## Chapter 2

## Preliminaries

The diallel cross experiments involving $p(p+1) / 2$ distinct crosses are considered. Let $d$ be a block design for a diallel cross experiment with $p$ test lines, one control line, and $b$ blocks of size $k$ each. Let $s_{d i}$ denote the number of times line $i$ occurs in crosses in $d, i=0,1, \ldots, p$, let $g_{\text {dii' }}$ denote the number of times the cross ( $i, i^{\prime}$ ) appears in $d, \forall i \neq i^{\prime}, i, i^{\prime}=0,1, \ldots, p$, and let $n=b k$ denote the total number of crosses in $d$. The model for design $d$ is then assumed to be

$$
\vec{Y}_{d}=\mu \overrightarrow{1}_{n}+\Delta_{1 d} \vec{\tau}+\Delta_{2 d} \vec{\beta}+\vec{\varepsilon},
$$

where $\bar{Y}_{d}$ is the $n \times 1$ vector of observed responses, $\mu$ is the overall mean, $\overrightarrow{1}_{n}$ denotes the $n \times 1$ vector of 1 's, $\vec{\tau}=\left(\tau_{0}, \tau_{1}, \cdots, \tau_{p}\right)^{\prime}$ is the vector of $p+1$ general combining ability effects, $\vec{\beta}=\left(\beta_{1}, \cdots, \beta_{b}\right)^{\prime}$ is the vector of $b$ block effects, $\Delta_{1 d}, \Delta_{2 d}$ are the corresponding design matrices, that is, the (s,h)th elememt of $\Delta_{1 d}$ is 1 if the sth observation pertains to line $h$, and is zero, otherwise; and the $(s, l)$ th element of $\Delta_{2 d}$ is 1 if the $s$ th observation pertains to block $l$, and is zero, otherwise; $\vec{\varepsilon}$ is the $n \times 1$ vector of uncorrelated random errors with mean zero and constant variance $\sigma^{2}$. The coefficient matrix of the reduced normal equations for estimating $\vec{\tau}$ is

$$
C_{d}=G_{d}-(1 / k) N_{d} N_{d}^{\prime},
$$

where $G_{d}=\Delta_{1 d}^{\prime} \Delta_{1 d}=\left(g_{d i i}\right), g_{d i i}=s_{d i}$, and $N_{d}=\Delta_{1 d}^{\prime} \Delta_{2 d}=\left(n_{d i j}\right), n_{d i j}$ is the number of times line $i$ occurs in block $j$. Note that the row sums and column sums of $C_{d}$ are all zero. In this thesis, our focus is on the estimation of the test line versus control contrasts $\left(\tau_{1}-\tau_{0}, \cdots, \tau_{p}-\tau_{0}\right)^{\prime}$, and by Bechhofer and Tamhane (1981), and Das, Gupta, and Kageyama (2002), the information matrix, $M_{d}=\left(m_{\text {dii' }}\right)$, for the estimation of $\left(\tau_{1}-\tau_{0}, \cdots, \tau_{p}-\tau_{0}\right)^{\prime}$ is obtained by deleting the first row and first column of $C_{d}$, and

$$
M_{d}=\left\{\begin{array}{ll}
s_{d i}-(1 / k) \sum_{j=1}^{b} n_{d i j}^{2} & , \text { for } i=i^{\prime} \\
g_{d i i^{\prime}}-(1 / k) \sum_{j=1}^{b} n_{d i j} n_{d i j}, & \text { for } i \neq i^{\prime}
\end{array} .\right.
$$

Let $D(p+1, b, k)$ be a collection of all connected designs with $p$ test lines, one control line, $b$ blocks of size $k$. A design $d^{*} \in D(p+1, b, k)$ is said to be A-optimal if it minimizes $\sum_{i=1}^{p} \operatorname{Var}\left(\hat{\tau}_{i}-\hat{\tau}_{0}\right)$, where $\hat{\tau}_{i}-\hat{\tau}_{0}$ is the best linear unbiased estimator (BLUE) of $\tau_{i}-\tau_{0}, i=1, \ldots, p$, over all designs in $D(p+1, b, k)$, that is, $d^{*}$ satisfies

$$
\begin{gathered}
\sum_{i=1}^{p} \operatorname{Var}\left(\hat{\tau}_{d^{*} i}-\hat{\tau}_{d^{*} 0}\right)=\min _{d \in D(p+1, b, k)} \sum_{i=1}^{p} \operatorname{Var}\left(\hat{\tau}_{d i}-\hat{\tau}_{d 0}\right), \text { or } \\
\operatorname{tr} M_{d^{*}}^{-1}=\min _{d \in D(p+1, b, k)} \operatorname{trM} M_{d}^{-1} .
\end{gathered}
$$

For a design $d \in D(p+1, b, k)$, applying the averaging technique in Kiefer (1975), Majumdar and Notz (1983), and Jacroux and Majumdar (1989), one can show that

$$
\operatorname{tr}_{d}^{-1} \geq \operatorname{tr} \bar{M}_{d}^{-1}
$$

where $\bar{M}_{d}=(1 / p!) \sum_{\pi} \pi \bar{M}_{d} \pi^{\prime}$, is the average of all possible permutations of the
$p$ test lines on $M_{d}$, and $\pi$ is the corresponding $p \times p$ permutation matrix. We should note that $\bar{M}_{d}$ is completely symmetric, that is, $\bar{M}_{d}=a I_{p}+b J_{p, p}$, where $I_{p}$ is the $p \times p$ identity matrix, and $J_{p, p}$ is a $p \times p$ matrix of 1 's. Among all designs in $D(p+1, b, k)$, a group of designs having completely symmetric information matrices is called a type $S$ block design by Choi, Gupta, and Kageyama (2002).

Definition 2.1. (Choi, Gupta, and Kageyama (2002)) A design $d \in D(p+1, b, k)$ is a type $S$ block design if $\forall i \neq i^{\prime}=1, \ldots, p, \quad g_{d 0 i}=g_{0}, \quad g_{d i^{\prime}}=g_{1}$, $\sum_{j=1}^{b} n_{d 0 j} n_{d i j}=\lambda_{0}$, and $\sum_{j=1}^{b} n_{d i j} n_{d i j}=\lambda_{1}$, where $g_{0}, g_{1}, \lambda_{0}$, and $\lambda_{1}$ are integers.

A type $S$ block design if it further satisfies that the control line as well as the $p$ test lines appears as evenly as possible in each block is called a type $S_{0}$ block design by Das, Gupta, and Kageyama (2002), and their A-optimality property has also been shown.

Definition 2.2. (Das, Gupta, and Kageyama (2002)) A type $S$ block design $d$ is said to be a type $S_{0}$ block design, denoted as $S_{0}\left(p, b, k, g_{0}, g_{1}, \lambda_{0}, \lambda_{1}\right)$, if it satisfies $\left|n_{d 0 j}-n_{d 0 j^{\prime}}\right| \leq 1, \quad\left|n_{d i j}-n_{d i j^{\prime}}\right| \leq 1$, for $i, i^{\prime}=1, \ldots, p ; j, j^{\prime}=1, \ldots, b$.

Through straightforward calculation, a type $S_{0}$ block design $d$ has the following properties.
(i) $s_{d 0}=p g_{0}$,
(ii) $s_{d 1}=\cdots=s_{d p}=g_{0}+(p-1) g_{1}=s_{1}$, say,
(iii) $p g_{0}+(p(p-1) / 2) g_{1}=b k$,
(iv) $\sum_{j=1}^{b} n_{d 0 j}^{2}=p\left(2 k g_{0}-\lambda_{0}\right)$,
(v) $\sum_{j=1}^{b} n_{d i j}^{2}=2 k\left(g_{0}+(p-1) g_{1}\right)-(p-1) \lambda_{1}-\lambda_{0}, \quad i=1, \ldots, p$,
(vi) $M_{d}=\left(\left(p \lambda_{1}+\lambda_{0}\right) / k-g_{0}-p g_{1}\right) I_{p}+\left(g_{1}-\lambda_{1} / k\right) J_{p}$, and the eigenvalues $\mu_{d i}, i=1, \ldots, p$, of $M_{d}$ are $\mu_{d 1}=\lambda_{0} / k-g_{0}$, $\mu_{d 2}=\cdots=\mu_{d p}=\left(\lambda_{0}+p \lambda_{1}\right) / k-g_{0}-p g_{1}$.

Let
$g\left(s_{d 0} ; p, b, k\right)=\frac{p}{s_{d 0}-h\left(s_{d 0}\right) / k}+\frac{(p-1)^{2}}{2 b k-s_{d 0}-a\left(s_{d 0}\right) / k-\left(s_{d 0}-h\left(s_{d 0}\right) / k\right) / p}$,
where $\quad a\left(s_{d 0}\right)=\left(2 b k-s_{d 0}\right)\left(2 y_{1}+1\right)-p b y_{1}\left(y_{1}+1\right) \quad, \quad h\left(s_{d 0}\right)=s_{d 0}\left(2 y_{2}+1\right)$ $-b y_{2}\left(y_{2}+1\right), y_{1}=\left[\left(2 b k-s_{d 0}\right) / p b\right], y_{2}=\left[s_{d 0} / b\right]$, and $[\cdot]$ is the greatest integer function. Das, Gupta, and Kageyama (2002) show that for a design $d \in D(p+1, b, k), \quad \operatorname{tr} M_{d}^{-1} \geq \operatorname{tr} \bar{M}_{d}^{-1} \geq g\left(s_{d 0} ; p, b, k\right)$, and the equalities holds when $M_{d}$ is completely symmetric. Using the above inequality, the A-optimality of type $S_{0}$ block design is thus proved.

Theorem 2.1. (Das, Gupta, and Kageyama (2002)) Suppose $s_{0}$ is an integer defined by $g\left(s_{0} ; p, b, k\right)=\min _{1 \leq s_{d 0} \leq c} g\left(s_{d 0} ; p, b, k\right)$, where $c=b k$ if (i) $p=5, k=3$, (ii) $p=4, k$ is odd or (iii) $p=3$, else $c=b[k / 2]$. Then a type $S_{0}$ block design $S_{0}\left(p, b, k, g_{0}, g_{1}, \lambda_{0}, \lambda_{1}\right) \quad$ with $\quad g_{0}=s_{0} / p \quad, \quad g_{1}=\left(s_{1}-g_{0}\right) /(p-1) \quad$, $\lambda_{0}=\left(2 k s_{0}-h\left(s_{0}\right)\right) / p, \quad \lambda_{1}=\left(2 k s_{1}-h\left(s_{1}\right)-\lambda_{0}\right) /(p-1)$ and $s_{1}=\left(2 b k-s_{0}\right) / p$
is optimal in $D(p+1, b, k)$.

However, the theorem can be generalized as follows. Let $\mu_{d 1}=\left(k s_{d 0}\right.$ - $\left.\sum_{j=1}^{b} n_{d 0 j}^{2}\right) / p k$, then in Das, Gupta, and Kageyama (2002) one has $\operatorname{trM}_{d}^{-1} \geq \mu_{d 1}^{-1}$ $+(p-1)^{2}\left(2 b k-s_{d 0}-a\left(s_{d 0}\right) / k-\mu_{d 1}\right)^{-1}=\theta_{d}$, say.

Lemma 2.2. For given values of $p, b$, and $k$, suppose $d \in D(p+1, b, k)$ has $\sum_{i=1}^{p} \sum_{j=1}^{b} n_{d i j}^{2}=a\left(s_{d 0}\right)$, and $s_{d 0}>b[k / 2]$. Then there exists $d^{*} \in D(p+1, b, k)$ having $\sum_{i=1}^{p} \sum_{j=1}^{b} n_{d^{*} i j}^{2}=a\left(s_{d^{*} 0}\right)$ with $s_{d^{*} 0} \leq b[k / 2]$, and satisfying $\theta_{d^{*}} \leq \theta_{d}$ unless $p=3$.

Proof: In the proof of Lemma 2.4 of Das, Gupta and Kageyama (2002), they set $n_{d^{*} 0 j}=n_{d 0 j}$ if $n_{d 0 j} \leq[k / 2]$ and $n_{d^{*} 0 j}=k-n_{d 0 j}$ if $n_{d 0 j}>[k / 2]$, and show that $\mu_{d 1^{*}}=\mu_{d 1}$, and $2 b k-s_{d 0}-l\left(s_{d 0}\right) / k$ decreases as $s_{d 0}$ increases except when (i) $p=5, k=3$, (ii) $p=4, k$ odd, and (iii) $p=3$. In the following, one can show that (i) and (ii) can be released.

Let $\psi\left(s_{d 0}\right)=2 b k-s_{d 0}-a\left(s_{d 0}\right) / k$. In (i), $\psi\left(s_{d 0}\right)=(2 / 3)\left(6 b-s_{d 0}\right)\left(1-y_{1}\right)$ $+5 b y_{1}\left(y_{1}+1\right) / 3$ where $y_{1}=\left[\left(6 b-s_{d 0}\right) / 5 b\right]$. For $0<s_{d 0} \leq b$, then $y_{1}=1$, and $\psi\left(s_{d 0}\right)=10 b / 3$ is a constant. For $b<s_{d 0}<6 b$, then $y_{1}=0, \psi\left(s_{d 0}\right)$ $=2\left(6 b-s_{d 0}\right) / 3$ is a decreasing function in $s_{d 0}$. Moreover, $\psi(b)-\psi(b+1)$ $=2 / 3$. Hence if $s_{d 0}>b[k / 2]=b$, there exists a design $d^{*}$ having $s_{d^{*} 0} \leq b$ and $\theta_{d^{*}} \leq \theta_{d}$.

Similarly, in (ii), $\psi\left(s_{d 0}\right)=\left(2 b-s_{d 0} / k\right)\left(k-2 y_{1}-1\right)+4 b y_{1}\left(y_{1}+1\right) / k$, where
$y_{1}=\left[\left(2 b k-s_{d 0}\right) / 4 b\right]=\left[k / 2-s_{d 0} / 4 b\right]$. For $0<s_{d 0} \leq 2 b$, then $y_{1}=(k-1) / 2$, and $\psi\left(s_{d 0}\right)=b\left(k^{2}-1\right) / k$ is a constant. For $2 b<s_{d 0}<2 b k$ and fix value $y_{1}$, $\psi\left(s_{d 0}\right)$ is a decreasing function in $s_{d 0}$. Moreover, denote $s^{\prime}=(2+4 u) b$, $s^{\prime \prime}=(6+4 u) b$, where $u \geq 0$ is an integer, then

$$
\begin{aligned}
& y_{1}=\left\{\begin{array}{l}
(k-1) / 2-u, \quad \text { when } s_{d 0}=s^{\prime}, \\
(k-3) / 2-u, \quad \text { when } s_{d 0}=s^{\prime \prime},
\end{array}\right. \\
& \psi\left(s^{\prime}\right)-\psi\left(s^{\prime \prime}\right)=8 b(u+1) / k>0, \text { and } \\
& \psi(2 b)-\psi(2 b+1)=2 / k .
\end{aligned}
$$

Hence $\psi\left(s_{d 0}\right)$ is a decreasing function whenever $2 b<s_{d 0}<2 b k$. Thus, if $s_{d 0}>b[k / 2]$, there exists a design $d^{*}$ having $s_{d^{*} 0} \leq b[k / 2]=b(k-1) / 2$ and $\theta_{d^{*}} \leq \theta_{d}$.

A less restrictive and more efficient theorem, in searching for the "best" value of $s_{d 0}$, is given in the following.

Theorem 2.3. For given values of $p, b$, and $k$, a type $S_{0}$ block design $S_{0}\left(p, b, k, g_{0}, g_{1}, \lambda_{0}, \lambda_{1}\right)$ is A-optimal if it satisfies
(i) $s_{0}$ is a positive integer such that $g\left(s_{0} ; p, b, k\right)=\min _{1 \leq s_{d 0} \leq c} g\left(s_{d 0} ; p, b, k\right)$, where $c=b k$ if $p=3$, else $c=b[k / 2]$,
(ii) $s_{1}=\left(2 b k-s_{0}\right) / p$,
(iii) $g_{0}=s_{0} / p, g_{1}=\left(s_{1}-g_{0}\right) /(p-1)$,
(iv) $\lambda_{0}=\left(2 k s_{0}-h\left(s_{0}\right)\right) / p, \lambda_{1}=\left(2 k s_{1}-h\left(s_{1}\right)-\lambda_{0}\right) /(p-1)$.

