Chapter 5

A-Optimality of Completely

Randomized Designs

5.1. Optimal Designs forp=2, 3

The diallel cross experiments involving p(p+1)/2 distinct crosses for test
line versus control comparisons under the completely randomized design model
are considered. Let d be a completely randomized design for a diallel cross
experiment with p test lines, one control line, and n denote the total number of
crosses in d. Let s, denote the number of times line i occurs in crosses in d, i =
0,1,...,p, and g, denote the number of times the cross (i,i") appears in d,
Vizi',i,i'=0,1, ..., p. The model for design d is then assumed to be

Y, =ul +AT+E,
where Y, is the nx1 vector of observed responses, 4 is the overall mean, 1,
denotes the nx1 vector of 1’s, 7 =(z,,7,,--+,7,)" is the vector of p + 1 general
combining ability effects, A, is the corresponding design matrix, that is, the
(s,h)th elememt of A, is 1 if the sth observation pertains to line h, and is zero,

otherwise; & is the nx1 vector of uncorrelated random errors with mean zero
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and constant variance o”. The coefficient matrix of the normal equation for
estimating 7 is
Cq =Gy —(1/n)sysy

where Gy =AGA; = (i) Yai =Sai» and S; =(Sy0,Sg15--+5Sgy) - Note that the
row sums and column sums of C, are all zero. Our focus is on the estimation of
the test line versus control contrasts (7, —z,,---,7, —7,)’, and by Bechhofer and
Tamhane (1981), and Das (2002) the information matrix, M, =(m,;), for the
estimation of (z, —7,,---,7, —17,)’, is obtained by deleting the first row and first

column of C,, and

Y Sq —S3/n, fori=i’
o gdii’_sdisdi’/n’ fori =i’

Let D(p+1n) be a collection of all connected designs with p test lines,
one control line, and n crosses. A design d*e D(p-+1,n) issaid to be A-optimal
if it minimizes )" Var(z, —7,), where 7, —7, is the best linear unbiased
estimator (BLUE) of 7, —7,,1=1, ..., p, over all designsin D(p+1n), thatis,
d* satisfies trM . = deDrmgb]k)trM n

For a design d € D(p+1, n), applying the averaging technique in Kiefer
(1975), Majumdar and Notz (1983), and Jacroux and Majumdar (1989), one can
show that

trM ;' >trM ",

where M, =(1/p")Y. M z', is the average of all possible permutations of the
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p test lines on M, and = is the corresponding px p permutation matrix. We

should note that M, is completely symmetric, that is, M, = al , +bJ, , where

p.p?

I, isthe pxp identity matrix,and J isa pxp matrix of 1's. Among all
designs in D(p+1,n), a group of designs having completely symmetric
information matrices is called a type S design by Choi, Gupta, and Kageyama

(2002).

Definition 5.1. (Choi, Gupta, and Kageyama (2002)) A design d e D(p+1,n) is
called a type S design, denoted as S(p, 9,, 9,), if there are positive integers g,
and g,,suchthat Vi=i'=1,...,p, 940 =90 9giv = 9;-

For p = 2, let the number of the crosses (0, 1), (0, 2), and (1, 2) appear in d
are ny, np, and ns, respectively, then n=n+n,+n;, G400 =N, gz =Ny,
Og2 =Ny, Sgo=N,+N, , S;;=n+n,, and s, =n,+n; . Hence the
information matrix, M, , for the estimation of (r,-7,,7,—17,)" s, after

straightforward calculation,

Md :i{nz(n_nz) _n1n2

:EMld , Say.
n —-nn, nl(n - nl)

n

Suppose that the eigenvalues of M,, are A, and A,. Then by solving the
equation (n,(n—n,)—A)n(n—n,)—21)—n?nZ =0, which is equal to A* -
(n,(n=n)+n,(n—=n,))A+nnn,(n—n, —n,)=0, one has A +4, =n,(n-n,)

+n,(n-n,) and A4, =nnn,(n—n, —n,). Thus,
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_(n2 2
Mt o Lo L)oo At A | en,) (04 ng)
11 /12 1112 nlnz(n_nl_nz)

For fixed value of n,+n,, say s, where n—-s>1, and without loss of
generality, we can assume that n,>n,. If n,—n,>2, then there exists
d*eD(p+1n) with n; =n, -1 and n;=n,+1 such that n;+n;=s
and

_ns—(n;? +n3?)  ns—(n2+n2)

trM gt = —— < =trM
nlnz(n - S) nlnz(n - S)

since
n,n,ns — nlnz(nl2 +n2-2(n, —n, —l))< (n, =1)(n, +ns — (n, —=1)(n, +1)(n} +n?)
if and only if
n,n, (ns —n? —n? +2(n, —n, —1))< (n,n, +n, —n, —1)(ns —n? —n?)
if and only if
2n,n,(n, —n, —1) < (n, —n, —1)(ns —n/ —n2)
if and only if
n’+n’+2nn,-ns<0,

and the inequality holds if and only if s(s—n)<0. Hence trM;' is minimized
when n, and n, are as equal as possible for fixed value of n, +n,.

Table 5.1 is a direct consequence for 3<n <30 by using a computer. One
can see that, when n =8, the following two cases n, =2, n,=2,and n, =2,
n, =3 both are A-optimal designs. Note that n, and n, can be exchanged

without loss of generality.
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Table 5.1. A Catalog of A-Optimal Designs
with p=2,and 3<n<30

n Ny ny trM ;!
3 1 1 4

4 1 1 3

5 1 2 2.5
6 2 2 2

7 2 2 1.667
8 2 2 15
8 2 3 15
9 2 3 1.333
10 3 3 1.167
11 3 3 1.067
12 3 4 0.983
13 4 4 0.9
14 4 4 0.833
15 4 5 0.783
16 5 5 0.733
17 5 5 0.686
18 5 5 0.65
19 5 6 0.617
20 6 6 0.583
21 6 6 0.556
22 6 7 0.532
23 7 7 0.508
24 7 7 0.486
25 7 7 0.468
26 7 8 0.45
27 8 8 0.432
28 8 8 0.417
29 8 9 0.403
30 9 9 0.389
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Example 5.1. For n = 8, the following three designs d,, d,, and d, all are
A-optimal designs in D(3+18).
d,: (01 (01) (0.2) (0.2) (L2) (L2) (L2) (L2),
d,: (01) (01 (02) (02) (02) (L2) (L2) (L2),
d,: (01) (01) (01) (02 (02) (12) (12) (12).
For p =3, from equation (2.8) of Das (2002), one has

_ np 4 np(p —1)?
Ss0(N=540)  NP(2n —S45) — PN(Syp) — Sgo (N —Sgo)

9(Sqo: M P)

where h(s,,) = py? +(2n—s,, - py)(2y +1) and y=[(2n-s,,)/p]. To find

families of optimal designs, we derive the following inequality

9(SqosN, Pp) 2 p( (p-1) ]

Sio(N—S40) 2n(p—2)—S4,(P—3)
= p(g* (540N, D)), sy,
and the equality holds when (2n—s,,)/ p is an integer.

Forp =3, g*(Sy0;M3)=(ns,, —s3,)"" +2n7", and by taking the derivative
of g*(s40;Nn,3) with respect to s,,, the minimum value of g*(s,,;n,3) is
achieved at s,,=s,=n/2, and g*(n/2;n3)=6/n. In the following, the
problem of finding and constructing families of A-optimal type S design having
S, =Nn/2 are investigated.

A type S design S(3,9,,0,) with s, =n/2, has the following values for

$,,90, 9, and
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s, =(2n-s,)/ p=n/2,

9,=S,/p=n/6, g,=(s,—-9,)/(p-1)=n/6.
For these designs to exist, s,,S,, d,, 9, must all be integers, and the possible
combination of the value of such nis n=0(mod 6), or n=6u, where u>1 is
an integer. Since (2n-s,,)/3=n/2=3u is an integer, hence, the minimum
values of g*(s,,;3,b,k) or g(s,,:;3,b,k) can be achieved by the corresponding
type S designs. Then by Theorem 5.1 listed in the following, these designs are
A-optimal.
Theorem 5.1. (Das (2002)) Suppose s, is the value of the integer s,,,
1<s,, <n—1, which minimizes g(s,,;n, p) . Also suppose d € D(p+1,n) isa
type S design such that s,, =s,. Then d is A-optimal over D(p +1,n).
Lemma 5.2. For n=0(mod 6), that is, n=6u, where u> 1 is an integer, a type
S design S(3, u, u) exists, and is A-optimal inD(3 +1,6u).
Example 5.2. For n = 6, that is, u = 1, the following type S design S (3, 1, 1) is
A-optimal inD(3+1,6) .

01 (02) (03 (1,2) (13 (23
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5.2. Optimal Designs for 4< p<6

For p >4, and recall that

oo np(p-1)°
Sso(N—S40)  NP(2n—544) — PN(S40) =S40 (N —S40)

9(S405N, P) =

where h(s,,) = py’ +(2n—s,, — py)(2y +1) and y=[(2n-s,,)/p], then after
straightforward calculation, the searching range of s,, for finding A-optimal
designs can be reduced, and list the consequence in the following Lemma 5.2.
Lemma 5.3. For given value of n, and p, suppose deD(p+1n) has
Sqo >[n/2], then there exists d*e D(p+1,n) having 1<s,,<[n/2], and
satisfying  g(Sg«;N, P) < 9(S40: N, P) -

Proof: Let ¢ (S40:N, P) =np(2n—5,,) — P(S40) — Sao (N —Sy0)

=52, —((n—=2y -1 p+n)s,, +2n(n—-2y - p+ p’y(y+1) . For fixed y=v,
that is, v<(2n—-s,,)/p<v+1, then 2n—-(v+1)p<sS, <2n—-vp and by

taking the derivative of ¢ (S4,;Nn, p) with respective to s,,, one has

0
6_¢1(Sdo;n: p)=2s,, —(h-2v-1)p-n
Sqo

<25, —(N=2(2n—s,,)/ p-Yp—-n
=3n—-(n-)p<0 for p=>4.
Hence ¢,(s,,;n, p) is a decreasing function in s,, for 2n—-(v+1)p<s,,

<2n-vp. We further consider the border points, that is, s,, =2n—-(v+1)p
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=s',say,and s, =2n—(v+1)p+1=s"+1, say, then

#(s"+Ln,p)—a(s;n,p)=nB3-p)—p+1<0 for p>3.
Hence ¢,(s,,;n, p) is a decreasing function in s,, for p>4. Moreover,
Sq0(N—S4,) 1s a concave function, and is increasing in s,, for s,, <[n/2].
Hence if s,, >[n/2], there exists a design d* having 1<s,,<[n/2], and
satisfying g(Sg«o:N, P) < 9(Syo:N, P).
Theorem 5.4. For given n, 4<p<6, and v, =[3n/2p]. Suppose that
v,<(n—-2v,-1)/2(p-2)<v, +1, then a type S design S(p, g,, 9,), if exists,
is A-optimal in D(p + 1, n) where s,, =S, is obtained by

9(se:n, p) = min(g([n/2I;n, p), ..., g([n/2] - v, —L;n, p)).

Proof: For fixed y =v, then

npo np(p-1)°*
Sao(N=540)  NP(2n—54,) — ph(Sye) =S40 (N—S40)

g(sdo;n’ p) =

= np(4, (Su0: 1, P)/¢:(Su0: 1, P)), S8Y,
where
#, (84031, P) = —P(P —2)85, +(p(P — 2)n = p(n —2v —1))sy,
+2n(n-1)p—-vp(4n—p—-vp), and
$5(S40i 1, P) = 2o + (p(n —2v—1) + 2n)s3, — (n(n —2v 1) p + n’

+2n(n=1)p-vp(4n—-p —vp))SEO

+n(2n(n —1)p —vp(4n — p—vp))s, -
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Denote v, =2n(n—-1)p—-vp(4n—p—-vp) and v, =(n—-2v-1)p, then
v, =2n(n-1)p-vp(4n—p—vp)
>2n(n—-1)p—(2n—s,,)(4n—p—(2n—s,,) + p)
=2n(n-2)p-p)+s, >0 for p>4,
v,=("-2v-1)p
>(n-2(2n—=s,,)/ p+1)p
=n(p-4)+2s,+1/p>0 for p>4,
and
#,(S40:1, P) = =P(P = 2)85, + (P(P = 2N~ 0, )80 + 01,
B:(S40:N, P) = =S5, + (U, +2n)S5, — (v, +v,N+N%)S5 +vNs,,.
One has ¢,(S4o;N, p) isincreasing in s,, when 0<s,,<n/2-v,/2p(p-2),

and is decreasing in s;, when n/2—-v,/2p(p—-2)<s,, <n/2. (5.1)

Since

a—(zﬁg(sdo; n, p) = —4sS, +3(v, +2n)s’, — 2(v, +v,n +n?)s,, +vN,
SdO

2

gqﬁs(sdo; n, p) = -12s2, + 6(v, +2n)s,, — 2(v, +v,n +n?),
0

one can see that 0%, (s,,;Nn, p)/0s?, s increasing in s,, When
Sqo < (v, +2n)/4 and is decreasing in s,, when s,, > (v,+2n)/4, hence
0@, (S40:0, P)/Os3, is increasing in s,, when 0<s, <n/2 since

(v, +2n)/4>n/2. Moreover,
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2
j?qﬁs (S4oiN, P) =-3n +3(v, + 2n)n — 2(v, +v,N +n?)
do

Sqo=n/2

=n((1-3p)n+3p(L+2v))-2v(l+V)p?
<n((10-3p)n+3p)-2v(L+Vv)p® <0 for p=>4.

Therefore,  6%4, (s,,;n, p)/0s?, <0 for 0<s,<n/2 , that is,

Oy (S40:1, P)/0sy, is decreasing in s,, when 0<s,, <n/2.Since

i(/753(5[10;n, p) =y,n >0, and

0S40 -

asi(zﬁg(sdo; n, p) =-n*/2+(3/4)(v, +2n)n* = 2(v, + L,N +N*)N +v,N
do S40=n/2

=-n®-(5/4)v,n* —v,n <0,
there exists a 0<sj,<n/2 such that 0g¢,(Sy;Nn, P)/3S,, >0 when
0<S40<Syo and 0¢y(Sye5N, P)/0S4o <O when sj,<s,,<n/2, that is,
?5(S40: N, P) s increasing in s,;, when 0<s,, <s;, and is decreasing in s,
when sj, <S4, <n/2.

Furthermore,

i(Zﬁs(sdo;r]' p)

ado Sgomm—— 2
2 2p(p-2)
e [ s T et
2{2 2p(p-2Y)N\2 2p(p-2) 2p(p-2) 2
L by
p(p-2)
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1 v 1 3v
e —2)n-v, : Py : 20,
20(p—)| (PPN ”{p(p—z)(mp(p—2)]+2(”+p(p—2)n+ ”j

- %2 —(n— : J(p2—2p+2(n+ : J—0J+Zu
2p(p-2) p(p-2) 2 p(p-2)) ° '

2 2 2
SEPANE B S CRN SN I |
2p(p-2) 2 p*(p-2) pP(p-2)

Now since

v, —(p?=2p+2)n*/2=(-p*/2+3p-1)n* - 2(1+2v)np + V(1 +V)p°,
v, —v,n = pn® —(1+2v)np + v(1+V) p?,

021 p(p-2)=(p/(p-2))n? - 21+ 2v)n + (1 +2v)?),

(p> —22p+2);J22 _ (p22—2p+22) (n? 21+ 2v)n + L+ 2v)?)
2p*(p-2) 2p°(p-2)

. %(n2 _2(+20)n + L+ 2v)?),

one has

0
_ S, N,
P $5(S40 p)‘

U2

2p(p-2)

Sdozg—
>(-p2/2+4p+pl(p-2)-1/2)° — 1+ 2v)@p+2p/(p—-2) +1)n
+(@+p/(p-2))L+2v)* +2v(L+Vv)p® >0 when p<8, (5.2)

since for p=6,

9 4(540:0.6)

0 do 5 =N Y2
4075 48
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>7n? =221+ 2v)n +5(1+2v)?* /2 + 72v(1+ V)

>7n% —(22/3)(2n —s,, +3)n+(5/18)(2n —s,, +3)° +12(2n —s) + 2(2n —5,,)°

=n(13n/9-16s,,/9+16/3) + (41/3)s,,(S4,/6—-1)+5/2>0,

0
and ——da.(s,,:n,
anO¢3( 40 p)‘

Sdo=

n_ b
2 2p(p-2)

is decreasing in p.

U2

Therefore, by (5.1) and (5,2), the minimum value of g(s,,;Nn, p) happens

when s,, =S,

is between [n/2-(n-2v-1)/2(p-2)] and [n/2] for

4 < p < 6. Moreover, the minimum value of v is [3n/2p], say v,, and denote

v, suchthat v, <(n—-2v, -1)/2(p—-2)<v, +1, the theorem is thus proved.

Example 5.3. For p = 4 and n = 24, then s, =12, and the following type S

design S(4, 3, 2) is A-optimal inD(4 +1,24) .

0,1 (0,2) (0,3) (0,4)
0,1 (0,2) (0,3) (0,4)
24) B4 12) 13

Example 5.4. For p =4 and n = 34, then

S(4, 4, 3) is A-optimal inD(4 +1,34).

(0.1)
(0.1)
(12)
(1.4)
(24)

(0.2)
(0.2)
(13)
(23)
(34)

0,3) (0,4)
0,3) (0,4)
14 (23
(2,4) (34)
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01 (0,2) (0,3) (0,4)
12) @3 @4 (23
14) 23 (24) (34

s, =16, and the following type S design

01 (0,2) (0,3) (0,4)
01 (0,2) (0,3) (0,4)
24) G4 12 13
12 L3 @4 (23



Example 5.5. For p = 5 and n = 55, then s, =25, and the following type S
design S(5, 5, 3) is A-optimal inD(5+1,55).

01 (02) (0,3) (04) (05 (O (02) (0,3) (0,4) (05)
01 (02) (0,3) (04) (05 (O (02) (0,3) (0,4) (05)
01 (02) (0,3) (04) (05 (12 (13 14 @15 (23
(24) (25 (34) (35 (45 (12 (13 14 @15 (23
(24) (25 (34) (35 (45 (12 (13 14 @@€5 (23
(24) (25 (34) (35 (45

Example 5.6. For p = 6 and n = 27, then s, =12, and the following type S
design S(6, 2, 1) is A-optimal inD(6 +1,27).
(01) (0,2) (0,3) (04 (05 (06) (01 (0,2) (0,3 (0,4) (0,5 (0,6)

(12) @3) (14 @15 @6) (23 (24) (25 (26) (34) (35 (36)
(45) (4,6) (56)

Example 5.7. For p = 6 and n = 54, then s, =24, and the following type S

design S(6, 4, 2) is A-optimal inD(6 +1,54) .

01 (©0,2) (0,3) (04) (05 (06) (01 (0,2) (0,3) (04) (05 (0,6)
01 (0,2) (0,3) (0,4) (05 (06) (01 (0,20 (0,3) (0,4) (05 (0,6)
(12) 13) (14 @5 @6) (23) (24) (25 (26) (34) (35 (396)
(45 (46) (56) (1.2) (1,3) (L4 @5 (@16) (23) (24) (25 (2,6)
(34) (35 (36) (45) (46) (56)
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