that for a design 

, ),,1( kbpDd +∈ ),,;( 0
11 kbpsgMtrtrM ddd ≥≥ −− , and the equalities holds when 

 is completely symmetric. Using the above inequality, the A-optimality of 

type  block design is thus proved.  

dM

0

1 0 csd ≤≤

S

Theorem 2.1. (Das, Gupta, and Kageyama (2002)) Suppose  is an integer 

defined by , where c = bk if (i) p = 5, k = 3,  

0s

),,;(min),,;( 00 kbpsgkbpsg d=

(ii) p = 4, k is odd or (iii) p = 3, else c = b[k  /  2]. Then a type  block design 0S

),,,,,,( 10100 λλggkbpS  with psg /00 = , )1/()( 011 −−= pgsg , 

pshks /))(2( −= 000λ , )1/())(2( 0111 −−−= pshks λλ  and psbks /)2( − 01 =  
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is optimal in . ),,1( kbpD +

However, the theorem can be generalized as follows. Let ( 01 dd ks=µ  

) pknb
j jd∑ =− 1

2
0 , then in Das, Gupta, and Kageyama (2002) one has  

 say. 

1
1

1 −− ≥ ddtrM µ

dddd 100 ksasbkp θµ =−−−−+ −12 )/)(2()1( ,

Lemma 2.2. For given values of p, b, and k, suppose ),,1( kbpDd +∈  has 

, and . Then there exists  

having  with 

)( 01 1
2

d
p
i

b
j dij san =∑ ∑= = ]2/[0 kbsd > ),,1(* kbpDd +∈

)( 0*1 1
2
* d

p
i

b
j ijd san =∑ ∑= = ]2/[0* kbsd ≤ , and satisfying dd θθ ≤*  

unless . 3=p

Proof: In the proof of Lemma 2.4 of Das, Gupta and Kageyama (2002), they set 

 if  and jdjd nn 00* = ]2/[0 kn jd ≤ jdjd nkn 00* −=  if , and show 

that 

]2/[0 kn jd >

1*1 dd µµ = , and kslsbk /)(2 dd 00 −−  decreases as  increases except 

when (i) p = 5, k = 3, (ii) p = 4, k odd, and (iii) p = 3. In the following, one can 

show that (i) and (ii) can be released. 

0ds

Let ksasbks ddd /)(2)( 000 −−=ψ . In (i), )1)(6)(3/2()( 100 ysbs dd −−=ψ  

 where 3/)1(5 11 ++ yby [ ]bsby d 5/)6( 01 −= . For bsd ≤< 00 , then , and 11 =y

3/10)( 0 bsd =ψ  is a constant. For bsb d 60 << , then , 01 =y )( 0dsψ  

 is a decreasing function in . Moreover, 3/)6(2 0dsb −= 0ds )1()( +− bb ψψ  

. Hence if 3/2= bkbsd => ]2/[0 , there exists a design  having  

and 

*d bsd ≤0*

dd θθ ≤*

dd 11100

. 

Similarly, in (ii), kybyykksbs /)1(4)12)(/2()( ++−−−=ψ , where 
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[ ] [ ]bskbsbky dd 4/2/4/)2( 001 −=−= bsd 20. For 0 ≤< , then , 

and 

=1y 2/)1( −k

kkbsd /)1()( 2
0 −=ψ  is a constant. For bksb d 22 0 <<  and fix value , 1y

)( 0dsψ  is a decreasing function in . Moreover, denote , 

, where  is an integer, then  

0ds bus )42( +=′

bus )46( +=′′ 0≥u

⎩
⎨
⎧

′′=−−

′=−−
=

,when,2/)3(
,when,2/)1(

0

0
1 ssuk

ssuk
y

d

d  

)()( ss ′′−′ ψψ 0/)1(8 >+= kub

kbb /2)12()2(

, and 

.  =+−ψψ

Hence )( 0dsψ  is a decreasing function whenever bksb d 22 0 << . Thus, if 

, there exists a design  having ]2/[0 kbsd > *d 2/)1(]2/[0* −=≤ kbkbsd  and 

dd θθ ≤*

0d

10100

. 

A less restrictive and more efficient theorem, in searching for the “best” 

value of , is given in the following. s

Theorem 2.3. For given values of p, b, and k, a type  block design 0S

),,,,,,( λλggkbpS  is A-optimal if it satisfies 

(i)  is a positive integer such that 0s ),,;(min),,;( 00 kbpsgkbpsg d1 0 csd ≤≤
= , where 

bkc = 3=p ]2/[kbc if , else = , 

(ii) , psbks /)2( −= 01

01100(iii) ),1/()(,/ −−== pgsgpsg  

(iv) ).1/())(2(,/))(2( 0111000 −−−=−= pshkspshks λλλ  
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