Chapter 5

A-Optimality of Completely Randomized Designs

5.1. Optimal Designs for p = 2, 3

The diallel cross experiments involving p(p+1)/2 distinct crosses for test line versus control comparisons under the completely randomized design model are considered. Let d be a completely randomized design for a diallel cross experiment with p test lines, one control line, and n denote the total number of crosses in d. Let s_{di} denote the number of times line i occurs in crosses in d, $i = 0, 1, \ldots, p$, and $s_{dii'}$ denote the number of times the cross (i, i') appears in d, $\forall i \neq i', i, i' = 0, 1, \ldots, p$. The model for design d is then assumed to be

$$\vec{Y}_d = \mu \vec{1}_n + \Delta_d \vec{\tau} + \vec{\varepsilon} ,$$

where \vec{Y}_d is the $n \times 1$ vector of observed responses, μ is the overall mean, $\vec{1}_n$ denotes the $n \times 1$ vector of 1's, $\vec{\tau} = (\tau_0, \tau_1, \cdots, \tau_p)'$ is the vector of p+1 general combining ability effects, Δ_d is the corresponding design matrix, that is, the (s,h)th element of Δ_d is 1 if the sth observation pertains to line h, and is zero, otherwise; $\vec{\varepsilon}$ is the $n \times 1$ vector of uncorrelated random errors with mean zero

and constant variance σ^2 . The coefficient matrix of the normal equation for estimating $\vec{\tau}$ is

$$C_d = G_d - (1/n)s_d s_d',$$

where $G_d = \Delta_d' \Delta_d = (g_{dii'})$, $g_{dii} = s_{di}$, and $s_d' = (s_{d0}, s_{d1}, \dots, s_{dp})'$. Note that the row sums and column sums of C_d are all zero. Our focus is on the estimation of the test line versus control contrasts $(\tau_1 - \tau_0, \dots, \tau_p - \tau_0)'$, and by Bechhofer and Tamhane (1981), and Das (2002) the information matrix, $M_d = (m_{dii'})$, for the estimation of $(\tau_1 - \tau_0, \dots, \tau_p - \tau_0)'$, is obtained by deleting the first row and first column of C_d , and

$$M_d = \begin{cases} s_{di} - s_{di}^2 / n, & \text{for } i = i' \\ g_{dii'} - s_{di} s_{di'} / n, & \text{for } i \neq i' \end{cases}$$

Let D(p+1,n) be a collection of all connected designs with p test lines, one control line, and n crosses. A design $d^* \in D(p+1,n)$ is said to be A-optimal if it minimizes $\sum_{i=1}^p Var(\hat{\tau}_i - \hat{\tau}_0)$, where $\hat{\tau}_i - \hat{\tau}_0$ is the best linear unbiased estimator (BLUE) of $\tau_i - \tau_0$, $i = 1, \ldots, p$, over all designs in D(p+1,n), that is, d^* satisfies $trM_{d^*}^{-1} = \min_{d \in D(p+1,b,k)} trM_d^{-1}$.

For a design $d \in D(p+1, n)$, applying the averaging technique in Kiefer (1975), Majumdar and Notz (1983), and Jacroux and Majumdar (1989), one can show that

$$trM_d^{-1} \geq tr\overline{M}_d^{-1}$$
,

where $\overline{M}_d = (1/p!) \sum_{\pi} \pi \overline{M}_d \pi'$, is the average of all possible permutations of the

p test lines on M_d , and π is the corresponding $p \times p$ permutation matrix. We should note that \overline{M}_d is completely symmetric, that is, $\overline{M}_d = aI_p + bJ_{p,p}$, where I_p is the $p \times p$ identity matrix, and $J_{p,p}$ is a $p \times p$ matrix of 1's. Among all designs in D(p+1,n), a group of designs having completely symmetric information matrices is called a type S design by Choi, Gupta, and Kageyama (2002).

Definition 5.1. (Choi, Gupta, and Kageyama (2002)) A design $d \in D(p+1,n)$ is called a type S design, denoted as $S(p, g_0, g_1)$, if there are positive integers g_0 and g_1 , such that $\forall i \neq i' = 1, \ldots, p$, $g_{d0i} = g_0$, $g_{dii'} = g_1$.

For p=2, let the number of the crosses (0,1), (0,2), and (1,2) appear in d are $n_1,\ n_2$, and n_3 , respectively, then $n=n_1+n_2+n_3$, $g_{d01}=n_1$, $g_{d02}=n_2$, $g_{d12}=n_3$, $s_{d0}=n_1+n_2$, $s_{d1}=n_1+n_3$, and $s_{d2}=n_2+n_3$. Hence the information matrix, M_d , for the estimation of $(\tau_1-\tau_0,\tau_2-\tau_0)'$ is, after straightforward calculation,

$$M_d = \frac{1}{n} \begin{bmatrix} n_2(n-n_2) & -n_1n_2 \\ -n_1n_2 & n_1(n-n_1) \end{bmatrix} = \frac{1}{n} M_{1d}$$
, say.

Suppose that the eigenvalues of M_{1d} are λ_1 and λ_2 . Then by solving the equation $(n_2(n-n_2)-\lambda)(n_1(n-n_1)-\lambda)-n_1^2n_2^2=0$, which is equal to $\lambda^2-(n_1(n-n_1)+n_2(n-n_2))\lambda+nn_1n_2(n-n_1-n_2)=0$, one has $\lambda_1+\lambda_2=n_1(n-n_1)+n_2(n-n_2)$ and $\lambda_1\lambda_2=nn_1n_2(n-n_1-n_2)$. Thus,

$$trM_{d}^{-1} = n\left(\frac{1}{\lambda_{1}} + \frac{1}{\lambda_{2}}\right) = n\left(\frac{\lambda_{1} + \lambda_{2}}{\lambda_{1}\lambda_{2}}\right) = \frac{n(n_{1} + n_{2}) - (n_{1}^{2} + n_{2}^{2})}{n_{1}n_{2}(n - n_{1} - n_{2})}.$$

For fixed value of n_1+n_2 , say s, where $n-s\geq 1$, and without loss of generality, we can assume that $n_1\geq n_2$. If $n_1-n_2\geq 2$, then there exists $d^*\in D(p+1,n)$ with $n_1^*=n_1-1$ and $n_2^*=n_2+1$ such that $n_1^*+n_2^*=s$ and

$$trM_{d^*}^{-1} = \frac{ns - (n_1^{*2} + n_2^{*2})}{n_1^* n_2^* (n - s)} < \frac{ns - (n_1^2 + n_2^2)}{n_1 n_2 (n - s)} = trM_d^{-1}$$

since

$$n_1 n_2 n s - n_1 n_2 \left(n_1^2 + n_2^2 - 2(n_1 - n_2 - 1) \right) < (n_1 - 1)(n_2 + 1) n s - (n_1 - 1)(n_2 + 1)(n_1^2 + n_2^2)$$

if and only if

$$n_1 n_2 (ns - n_1^2 - n_2^2 + 2(n_1 - n_2 - 1)) < (n_1 n_2 + n_1 - n_2 - 1)(ns - n_1^2 - n_2^2)$$

if and only if

$$2n_1n_2(n_1 - n_2 - 1) < (n_1 - n_2 - 1)(ns - n_1^2 - n_2^2)$$

if and only if

$$n_1^2 + n_2^2 + 2n_1n_2 - ns < 0,$$

and the inequality holds if and only if s(s-n) < 0. Hence trM_d^{-1} is minimized when n_1 and n_2 are as equal as possible for fixed value of $n_1 + n_2$.

Table 5.1 is a direct consequence for $3 \le n \le 30$ by using a computer. One can see that, when n = 8, the following two cases $n_1 = 2$, $n_2 = 2$, and $n_1 = 2$, $n_2 = 3$ both are A-optimal designs. Note that n_1 and n_2 can be exchanged without loss of generality.

Table 5.1. A Catalog of A-Optimal Designs with p = 2, and $3 \le n \le 30$

	1		
n	n_1	n_2	trM_d^{-1}
3	1	1	4
4	1	1	3
5	1	2	2.5
6	2	2	2
7	2	2	1.667
8	2	2	1.5
8	2	3	1.5
9	2	3	1.333
10	3	3	1.167
11	3	3	1.067
12	3	4	0.983
13	4	4	0.9
14	4	4	0.833
15	4	5	0.783
16	5	5	0.733
17	5	5	0.686
18	5	5	0.65
19	5	6	0.617
20	6	6	0.583
21	6	6	0.556
22	6	7	0.532
23	7	7	0.508
24	7	7	0.486
25	7	7	0.468
26	7	8	0.45
27	8	8	0.432
28	8	8	0.417
29	8	9	0.403
30	9	9	0.389

Example 5.1. For n=8, the following three designs d_1 , d_2 , and d_3 all are A-optimal designs in D(3+1,8).

$$d_1$$
: (0,1) (0,1) (0,2) (0,2) (1,2) (1,2) (1,2) (1,2),

$$d_2$$
: (0,1) (0,1) (0,2) (0,2) (0,2) (1,2) (1,2) (1,2),

$$d_3$$
: (0,1) (0,1) (0,1) (0,2) (0,2) (1,2) (1,2) (1,2).

For p = 3, from equation (2.8) of Das (2002), one has

$$g(s_{d0};n,p) = \frac{np}{s_{d0}(n-s_{d0})} + \frac{np(p-1)^2}{np(2n-s_{d0}) - ph(s_{d0}) - s_{d0}(n-s_{d0})},$$

where $h(s_{d0}) = py^2 + (2n - s_{d0} - py)(2y + 1)$ and $y = [(2n - s_{d0})/p]$. To find families of optimal designs, we derive the following inequality

$$g(s_{d0}; n, p) \ge p \left(\frac{n}{s_{d0}(n - s_{d0})} + \frac{(p - 1)^2}{2n(p - 2) - s_{d0}(p - 3)} \right)$$
$$= p \left(g * (s_{d0}; n, p) \right), \text{ say,}$$

and the equality holds when $(2n - s_{d0})/p$ is an integer.

For p=3, $g*(s_{d0};n,3)=(ns_{d0}-s_{d0}^2)^{-1}+2n^{-1}$, and by taking the derivative of $g*(s_{d0};n,3)$ with respect to s_{d0} , the minimum value of $g*(s_{d0};n,3)$ is achieved at $s_{d0}=s_0=n/2$, and g*(n/2;n,3)=6/n. In the following, the problem of finding and constructing families of A-optimal type S design having $s_0=n/2$ are investigated.

A type S design $S(3, g_0, g_1)$ with $s_0 = n/2$, has the following values for s_1, g_0, g_1 , and

$$s_1 = (2n - s_0) / p = n / 2$$
,
 $g_0 = s_0 / p = n / 6$, $g_1 = (s_1 - g_0) / (p - 1) = n / 6$.

For these designs to exist, s_0 , s_1 , g_0 , g_1 must all be integers, and the possible combination of the value of such n is $n = 0 \pmod 6$, or n = 6u, where $u \ge 1$ is an integer. Since $(2n - s_{d0})/3 = n/2 = 3u$ is an integer, hence, the minimum values of $g*(s_{d0};3,b,k)$ or $g(s_{d0};3,b,k)$ can be achieved by the corresponding type S designs. Then by Theorem 5.1 listed in the following, these designs are A-optimal.

Theorem 5.1. (Das (2002)) Suppose s_0 is the value of the integer s_{d0} , $1 \le s_{d0} \le n-1$, which minimizes $g(s_{d0};n,p)$. Also suppose $d \in D(p+1,n)$ is a type S design such that $s_{d0} = s_0$. Then d is A-optimal over D(p+1,n).

Lemma 5.2. For $n = 0 \pmod{6}$, that is, n = 6u, where $u \ge 1$ is an integer, a type S design S(3, u, u) exists, and is A-optimal in D(3+1,6u).

Example 5.2. For n = 6, that is, u = 1, the following type S design S(3, 1, 1) is A-optimal in D(3+1,6).

$$(0,1)$$
 $(0,2)$ $(0,3)$ $(1,2)$ $(1,3)$ $(2,3)$

5.2. Optimal Designs for $4 \le p \le 6$

For $p \ge 4$, and recall that

$$g(s_{d0};n,p) = \frac{np}{s_{d0}(n-s_{d0})} + \frac{np(p-1)^2}{np(2n-s_{d0}) - ph(s_{d0}) - s_{d0}(n-s_{d0})},$$

where $h(s_{d0}) = py^2 + (2n - s_{d0} - py)(2y + 1)$ and $y = [(2n - s_{d0})/p]$, then after straightforward calculation, the searching range of s_{d0} for finding A-optimal designs can be reduced, and list the consequence in the following Lemma 5.2.

Lemma 5.3. For given value of n, and p, suppose $d \in D(p+1,n)$ has $s_{d0} > [n/2]$, then there exists $d^* \in D(p+1,n)$ having $1 \le s_{d0} \le [n/2]$, and satisfying $g(s_{d^*0}; n, p) \le g(s_{d0}; n, p)$.

Proof: Let $\phi_1(s_{d0};n,p) = np(2n-s_{d0}) - ph(s_{d0}) - s_{d0}(n-s_{d0})$ $= s_{d0}^2 - ((n-2y-1)p+n)s_{d0} + 2n(n-2y-1)p + p^2y(y+1)$. For fixed y = v, that is, $v \le (2n-s_{d0})/p < v+1$, then $2n-(v+1)p < s_{d0} \le 2n-vp$ and by taking the derivative of $\phi_1(s_{d0};n,p)$ with respective to s_{d0} , one has

$$\frac{\partial}{\partial s_{d0}} \phi_1(s_{d0}; n, p) = 2s_{d0} - (n - 2v - 1)p - n$$

$$\leq 2s_{d0} - (n - 2(2n - s_{d0})/p - 1)p - n$$

$$= 3n - (n - 1)p \leq 0 \text{ for } p \geq 4.$$

Hence $\phi_1(s_{d0}; n, p)$ is a decreasing function in s_{d0} for $2n - (v+1)p < s_{d0}$ $\leq 2n - vp$. We further consider the border points, that is, $s_{d0} = 2n - (v+1)p$

$$= s'$$
, say, and $s_{d0} = 2n - (v+1)p + 1 = s'+1$, say, then
$$\phi_1(s'+1;n,p) - \phi_1(s';n,p) = n(3-p) - p + 1 < 0 \text{ for } p \ge 3.$$

Hence $\phi_1(s_{d0};n,p)$ is a decreasing function in s_{d0} for $p\geq 4$. Moreover, $s_{d0}(n-s_{d0})$ is a concave function, and is increasing in s_{d0} for $s_{d0}\leq \lfloor n/2\rfloor$. Hence if $s_{d0}>\lfloor n/2\rfloor$, there exists a design d^* having $1\leq s_{d0}\leq \lfloor n/2\rfloor$, and satisfying $g(s_{d^*0};n,p)\leq g(s_{d0};n,p)$.

Theorem 5.4. For given n, $4 \le p \le 6$, and $v_1 = [3n/2p]$. Suppose that $v_2 < (n-2v_1-1)/2(p-2) \le v_2+1$, then a type S design $S(p,g_0,g_1)$, if exists, is A-optimal in D(p+1,n) where $s_{d0}=s_0$ is obtained by

$$g(s_0; n, p) = \min(g([n/2]; n, p), ..., g([n/2] - v_2 - 1; n, p)).$$

Proof: For fixed y = v, then

$$g(s_{d0}; n, p) = \frac{np}{s_{d0}(n - s_{d0})} + \frac{np(p - 1)^2}{np(2n - s_{d0}) - ph(s_{d0}) - s_{d0}(n - s_{d0})}$$
$$= np(\phi_2(s_{d0}; n, p)/\phi_3(s_{d0}; n, p)), \text{ say,}$$

where

$$\phi_2(s_{d0}; n, p) = -p(p-2)s_{d0}^2 + (p(p-2)n - p(n-2v-1))s_{d0}$$

$$+ 2n(n-1)p - vp(4n - p - vp), \text{ and}$$

$$\phi_3(s_{d0}; n, p) = -s_{d0}^4 + (p(n-2v-1) + 2n)s_{d0}^3 - (n(n-2v-1)p + n^2 + 2n(n-1)p - vp(4n - p - vp))s_{d0}^2$$

$$+ n(2n(n-1)p - vp(4n - p - vp))s_{d0}.$$

Denote
$$v_1 = 2n(n-1)p - vp(4n-p-vp)$$
 and $v_2 = (n-2v-1)p$, then
$$v_1 = 2n(n-1)p - vp(4n-p-vp)$$

$$> 2n(n-1)p - (2n-s_{d0})(4n-p-(2n-s_{d0})+p)$$

$$= 2n((n-2)p-p) + s_{d0}^2 > 0 \text{ for } p \ge 4,$$

$$v_2 = (n-2v-1)p$$

$$> (n-2(2n-s_{d0})/p+1)p$$

$$= n(p-4) + 2s_{d0} + 1/p > 0 \text{ for } p \ge 4,$$

and

$$\phi_2(s_{d0}; n, p) = -p(p-2)s_{d0}^2 + (p(p-2)n - \upsilon_2)s_{d0} + \upsilon_1,$$

$$\phi_3(s_{d0}; n, p) = -s_{d0}^4 + (\upsilon_2 + 2n)s_{d0}^3 - (\upsilon_1 + \upsilon_2 n + n^2)s_{d0}^2 + \upsilon_1 n s_{d0}.$$

One has $\phi_2(s_{d0}; n, p)$ is increasing in s_{d0} when $0 < s_{d0} < n/2 - \upsilon_2/2p(p-2)$, and is decreasing in s_{d0} when $n/2 - \upsilon_2/2p(p-2) < s_{d0} < n/2$. (5.1)

Since

$$\begin{split} \frac{\partial}{\partial s_{d0}} \phi_3(s_{d0}; n, p) &= -4s_{d0}^3 + 3(\upsilon_2 + 2n)s_{d0}^2 - 2(\upsilon_1 + \upsilon_2 n + n^2)s_{d0} + \upsilon_1 n \,, \\ \frac{\partial^2}{\partial s_{d0}^2} \phi_3(s_{d0}; n, p) &= -12s_{d0}^2 + 6(\upsilon_2 + 2n)s_{d0} - 2(\upsilon_1 + \upsilon_2 n + n^2) \,, \end{split}$$

one can see that $\partial^2 \phi_3(s_{d0};n,p)/\partial s_{d0}^2$ is increasing in s_{d0} when $s_{d0} < (\upsilon_2 + 2n)/4$ and is decreasing in s_{d0} when $s_{d0} > (\upsilon_2 + 2n)/4$, hence $\partial^2 \phi_3(s_{d0};n,p)/\partial s_{d0}^2$ is increasing in s_{d0} when $0 < s_{d0} \le n/2$ since $(\upsilon_2 + 2n)/4 > n/2$. Moreover,

$$\frac{\partial^2}{\partial s_{d0}^2} \phi_3(s_{d0}; n, p) \bigg|_{s_{d0}=n/2} = -3n^2 + 3(\upsilon_2 + 2n)n - 2(\upsilon_1 + \upsilon_2 n + n^2)$$

$$= n \Big((1 - 3p)n + 3p(1 + 2v) \Big) - 2v(1 + v)p^2$$

$$\leq n \Big((10 - 3p)n + 3p \Big) - 2v(1 + v)p^2 < 0 \text{ for } p \geq 4.$$

Therefore, $\partial^2 \phi_3(s_{d0}; n, p)/\partial s_{d0}^2 < 0$ for $0 < s_{d0} \le n/2$, that is, $\partial \phi_3(s_{d0}; n, p)/\partial s_{d0}$ is decreasing in s_{d0} when $0 < s_{d0} \le n/2$. Since

$$\frac{\partial}{\partial s_{d0}} \phi_3(s_{d0}; n, p) \Big|_{s_{d0}=0} = \upsilon_1 n > 0, \text{ and}$$

$$\frac{\partial}{\partial s_{d0}} \phi_3(s_{d0}; n, p) \Big|_{s_{d0}=n/2} = -n^3 / 2 + (3/4)(\upsilon_2 + 2n)n^2 - 2(\upsilon_1 + \upsilon_2 n + n^2)n + \upsilon_1 n$$

$$= -n^3 - (5/4)\upsilon_2 n^2 - \upsilon_2 n < 0.$$

there exists a $0 < s_{d0}^* < n/2$ such that $\partial \phi_3(s_{d0};n,p)/\partial s_{d0} > 0$ when $0 < s_{d0} < s_{d0}^*$ and $\partial \phi_3(s_{d0};n,p)/\partial s_{d0} < 0$ when $s_{d0}^* < s_{d0} \le n/2$, that is, $\phi_3(s_{d0};n,p)$ is increasing in s_{d0} when $0 < s_{d0} < s_{d0}^*$ and is decreasing in s_{d0} when $s_{d0}^* < s_{d0} \le n/2$.

Furthermore,

$$\left. \frac{\partial}{\partial s_{d0}} \phi_3(s_{d0}; n, p) \right|_{s_{d0} = \frac{n}{2} - \frac{\nu_2}{2p(p-2)}}$$

$$= \frac{1}{2} \left(\frac{n}{2} - \frac{\upsilon_2}{2p(p-2)} \right) \left(\left(\frac{n}{2} - \frac{\upsilon_2}{2p(p-2)} \right) \left(-n + \frac{\upsilon_2}{2p(p-2)} + \frac{3}{2} (\upsilon_2 + 2n) \right) - 2n(\upsilon_2 + n) \right) + \frac{\upsilon_1 \upsilon_2}{p(p-2)}$$

$$\begin{split} &= \frac{\upsilon_2}{2\,p(p-2)} \Biggl(- \Bigl(p(p-2)n - \upsilon_2 \Bigr) \Biggl(\frac{1}{p(p-2)} \Biggl(n + \frac{\upsilon_2}{p(p-2)} \Biggr) + \frac{1}{2} \Biggl(n + \frac{3\upsilon_2}{p(p-2)} \Biggr) \Biggr) + 2\upsilon_1 \Biggr) \\ &= \frac{\upsilon_2}{2\,p(p-2)} \Biggl(- \Biggl(n - \frac{\upsilon_2}{p(p-2)} \Biggr) \Biggl(\frac{p^2 - 2\,p + 2}{2} \Biggl(n + \frac{\upsilon_2}{p(p-2)} \Biggr) - \upsilon_2 \Biggr) + 2\upsilon_1 \Biggr) \\ &= \frac{\upsilon_2}{2\,p(p-2)} \Biggl(- \frac{p^2 + 2\,p - 2}{2} \Biggl(n^2 - \frac{\upsilon_2^2}{p^2(p-2)^2} \Biggr) - \Biggl(n\upsilon_2 - \frac{\upsilon_2^2}{p(p-2)} \Biggr) + 2\upsilon_1 \Biggr). \end{split}$$

Now since

$$\begin{split} \upsilon_{1} - (p^{2} - 2p + 2)n^{2} / 2 &= (-p^{2} / 2 + 3p - 1)n^{2} - 2(1 + 2v)np + v(1 + v)p^{2}, \\ \upsilon_{1} - \upsilon_{2}n &= pn^{2} - (1 + 2v)np + v(1 + v)p^{2}, \\ \upsilon_{2}^{2} / p(p - 2) &= \left(p / (p - 2)\right)\left(n^{2} - 2(1 + 2v)n + (1 + 2v)^{2}\right), \\ \frac{(p^{2} - 2p + 2)\upsilon_{2}^{2}}{2p^{2}(p - 2)^{2}} &= \frac{(p^{2} - 2p + 2)}{2p^{2}(p - 2)^{2}}\left(n^{2} - 2(1 + 2v)n + (1 + 2v)^{2}\right) \\ &> \frac{1}{2}\left(n^{2} - 2(1 + 2v)n + (1 + 2v)^{2}\right), \end{split}$$

one has

$$\frac{\partial}{\partial s_{d0}} \phi_{3}(s_{d0}; n, p) \Big|_{s_{d0} = \frac{n}{2} - \frac{\nu_{2}}{2p(p-2)}}
> \left(-p^{2}/2 + 4p + p/(p-2) - 1/2 \right) n^{2} - (1+2\nu) (3p + 2p/(p-2) + 1) n
+ \left(1 + p/(p-2) \right) (1+2\nu)^{2} + 2\nu (1+\nu) p^{2} > 0 \text{ when } p \le 6,$$
(5.2)

since for p = 6,

$$\frac{\partial}{\partial s_{d0}} \phi_3(s_{d0}; n, 6) \bigg|_{s_{d0} = \frac{n}{2} - \frac{\nu_2}{48}}$$

$$> 7n^{2} - 22(1+2v)n + 5(1+2v)^{2}/2 + 72v(1+v)$$

$$> 7n^{2} - (22/3)(2n - s_{d0} + 3)n + (5/18)(2n - s_{d0} + 3)^{2} + 12(2n - s) + 2(2n - s_{d0})^{2}$$

$$= n(13n/9 - 16s_{d0}/9 + 16/3) + (41/3)s_{d0}(s_{d0}/6 - 1) + 5/2 > 0,$$
and $\frac{\partial}{\partial s_{d0}} \phi_{3}(s_{d0}; n, p) \Big|_{s_{d0} = \frac{n}{2} - \frac{v_{2}}{2n(n-2)}}$ is decreasing in p .

Therefore, by (5.1) and (5,2), the minimum value of $g(s_{d0};n,p)$ happens when $s_{d0}=s_0$ is between $\left[n/2-(n-2v-1)/2(p-2)\right]$ and $\left[n/2\right]$ for $4 \le p \le 6$. Moreover, the minimum value of v is $\left[3n/2p\right]$, say v_1 , and denote v_2 such that $v_2 < (n-2v_1-1)/2(p-2) \le v_2+1$, the theorem is thus proved.

Example 5.3. For p=4 and n=24, then $s_0=12$, and the following type S design S(4,3,2) is A-optimal in D(4+1,24).

$$(0,1)$$
 $(0,2)$ $(0,3)$ $(0,4)$ $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$

$$(0,1)$$
 $(0,2)$ $(0,3)$ $(0,4)$ $(1,2)$ $(1,3)$ $(1,4)$ $(2,3)$

$$(2,4)$$
 $(3,4)$ $(1,2)$ $(1,3)$ $(1,4)$ $(2,3)$ $(2,4)$ $(3,4)$

Example 5.4. For p = 4 and n = 34, then $s_0 = 16$, and the following type S design S(4, 4, 3) is A-optimal in D(4 + 1,34).

$$(0,1)$$
 $(0,2)$ $(0,3)$ $(0,4)$ $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$

$$(0,1)$$
 $(0,2)$ $(0,3)$ $(0,4)$ $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$

$$(1,2)$$
 $(1,3)$ $(1,4)$ $(2,3)$ $(2,4)$ $(3,4)$ $(1,2)$ $(1,3)$

$$(1,4)$$
 $(2,3)$ $(2,4)$ $(3,4)$ $(1,2)$ $(1,3)$ $(1,4)$ $(2,3)$

(2,4) (3,4)

Example 5.5. For p = 5 and n = 55, then $s_0 = 25$, and the following type S design S(5, 5, 3) is A-optimal in D(5+1,55).

$$(0,1)$$
 $(0,2)$ $(0,3)$ $(0,4)$ $(0,5)$ $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$ $(0,5)$

$$(0,1) \quad (0,2) \quad (0,3) \quad (0,4) \quad (0,5) \quad (0,1) \quad (0,2) \quad (0,3) \quad (0,4) \quad (0,5)$$

$$(0,1)$$
 $(0,2)$ $(0,3)$ $(0,4)$ $(0,5)$ $(1,2)$ $(1,3)$ $(1,4)$ $(1,5)$ $(2,3)$

$$(2,4)$$
 $(2,5)$ $(3,4)$ $(3,5)$ $(4,5)$ $(1,2)$ $(1,3)$ $(1,4)$ $(1,5)$ $(2,3)$

$$(2,4)$$
 $(2,5)$ $(3,4)$ $(3,5)$ $(4,5)$ $(1,2)$ $(1,3)$ $(1,4)$ $(1,5)$ $(2,3)$

$$(2,4)$$
 $(2,5)$ $(3,4)$ $(3,5)$ $(4,5)$

Example 5.6. For p = 6 and n = 27, then $s_0 = 12$, and the following type S design S(6, 2, 1) is A-optimal in D(6+1,27).

$$(0,1) \quad (0,2) \quad (0,3) \quad (0,4) \quad (0,5) \quad (0,6) \quad (0,1) \quad (0,2) \quad (0,3) \quad (0,4) \quad (0,5) \quad (0,6)$$

$$(1,2) \quad (1,3) \quad (1,4) \quad (1,5) \quad (1,6) \quad (2,3) \quad (2,4) \quad (2,5) \quad (2,6) \quad (3,4) \quad (3,5) \quad (3,6)$$

(4,5) (4,6) (5,6)

Example 5.7. For p = 6 and n = 54, then $s_0 = 24$, and the following type S design S(6, 4, 2) is A-optimal in D(6+1,54).

$$(0,1) \quad (0,2) \quad (0,3) \quad (0,4) \quad (0,5) \quad (0,6) \quad (0,1) \quad (0,2) \quad (0,3) \quad (0,4) \quad (0,5) \quad (0,6)$$

$$(0,1)$$
 $(0,2)$ $(0,3)$ $(0,4)$ $(0,5)$ $(0,6)$ $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$ $(0,5)$ $(0,6)$

$$(1,2) \quad (1,3) \quad (1,4) \quad (1,5) \quad (1,6) \quad (2,3) \quad (2,4) \quad (2,5) \quad (2,6) \quad (3,4) \quad (3,5) \quad (3,6)$$

$$(4,5)$$
 $(4,6)$ $(5,6)$ $(1,2)$ $(1,3)$ $(1,4)$ $(1,5)$ $(1,6)$ $(2,3)$ $(2,4)$ $(2,5)$ $(2,6)$

(3,4) (3,5) (3,6) (4,5) (4,6) (5,6)