
 - 4 -

Chapter 2

Related Works

In this chapter, I summarize the literature about the rule extraction from the ANN

and other associates.

2.1 Cluster Analysis

2.1.1 Chi2 Algorithm (Liu and Setiono, 1995)

Chi2 (Liu and Setiono, 1995) is an improved and automated version of Chi-

Merge (Kerber, 1992). Instead of specifying a χ2 threshold, Chi2 wraps up ChiMerge

with a loop that automatically increments the χ2 threshold. A consistency checking is

also introduced as a stopping criterion in order to guarantee that the discretized data

instance set accurately represents the original one. With these two new features, Chi2

automatically determines a proper χ2 threshold that keeps the fidelity of the original

data.

At the end of Chi2, if an attribute is merged to only one value, it simply means

that this attribute is not relevant in representing the original data instance set. As a re-

sult, when discretization ends, feature selection is accomplished.

Given a data instance set where each pattern is described by the values of the

continuous attributes x1, x2, .., xm and its class label is known. Chi2 finds discrete rep-

resentations of the data instance set. With the χ2 statistic, Chi2 divides the range of the

each attribute into subintervals and assigns all values that fall in a subinterval (a

unique discrete value). The outline of the algorithm is as follows:

Table 2.1: Chi2 Algorithm.

1. Let Chi-0 be an initial critical value.
2. For each attribute xi:

 - 5 -

a. Sort the instances according the input values of attribute xi.
b. Form an initial set of intervals such that each interval contains only one

unique value.
3. Initialize all attributes as "unmarked".
4. For each unmarked attribute xi:

a. For each adjoining pairs of subintervals, compute their χ2 values whose de-
gree of the freedom is one less than the number of classes:

 ∑∑
= =

−
=

2

1 1

2
2)(

l

k

j ij

ijij

E
Eϑ

χ (2.1)

where

k: The number of classes;

ϑlj: The number of instances in the l-th interval of the adjoining pairs of
subintervals of the j-th class;

Rl: The number of instances in the l-th interval and Rl =∑
=

k

j
lj

1

ϑ ;

Cj: The number of instances in the j-th class and Cj =∑
=

2

1l
ljϑ ;

N: The total number of instances in the adjoining pairs of subintervals and n

=∑
=

2

1i
lR ;

Elj: The expected frequency of ϑlj, Elj = RlCj/N, and Elj is set to 0.1 if either
Rl or Cj is 0.

b. Find two subintervals with the lowest χ2 value.
c. If this value is less than Chi-0 and it does not introduce the rate of conflict-

ing data1 (inconsistency rate) > d to merge the two subintervals, then
‧ Merge the subintervals and go to step 4.a.
Else if it is going to introduce the inconsistency rate > d, then
‧ Label attribute as "mark".

5. If there is still an unmarked attribute, then Chi-0 is increased and go to step 4.

1. Conflicting data occur when there are two or more instances from different classes with the same

dicretized attribute values.

 - 6 -

2.2 Rule Extraction Techniques

2.2.1 NeuroLinear (Setiono and Liu, 1997)

Setiono and Liu (1997) present NeuroLinear, a system for extracting oblique de-

cision rules from a trained ANN for the classification problem. Each condition of an

oblique decision rule corresponds to a partition of the x-space (the input space) by a

hyper-plane that is not necessarily axis-parallel. Allowing a set of such hyper-planes

to form the boundaries of the decision regions leads to a significant reduction in the

number of rules generated while maintaining the accuracy rates of the ANN.

The steps of extracting oblique decision rules from an ANN are as follows:

1. Train and select an ANN to meet a pre-specified accuracy requirement. Remove the

redundant connections in the network by pruning while maintaining the accuracy.

2. Discretize the hidden node activation values of the ANN. Extract rules that describe

outputs of the ANN in terms of the discretized activation values. For each discre-

tized hidden node activation value, generate a rule with respect to input attributes

of the ANN. Merge the two sets of rules obtained above.

The details of these steps are listed below.

Neural Network Training and Pruning

The basic structure of the ANN is a standard three-layer feed-forward network,

which consists of an input layer, a hidden layer, and an output layer. Two approaches

to determine a suitable number of hidden nodes have been described in the literature.

The first approach begins with a minimal number of hidden nodes, say one or two,

and more hidden nodes are added as they are needed to increase the accuracy of the

ANN. The second approach begins with an oversized network and removes redundant

connections in the network by pruning. In the process, hidden nodes that are not con-

nected to any input nodes or output nodes can be removed as well. Setiono and Liu

 - 7 -

(1997) adopt the second approach since they are interested in removing input nodes

that are irrelevant to the classification. During the pruning phase, irrelevant input

nodes and hidden nodes can be identified and removed from the network.

Given a m-dimensional pattern cx, c∈{1, 2, ..., n} as input. Let 2wji be the weight

of the connection from input node i, i∈{1, 2, ..., m} to hidden node j, j∈{1, 2, ..., p};

3wjk be the weight of the connection from hidden node j to output node k, k∈{1, 2, ...,

q}. The k-th output of the ANN for pattern cx is obtained by computing

)(
1

3∑
=

=
p

j
jcjkkc hwy σ , (2.2)

where

)1(1)(sigmoid)(tett −+==σ , (2.3)

)(
1

22∑
=

+=
m

i
jjiicjc wxh θδ , (2.4)

)()()tanh()(tttt eeeett −− +−==δ . (2.5)

The desirous output for a pattern cx that belongs to the k-th class is a

q-dimensional vector cd, where cdk = 1 and others equal 0. The back-propagation algo-

rithm is applied to update the weights (2W, 3W, 2θ) and minimize the following func-

tion:

 E(2W, 3W, 2θ) =F(2W, 3W, 2θ) + P(2W, 3W, 2θ), (2.6)

where W2 , W3 and 2θ denote these parameter matrixes consisting of 2wji, 3wj and

2θj respectively; F(2W, 3W, 2θ) is the cross entropy function (Van Ooyen and Nienhuis,

1992):

 F(2W, 3W, 2θ)= ∑∑
= =

−−+−
n

c

q

k
kckkck ydyd

1 1
cc))1log()1(log((2.7)

and P(2W, 3W, 2θ) is a penalty term used for weight decay (Hertz et al., 1991):

 P(2W, 3W, 2θ)= 



+∑

=

p

j

j

1
2

j2

2
2

1
)(1

)(
θβ

θβ
ε +∑∑

= = +

m

i

p

j ji

ji

w
w

1 1
2

2

2
2

)(1
)(

β
β

+ 



+∑∑

= =

p

j

q

k jk

jk

w
w

1 1
2

3

2
3

)(1
)(

β
β

 - 8 -

 







+++ ∑∑ ∑∑∑

= = = ==

m

i

p

j

p

j

q

k
jkji

p

j
j ww

1 1 1 1

2
3

2
2

1

2
22)()()(θε (2.8)

where e1, e2, and ß are positive decay parameters.

One of the advantages of having an ANN with only the relevant connections is

that the behavior of the ANN can be explained by a simple set of rules (Karnin, 1990).

The pruning algorithm removes connections in the ANN based on their magnitude.

The details of this algorithm and the experimental results on a number of well-known

classification problems are given in (Setiono, 1997). The effectiveness of the pruning

algorithm is shown by the fact that for the many problems tested, the final pruned

ANN has only the relevant connections left regardless of the number of initial hidden

nodes in the ANN.

Rule Generation

The range of the hidden nodes activation values of the ANN is the interval (-1, 1),

since they have been computed as equation (2.4). In order to extract rules from the

ANN, it is necessary for these values to be grouped into a few clusters while the ac-

curacy of the ANN is preserved. Chi2 (Liu and Setiono, 1995), an improved and

automated version of ChiMerge (Kerber, 1992), is the algorithm used for this purpose.

After Chi2 discretizes hidden node activation values, rules are generated in two

phases. First, rules that describe the classification are obtained in terms of the discre-

tized hidden node activation values. Second, rules that describe each discretized hid-

den node activation values are obtained in terms of the original attributes of the data

instance set.

The first phase implement an efficient rule generator called X2R (Liu and Tan,

1995). It generates a set of rules which covers all the data instances with an error rate

not exceeding the inconsistency rate present in the dataset. It is particularly suitable

 - 9 -

for moderate sized datasets with discrete attribute values. When few hidden nodes are

left in the pruned network where each of these hidden nodes has a relatively small

number of different discrete activation values, it may be possible to find a set of clas-

sification rules without the help of any computer program.

As for the second phase, they obtain the rules that describe the relation between

the discretized activation values and the input attributes. The discretized activation

values at all the remaining hidden nodes are not the only output of the Chi2 algorithm.

Chi2 also provides the boundaries of the subintervals of the activation values after the

merging process has terminated. Suppose nj is the number of clusters or subintervals

found by Chi2 for the activation values of hidden node j. There are nj + 1 real num-

bers hD0, hD1, hD2, … , hDnj
, such that -1 = hD0 < hD1 < hD2 < … < hDngj-1

 < hDnj
= 1, which

form these nj clusters. An activation value hj of an input pattern will be discretized

into the l-th cluster if hDl-1< hj < hDl. The activation value hj is obtained by applying

equation (2.7). Hence, an activation value falls into subinterval [hDl-1, hDl] if its net in-

put (2wj
tx + 2θj) satisfies the condition

 tanh-1(hDl-1) ≤ 2wj
tx + 2θj < tanh-1(hDl) (2.9)

where 2wj is the weight vector from the input layer to one hidden node j and tanh-1(t)

is the inverse of the tanh(t) function

 tanh-1(t) = log((1 + t)/(1–t))/2. (2.10)

The equation (2.9) describes the half-spaces (in the case of l = 1 or l = nj) or the inter-

section of two half-spaces (in the case of l = 2, 3, … , nj–1) in the original input space

of the dataset where a pattern will have a discretized hidden node activation value lo-

cated in the l-th subinterval.

Note that in order to obtain the rules that describe the relation between hidden

node activation values and the class labels, the weights of the connections between the

hidden nodes and the output nodes are not required. On the other hand, rule conditions

 - 10 -

that determine the subintervals of the discretized activation values are specified by the

weights of the ANN connections from the input nodes to the hidden nodes. Combin-

ing the rules and conditions obtained from the two phases, Setiono and Liu (1997)

find decision boundaries in terms of the original attributes that classify the patterns of

the dataset. So the rules finally generated is like the following: "If –x1 + x2 = 0 AND

1.51x1 – x2 = 0.25, then d1 = 1 else d1 = 0."

2.2.2 STARE (Zhou et al., 2000)

Data Generation

Suppose that a trained ANN N for the classification problem has been obtained.

If an input pattern cx
t
 = (cx1, cx2, … , cxm) is fed to N, its corresponding output pattern cy

t

= (cy1, cy2, … , cyq) is derived from the output nodes. Through combining cx and cy, an

instance (cx, cy) which could be generated by N and represent the function of N on the

specific point cx in the instance space is got. Considering the data instance set S which

could be generated by N through gradually sliding cx in the instance space, that is,

varying each cxi (i = 1, 2, … , m) across its value range so that diversified input pat-

terns could appear as more as possible, Zhou et al. (2000) believe that the function of

N is encoded in S. Thus, if a comprehensible rule set R can be extracted from S, the

function of R will approach that of N while the size of S approaches infinity, that is,

)()(lim NR
S

funcfunc =
∞→

For a category attribute, it is easy to be done through making all the possible

values appear in turn. For a continuous attribute, it is necessary to sample it across its

value range with a high frequency. For example, we get 100 patterns for an attribute

whose value range is [0, 1]. In other words, we sample it with the interval 0.01.

Continuous Attribute Processing

 - 11 -

After the data instance set S has been created, the rule set R could be extracted

via STARE. Attention should be paid to that STARE always extracts rules from category

attributes. Only when new rules cannot be extracted out, STARE resorts to the continu-

ous attribute that has the best clustering effect, that is, the number of discretized clus-

ters is the least. The discretized continuous attribute by Chi2 will be regarded as a

new category attribute, and used together with previous category attributes for rule

extraction.

Comparing with the continuous attribute processing used by most rule extraction

approaches which discretizes all the continuous attributes at the beginning, the proc-

essing of STARE has some advantages. First, in most cases, especially when there are

lots of attributes, some continuous attributes will not appear in the extracted rules.

Second, in STARE, since every time only one continuous attribute may be processed,

different attributes could be discretized to different number of clusters. If they are

discretized to equal number of clusters, some helpful information may be obliterated.

Third, since the continuous attributes are discretized one by one, the computational

complexity for discretization will gradually descend due to thr unique rule creation

process, which will be elaborated later.

However, the continuous attribute processing of STARE also has shortcomings.

Since continuous attributes are processed one by one, the relationship among multiple

continuous attributes is ignored, which makes STARE work quite well on problems

where there is little interaction between attributes.

Rule Creation

A subset H of input attributes will be identified. Based on H, a rule will be cre-

ated. At first, H is only composed of one attribute xi that is randomly picked out from

present category attributes. Consider the possible values of one attribute xi. If there

 - 12 -

exists a value u that all the instances possessing such value in S fall into a certain class

C, a rule r will be created via regarding xi = u as the antecedent and regarding C as the

consequent (if xi = u, then C). If u does not exist, xi will be replaced by another cate-

gory attribute xj, and a similar process searching for xj's fitful value v occurs.

If no rule has been created after examining all the single attributes, another cate-

gory attribute will be appended to H. In other words, H is composed of two attributes

now. Suppose they are xi and xj. The resulting rule will have two conjunctive antece-

dents, that is, xi = u AND xj = v. Thus, the number of rule antecedents will increase

while the number of attributes in H increases. Because of investigation of Zhou et al.

that rules with more than three antecedents are nearly incomprehensible to human be-

ings, they limit the maximum number of attributes in H to be 3. Accordingly, the limi-

tation will result in the increase of the number of rules. However, they believe it is

valuable because it will increase the comprehensibility of the extracted rules as well.

If no rule has been created after examining all the possible subsets of category

attributes, a continuous attribute will be discretized and regarded as a new category

attributes, as described in pre-section. If no rules could be created after all the con-

tinuous attributes being discretized, or S has been fully covered by R, the rule creation

process terminates.

Priority Formation

In STARE, if a new rule r is extracted, instances covered by it will be deleted from

the data instance set S. The part of instance space that has been covered by R is named

as "known space", and the rest part of instance space is named as "unknown space".

The known space is always growing and the unknown space is always shrinking while

the rule set R matures. Namely, the number of extracted rules lifts. This leads the rules

to be expressed in priority form. The earlier the rule being extracted, the higher its

 - 13 -

priority should be. The reason for this is that the rules could be viewed as being ex-

tracted from a series of unknown spaces where the later ones are subsets of the earlier

ones.

Such kind of rule form has some advantages because the rules should be matched

by priority when the rule set is used. First, the rules could have concise appearances

because the higher priority rules implicitly work as rule antecedents for the lower pri-

ority ones. Second, some rules could not be extracted without the help of earlier ex-

tracted ones because the number of explicit rule antecedents is limited to three in the

rule creation process, as mentioned in pre-section. Third, when a common rule set is

used, a conflict check should be executed so that specific rules will not be replaced by

general ones. Since priority rules have already contained order information, the

time-consuming check process could be omitted.

An important point is that the priority rule form is also the requirement of the

continuous attribute processing of STARE. Since the continuous attributes are discre-

tized one by one and the unknown space is always shrinking, the working areas of the

rules involving different continuous attributes are different.

Fidelity Evaluation

STARE only creates rules from category attributes, so the dimension of the un-

known space could be measured as the number of category attributes. Thus, discretiz-

ing continuous attributes could be viewed as incrementing the dimension of unknown

space when the rule extraction task is too difficult to be accomplished. Such dimen-

sion incrementing technique has been proved to be valid in solving many problems

(Vapnik, 1995). However, it also raises a new problem. Since the unknown space with

lower dimension has been transformed to a space with higher dimension, the distribu-

tion of instances in S may be "distorted". Namely, the instances may not uniformly

 - 14 -

distribute across the new unknown space. Thus, the extracted rules may only be valid

for a part of the unknown space. In order to solve this problem, statistics is intro-

duced.

The newly created rule r will be evaluated before coming into R as a member. It

is used to examine the fidelity of r, that is, the percentage of instances for which rule r

and neural network N make the same classification. First, nu instances are generated

by N in the same way described in pre-section. Among those instances, the ones cov-

ered by R will be repeatedly replaced by newly generated instances until none of the

nu instances is covered by R. Then, rule r works to classify the nu instances. If the ac-

curacy of r is beyond a pre-set lower bound d, r will be accepted as a new member of

R. Else r will be rejected and another rule should be created. If consider the nu in-

stances that are generated by N and could represent the function of N in present un-

known space, r's accuracy is actually its fidelity. Experiments show that when nu

equals the size of S of the time, accurate rules could be extracted.

What should be heeded is that the number of extracted rules could be determined

by users through setting the value of d. Since large d will result in high frequency of

rule rejection, and the smaller d will result in that the more rules are extracted, defi-

nitely.

In summary, the STARE algorithm is depicted in Table 2.2.

Table 2.2: STARE Algorithm

1. Generate a rule extraction instance set S by the trained ANN N.
2. Create a new rule r based on an adequate category attribute subset H, go to

step 3. If there is no such subset, jump step 5.
3. Generate nu instances by S. If r’s fidelity is beyond the pre-set lower bound d

and r is appended to the extracted rule set R, go to step 4. Else r is rejected,

return step 2.
4. Delete the instances covered by r from S. If S is empty, jump step 6. Else re-

turns step 2.
5. If all continuous attributes have been discretized, go to step 6. Else the con-

 - 15 -

tinuous attribute with the best clustering effect is discretized returns step 2.
6. Merge the rules that have the same rule consequent and successive priorities.

2.2.3 CREFANN (Gaweda et al., 2000)

Gaweda et al. propose an algorithm to extract rules from an ANN. We name it

CREFANN (Constant Rule Extraction from Function Approximating Neural Net-

works). The algorithm is based on clustering of the hidden layer activations. The cen-

ter of each cluster in the product space of the hidden layer activations is a point that

represents a hyper-plane in the input space. These hyper-planes are defined by linear

equations whose coefficients are the weights from the input nodes to the hidden nodes.

The number of linear equations in the antecedent of a single rule is obviously equal to

the number of nodes in the hidden layer. Rule consequences are found by multiplying

cluster coordinates (hidden node activations) by the output weights. Clustering of the

hidden node responses has been used in prior studies (Setiono and Liu, 1997) (Wei-

jters and Bosch, 1998); however, the form of the rules extracted by the presented

method is a new extension.

Rule Extraction Algorithm

Let xt ≡ (x1, x2,… , xm) denote an input pattern of an ANN and assume, for sim-

plicity, that the ANN has one linear output denoted by y _ (generalization to the case

with multiple outputs is straightforward). Further, assume that the ANN has one hid-

den layer of p nodes with sigmoid activation functions. Let 2wj
t ≡ (2wj1, 2wj2,… , 2wjm)

denote the weight vector between the input layer and the j-th hidden node and 2θj be

the bias of the j-th hidden node where 1 ≤ j ≤ p. Let 3wt ≡ (3w1, 3w2,… , 3wp) denote

the weight vector between the hidden layer and the output node and 3θ be the bias of

the output node.

‧ Feed the training patterns to the network and search for clusters in the

 - 16 -

p-dimensional product space of the responses of hidden nodes.

‧ For each cluster hl ≡(lh1, lh2, … , lhp), find the corresponding network output

 yl =
p

j 1=
Σ 3wj lhp+3θ (2.11)

where 1 ≤ l ≤ ng and ng is the number of clusters.

‧ For each of p hidden nodes and each of ng clusters, find the parameters of the

input linear prototypes denoted here as lpl(2wj):

 lpl(2wj) ≡
m

i 1=
Σ 2wji xi + 2θj + ln(

jl

jl

h
h−1

) (2.12)

The rules have the following form:

 Rl: If lpl(2w1)=0 and lpl(2w2)=0 and … and lpl(2wp)=0, then y= yl (2.13)

A set of rules of the form (2.13) can be regarded as a composition of local mod-

els. These models partition the input space into subspaces defined as linear combina-

tions of the input variables, for which the output attains specific, constant values.

Rule-based Approximation Algorithm

For a single input vector cxt ≡ (cx1, cx2,… , cxm)

‧ Find the similarity between cx and every linear prototype lpl(2wj); 1 ≤ l ≤ ng

and 1 ≤ j ≤ p. The similarity measure can be defined as the following function

reciprocal to the distance between cx and a hyper-plane corresponding to the

linear prototype lpl(2wj)

 µ(lpl(2wj), cx) ≡
))), (lp(dexp(1

1
2 xw cjl+

 (2.14)

where d(lpl(2wj), cx) is the following distance measure

 d(lpl(2wj), cx) ≡

∑

∑

=

=

−
++

m

i
ji

m

i jl

jl
jicji

w

h
h

xw

1

2
2

1
2)

1
ln(θ

 (2.15)

 - 17 -

‧ For each rule find its activation x 6 defined as follows

 αl ≡ ∑
=

p

j
cjl

1

2
2)),(lp(xwµ (2.16)

‧ Select the best rule i.e. the one with the maximum activation

 αk =)(max
1

l
nl g

α
<<

 (2.17)

The actual output is the consequence of the rule Rk

 y= yk (2.18)

2.2.4 REFANN (Setiono et al., 2002).

Neural Network Training and Pruning Algorithm

To reduce the number of rules, redundant hidden nodes and irrelevant input

nodes are first removed by a pruning method called N2PFA (Neural Networks Prun-

ing for Function Approximate).

Give an available set of data instances {(cx, cd)| cx ∈ Rm, cd ∈ R. and c = 1, 2, ...,

n}. First, it is randomly divided into three subsets: the training, the cross-validation

and the test sets. Using the training data set, an ANN with p hidden nodes is trained,

so as to minimize the sum of squared errors E(2W, 3W, 2θ) augmented with a penalty

term P(2W, 3W, 2θ).

 E(2W, 3W, 2θ) =∑
=

−
n

c
cc yd

1

2)(+ P(2W, 3W, 2θ) (2.19)

 P(2W, 3W, 2θ) = ∑ ∑
= =












+
+

+
+








+

p

j j

j

j

j
m

i ji

ji

w
w

w
w

1
2

2

2
2

2
3

2
3

1
2

2

2
2

1
)(1

)(
)(1

)(
)(1

)(
θβ

θβ
β

β
β

β
ε

 + ∑ ∑
= =









++







p

j
jj

m

i
ji ww

1

2
2

2
3

1

2
22 θε (2.20)

where W2 , W3 and 2θ denote these parameter matrixes consisting of 2wji, 3wj and 2θj

respectively; e1, e2, and ß are positive penalty parameters; 2wji is the weight of the

 - 18 -

connection from input node i, i∈{1, 2, ..., m} to hidden node j, j∈{1, 2, ..., p} and 2θj

is the bias of hidden node.j; 3wj is the weight of the connection from hidden node j to

the output node. Then the hidden node activation value chj for input pattern cx and its

predicted value cy are computed as follows:

 ∑
=

=
p

j
jcjc hwy

1
3 , (2.21)

)tanh()(
1

22∑
=

+==
m

i
jicjijcjc xwnethh θ , (2.22)

Once the ANN has been trained, its hidden and input nodes are inspected as can-

didate for possible removal by a network pruning algorithm. This algorithm removes

redundant and irrelevant nodes by computing them mean absolute error (MAE) of the

network's prediction. In particular, ET and EX, respectively, the MAEs on the training

set T and the cross-validation set X, are used to determine when pruning should be

terminated.

 ET = ∑
∈

−
TT

1

)t(

||
||

cc

yd cc
x,

 (2.23)

 EX = ∑
∈

−
xx

1

)t(

||
||

cc

yd cc
x,

 (2.24)

where |T | and |X | are the cardinality of training and cross-validation sets, respectively.

Table 2.3: N2PFA Algorithm

Given: Data set (cx, cd), c= 1,2, … , n.

Objective: Find an ANN with reduced number of hidden and input nodes that fits the

data and generalizes well.

1. Split the data set into three subsets: training, cross-validation, and test sets.
2. Train an ANN with a sufficiently large number of hidden nodes to minimize

the error equation (2.19).
3. Compute ET and EX, and set ETbest = ET, EXbest = EX, Emax=max{ ETbest,

EXbest }.
4. Remove redundant hidden nodes:

a. For each j = 1, 2, … , p, set 3wj = 0 and compute the prediction errors ETj.
b. Retrain the ANN with 3wlh = 0 where ETlh = Min{ETj, j=1, 2, ..., p}, and

 - 19 -

compute ET and EX of the retrained ANN.

d. If ET ≤ (1+α)Emax and EX ≤ (1+α)Emax, then
l Remove hidden node h.
l set ETbest = Min{ET, ETbest }, EXbest = Min{EX, EXbest}, and Emax =

Max{ ETbest, EXbest }

l Set p = p −1 and go to step 4.a.
Else uses the previous setting of network weights.

5. Remove irrelevant inputs:
a. For each i = 1, 2, … , m, set 2wji = 0 for all j and compute the prediction
errors ETi.
b. Retrain the ANN with 2wjl = 0 for all j where ETl = Min{ETi, i=1, 2, ...,m},

and compute ET and EX of the retrained ANN.

d. If ET ≤ (1+α)Emax and EX ≤ (1+α)Emax, then
l Remove input node l.
l set ETbest = Min{ET, ETbest }, EXbest = Min{EX, EXbest}, and Emax =

Max{ ETbest, EXbest }

l Set m = m − 1 and go to step 5.a.
Else uses the previous setting of network weights.

6. Report the accuracy of the ANN on the test data.

The value of Emax is used to determine if a network node can be removed. Typi-

cally, at the beginning of the algorithm when there are many hidden nodes in the net-

work, the training mean absolute error ET will be much smaller than the

cross-validation mean absolute error EX. The value of ET increases as more and more

nodes are removed. As the network approaches its optimal structure, EX is expected to

decrease. As a result, if only ETbest is used to determine whether a node can be re-

moved, many redundant nodes are likely to remain in the network when the algorithm

terminates because the initial value of ETbest tends to be small. On the other hand, if

only EXbest is used, then the network would perform well on the cross-validation set

but may not necessarily generalize well on the test set. This could be caused by the

small number of samples available for cross-validation or an uneven distribution of

the data in the training and cross-validation sets. Therefore, Emax is assigned the larger

of ETbest and EXbest so as to remove as many redundant nodes as possible without sacri-

 - 20 -

ficing the generalization accuracy. The parameter α > 0 is introduced to control the

chances that a node will be removed. With a larger value of α, more nodes can be re-

moved. However, the accuracy of the resulting network on the test data set may dete-

riorate. Setiono et al. have conducted extensive experiments to find a value for this

parameter that works well for the majority of their test problems.

To Approximate Hidden Node Activation Function

Having produced the pruned network, Setiono et al. (2000) can proceed to ex-

tract rules that explain the network outputs as a collection of linear functions. The first

step in their rule extraction method is to approximate the hidden node activation func-

tion. They approximate the activation function by either a three-piece linear function

or a five-piece linear function.

Three-Piece Linear Approximation

Since h(t) is anti-symmetric, it is sufficient to illustrate the approximation just for

the nonnegative values of t. Suppose that the input ranges from zero to tm. A simple

0 t0 tm

t0

t

h(tm)

h(t)

Figure 2.1: The tanh(t) function (solid curve) for t ∈ [0, tm] is approximated by a
two-piece linear function (dashed lines).

 - 21 -

and convenient approximation of h(t) is to over-estimate it by the piecewise linear

function shown in Figure 2.1. To ensure that L(t) is larger than h(t) everywhere be-

tween 0 to tm, the line on the left should intersect the coordinate (0, 0) with a gradient

of h'(0)=1, and the line on the right should intersect the coordinate (tm, h(tm)) with a

gradient of h'(tm) = 1− h2(tm). Thus, L(t) can be written as

 L(t)=




≥+−
≤≤

0

0

)())(('
0

ttthttth
ttt

mmm

 (2.25).

The point of intersection x0 of the two line segments is given by

 t0 =
)(

)(')(
2

m

mmm

th
thtth −

 (2.26)

The total error EA of estimating h(x) by L(x) is as

∞→−−→

−+−+=

−= ∫

m

mm

x

A

t

tthtttt

dtthtLE
m

 as 5.0ln

)cosh(ln)]()(([
2
1

))()((

2
1

00
2
0

0

 (2.27)

Namely, the total error is bounded by a constant value.

Another simple linearization method of approximating is to under-estimate h(t)

by a three-piece linear function. It can be shown that the total error of the un-

der-estimation method is unbounded and is larger than that of the over-estimation

method for tm > 2.96 .

Five-Piece Linear Approximation

By having more line segments, the function h(t) can be approximated with better

accuracy. Figure 2.2 shows how this function can be approximated by a three-piece

linear function for t ∈ [0, tm]. The three dashed lines are given by

 L(t)=








≥+−
≤≤+−
≤≤

2

20111

0

)())(('
)())(('

0

ttthttth
tttthttth
ttt

mmm

 (2.28)

The underlying idea for this approximation is to find the point that minimizes the total

 - 22 -

area A of the triangle and the two trapezoids

)]))((())(([
2
1

220220
2
0 ttthyttyttA mm −++−++= (2.29)

where t0, t1 and y2 are expressed in terms of a constant tm and the free parameter t1.

 t0 =
)(1

)(')(

1
2

111

th
thtth

−
−

 (2.30)

 t2 =
)(')('

)()()(')('

1

111

m

mmm

thth
thththttht

−
+−−

 (2.31)

 y2 =
)(')('

)()(')()('))((')('

1

1111

m

mmmm

thth
ththththttthth

−
−+−

 (2.32)

The bisection method (Gill, Mao and Li, 1981) for one-dimensional optimization

problems is operated to find the optimal value of t1. The total error EA of estimating

h(x) by this linear approximation is computed to be as

∞→→

−= ∫
m

t

A

t

dtthtLE
m

 as 071169.0

))()((
0 (2.33)

Rule Generation

Setiono et al. (2002) introduce a method called REFANN (Rule Extraction from

0 t1 t0 t2 tm
t

t0

y2
h(tm)

h(t)

h(t1)

Figure 2.2: The tanh(t) function (solid curve) for t ∈ [0, tm] is approximated by a
three-piece linear function (dashed lines).

 - 23 -

Function Approximating Neural Networks). REFANN generates rules from a pruned

ANN according to Table 2.4.

Table 2.4: REFANN Algorithm

Given: Data set (cx, cd), c= 1,2, … , n and a pruned ANN with p hidden nodes.
Objective: Generate linear regression rules from the ANN.

1. Train and prune an ANN with one hidden layer and one output nodes.
2. For each hidden node j= 1, 2, … , p:

a. Determine tjm = Max{|cnetj|, c=1, 2, ..., n} from the training instances.
b. If the three-piece linear approximation is used:

l Compute tj0
l Define the three-piece approximating linear function Lj(t) as

 Lj(t)=








≥+−
≤≤−

−≤−+

0

00

0

)())(('

)())(('

jjmjmjm

jj

jjmjmjm

ttthttth
tttt

ttthttth
.

l Use the pair of point −tj0 and tj0 of function Lj(t) to divide the input
space into 3p subregions.

c. Else if the five-piece linear approximation is used:
l Use the bisection method to find tj1 and compute tj0 and tj2 according

to equations (2.30) and (2.31).
l Define the five-piece approximating linear function Lj(t) as

 Lj(x)=














≥+−
≤≤+−

≤≤−
−≤≤−−+

−≤−+

2

20111

00

02111

2

)())(('
)())(('

)())(('
)())(('

jjmjmjm

jjjjj

jj

jjjjj

jjmjmjm

ttthttth
tttthttth

tttt
tttthttth

ttthttth

l Use the points −tj2, −tj0, tj0 and tj2 divide the input space into 5p subre-
gions.

3. For each nonempty sub-region, generate a rule as follows:
a. Define a linear equation that approximates the network's output for cx in

the sub-region as the consequent of the extracted rule

 ∑
=

=
p

j
jcjjc netLwy

1
3)(' (2.34)

 ∑
=

+=
m

i
jicjijc xwnet

1
22 θ (2.35)

 - 24 -

b. Generate the rule condition: (C1, C2, and Cp), where Cj is either cnetj < −tj0,
−tj0≤ cnetj ≤−tj0, or cnetj > tj0 for the three-piece approximation approach; or Cj
is either cnetj ≤ −tj2, −tj2< cnetj <−tj0, , −tj0≤ cnetj ≤tj0, , tj0< cnetj <tj2,or cnetj ≥ tj2
for the five-piece approximation approach.

4. (Optional) Apply C4.5 (Quinlan, 1993) to simplify the rule conditions.

In general, a rule condition is defined in terms of the weighted sum of the inputs

(Towell and Shavlik, 1993) which corresponds to an oblique hyper-plane in the input

space. This type of rule condition can be difficult for users to interpret. In some cases,

the oblique hyper-planes can be replaced by hyper-planes that are parallel to the axes

without affecting the prediction accuracy of the rules on the data set. Consequently,

the hyper-planes can be defined in terms of the isolated inputs, and are easier for the

users to understand. In some cases of real-life data, this enhanced interpretability

would arrive at a possible cost of reduced accuracy. If the replacement of rule condi-

tions is still desired, it can be performed by employing a classification method such as

C4.5 (Quinlan, 1993) in the optional Step 4.

2.2.5 RN2 (Satio and Nakano, 2002)

Neural Network Training

Set (Qx1, … , Qx mQ
, Nx1, … , NxmN

, d) or (Qx, Nx, d) be a vector of attributes describing a

instance, where Qxl is a nominal attribute and Nxi is a numeric attribute. Here, by add-

ing extra categories, if necessary, without losing generality, assume that Qxl exactly

matches the one category. Therefore, for each a dummy variable expressed by Dxlr is

introduced as follows:

 Dxlr =




otherwise0
categoryth - match the if 1 Q .rxl (2.36)

Here r = 1, 2, ... ml and ml is the number of distinct categories appearing in Qxl. Here-

after, Dx is used to denote a vector constructed by all dummy variables.

 - 25 -

Using the training set of data instances, an ANN with p hidden nodes whose ac-

tivation functions are exp(t)=et is trained. To improve both the generalization per-

formance and the readability of the learning result, Satio and Nakano (2002) adopt a

method to learn a distinct penalty factor for each weight as a minimization problem

over the cross-validation error, called the minimum cross-validation (MCV) regular-

izer (Saito and Nakano, 2000).

Given an available set of data instances, T = {(xD
c , xN

c , cd)| c =1, 2, … n}. An

ANN is trained so that minimize the sum of squared error E(WD
2 , WN

2 , 3W, 3θ).

 E(WD
2 , WN

2 , 3W, 3θ)=
2
1

(+−∑
=

n

c
cc yd

1

2)(P(WD
2 , WN

2 , 3W, 3θ)) (2.37)

 P(WD
2 , WN

2 , 3W, 3θ) =∑∑∑
= = =

p

j

m

l

m

r
jlrjlr

l

w
1 1 1

2D
22

Q

)(λ +∑∑
= =

p

j

m

i
jiji w

1 1

2N
22

N

)(λ

 +∑
=

p

j
jj w

1

2
33)(λ + 2

33)(θλ (2.38)

where WD
2 , WN

2 , W3 and 3θ denote these parameter matrixes consisting of jlrwD
2 ,

jiwN
2 , 3wj and 3θ respectively; 2λjlr, 2λji, 3λj and 3λ are positive penalty parameters;

jlrwD
2 is the weight of the connection from nominal input node lr to hidden node j;

jiwN
2 is the weight of the connection from numeric input node i to hidden node j; 3wj

is the weight of the connection from hidden node j to the output node and 3θ is the

bias of the output node. Then the hidden node activation value chj for input (xD
c , xN

c)

and its predicted value cy are computed as follows:

 ∑
=

+=
p

j
jcjc hwy

1
33θ , (2.39)

))ln(exp()exp(
1

NN
2

1 1

DD
2

Q

∑∑∑
== =

+==
m

i
icji

m

l

m

r
lrcjlrjcjc xwxwneth

l

 - 26 -

 =)exp(
Q

1 1

DD
2∑∑

= =

m

l

m

r
lrcjlr

l

xw ∏
=

N
N
2

1

N
m

i

w
ic

jix (2.40)

Method for Rule Extraction

Assume that a trained ANN has been obtained. In order to find a set of regression

rules, a suitable efficient method is needed to extract the nominal conditions from the

trained ANN.

Satio and Nakano (2002) can straightforwardly extract a regression rule for each

training instance, and simply assemble them to obtain a rule set. Namely, the j-th hid-

den node calculates the following activation value from the values of encoded nomi-

nal attributes of the c-th training instance

 csj=)exp(
Q

1 1

DD
2∑∑

= =

m

l

m

r
lrcjlr

l

xw (2.41)

Thus, by putting xD
c , the following set of regression rules can be obtained from the

training set of data instances and the trained ANN

 If lrc

x

m

l

x
lclrc

D

1 D

Q

 ∨∧
∈= Q

 then y = 3θ + ∑
=

p

j
jw

1
3 csj∏

=

N N
2

1

N
m

i

w
ic

jix , c=1, 2,… , n. (2.42)

where cQl={ Dxlr|
Dxlr = 1}. However, the results of this naive method are still far from

desirable because they contain a large number of similar rules, and each nominal con-

dition is too specific to represent only one training instance.

Based on the above considerations, a new extraction method called RN2 is pro-

posed by Satio and Nakano (2002). In RN2, the number of distinct polynomial equa-

tion is reduced by finding representative values of equation (2.41), and adequate

number of representatives is determined by using a criterion for model selection, and

a set of nominal conditions is determined by solving a standard classification problem

by using decision trees.

 - 27 -

In order to find representative vector, a set of vectors {cs
t = (cs1, cs2, … , csp)| c= 1,

2, … , n} calculated from the nominal inputs is quantized into a set of representative

vectors {cK
ut = (cK

u1, cK
u2, … , cK

up)| cK = 1, 2, … , nK }, where nK is the number of repre-

sentatives. Among several vector quantization (VQ) algorithms, the K-means algo-

rithm (Lloyd, 1982) is employed due to its simplicity.

In the K-means algorithm, all of the vectors are assigned simultaneously to their

nearest representative vectors. Each representative vector is moved to the group's

mean and this process is repeated until there is no further change in the grouping of

representative vectors. Consequently, all of the n vectors are partitioned into nK dis-

joint subset {GcK
: cK=1, 2, … , nK} so that the following sum of squares error function

VD is minimized:

 VD =∑ ∑∑
= ∈ =

−
K

K

K

1 1

2

K

)(
n

c c

p

j
jcjc

c

us
G

 (2.43)

Let ncK
 be the number of vectors belonging to GcK

, then, each element of the rep-

resentative vector is calculated as follows:

 cK
uj= ∑

∈ K
Kc

1

cc
jc s

n G

 (2.44)

For a given data instance set and a trained ANN, since the optimal number of

distinct polynomial equations is unknown in advance, the plausibility of the number

of representatives must be evaluated by changing nK. For this purpose, the procedure

of cross-validation (Stone, 1974) is employed. This procedure divides the data T at

random into nT distinct segments {TcT
| cT=1, 2,… , nT}. nT − 1 segments are used for the

training, and the remaining one is used for the test. This process is repeated nT time by

changing the remaining segment. The extreme case of nT =n is known as

leave-one-out method, which is often used for a small-sized data instance set (Bishop,

1995).

 - 28 -

Here, Satio and Nakano introduce a function I(xD
c) that generates the index of

the representative vector minimizing the distance.

 I(xD
c) = arg ∑

=

−
p

j
jcjc

c
us

1

2)(min K
K

 (2.45)

By placing I(xD
c) on the condition parts, they consider the following set of rules using

the representative vectors:

 If I(xD
c) = cK then y = 3θ + ∑

=

p

j
jw

1
3 cK

uj∏
=

N N
2

1

N
m

i

w
ic

jix , cK =1, 2,… , nK. (2.46)

Since each element of s is calculated as

 sj=)exp(
Q

1 1

DD
2∑∑

= =

m

l

m

r
lrcjlr

l

xw (2.47)

Equation (2.46) can be applied to a new sample as well as the training sample. Thus,

by using the final weights ()(D
2

TcW ,)(N
2

TcW , 3W
(c

T
), 3θ

(c
T
)) calculated from the

cross-validation procedure excluding one segment TcT
, the output value with respect to

a test sample v can be calculated as

 yv ˆ = 3θ
 (c

T
) + ∑

=

p

j

c
jw

1

)(
3

T
ju

v)(I D x ∏
=

N)(N
2

1

N
m

i

w
iv

c
jix

T

 (2.48)

Therefore, they define the following cross-validation error function and it is helpful to

determine the adequate nK.

 CV= ∑ ∑
= ∈

−
T

T TT

n

c v
vv

c

yd
n 1

2)̂(
1

 (2.49)

Finally, the indexing function I(xD
c) described in equation (2.46) must be trans-

formed into a set of nominal conditions as described in equation (2.42). One reason-

able approach is to perform this transformation by solving a simple classification

problem whose training data instances are {(xD
c , I(xD

c))| c = 1, 2, … , n} where I(xD
c)

indicates the class label of a training data instance xD
c . For this classification problem,

 - 29 -

the C4.5 decision tree generation program (Quinlan, 1993) is employed due to its

wide availability.

In the induced decision tree, instances are passed from the root node to a termi-

nal node that assigns the corresponding class label, with decisions being made at each

non-terminal. By concatenating such decisions at non-terminal node for the path to

each terminal node, Sation and Nakano produce a set of conjunctive condition as fol-

lows: cR
Ql is initialized to {Dxlr| r=1, ..., ml} for each l, then it is replaced with {Dxlr} (or

cR
Ql −{Dxlr}) according to each appearance of Dxlr = 1 (or Dxlr = 0) in the nR conjunctive

condition.

 if lr

x

m

l

x
lclr

D

 1
R

D

Q

 ∨∧
∈= Q

 then y = 3θ + ∑
=

p

j
jw

1
3 IcK

(c
R)uj ∏

=

N N
2

1

N
m

i

w
i

jix , cR =1, 2,… , nR. (2.50)

where IcK
(cR) indicates the class label of the cR terminal node, and nR is the number of

terminal nodes. In general, the number nR of terminal nodes is greater than or equal to

the number nK of distinct polynomial equations because the same equation may appear

on more than one action parts. Note that it is possible to perform some simplifications

of equation (2.50) such as removal of lr

m

r

x
l

D

1

 ∨
=

 and possible disjunctive integration of

some nominal condition having the same polynomial equations. Moreover, by using a

special condition "else", Sation and Nakano simplify one of nominal conditions and

reduce the number of regression rules in many cases.

2.3 Discussion

Most prior studies in the related field focus on the ANN for classification prob-

lems and extract rules with the original or generated set of data instances. In other

words, most of them do not use the function analysis to extracts rules from the ANN

but the data analysis. Thus, they (Zhou et al., 2000) (Setiono et al., 2002) only gener-

ate a rule for each nonempty sub-region. We think it is better to extract rules with the

 - 30 -

generated dataset because the original data instances set is usually smaller and, as

Zhou et al. (2000) mentioned, the function of the ANN is encoded in the generated

dataset while its size approaches infinity.

Most methods of prior studies are applied to the classification problem but not

the regression problem. If they extract the regression rules from the ANN, they tend to

approximate activation values of hidden nodes, for example, Setiono et al. (2002).

Their approximations do not depend on the generated data instances set but the origi-

nal one. It is more adequate to approximate activation values of hidden nodes with the

generated data instances set. But, if the size of the generated dataset approaches infin-

ity, it will resemble to approximating the activation functions (tanh(t)) of hidden

nodes without any dataset. That is to say, we extract rules from the ANN via function

analysis.

If a method of rule extraction is not relative to the set of data instances but rela-

tive to the structure and weights of the ANN, it can not extract part rules presented by

the dataset but all rules interesting us in the ANN. In addition, it is also more efficient

in a large-sized data set.

Moreover, for regression problems, their regression rules extracted from ANN

are usually linear. Although the linear regression rules are easy to be understood, they

are hard to find the nonlinear characteristics embedded in the ANN. So the multivari-

ate polynomial regression rules whose maximum power values are two may be more

favored than linear. The similar multivariate polynomial regression rules have been

proposed by Saito and Nakano (2002), but power values of their extracting rules are

not restricted to integers and may great than two. The multivariate polynomial regres-

sion rules whose order are two are easy to analyze and can get some nonlinear

characteristics.

In the following chapter, we propose a new method to extract multivariate poly-

 - 31 -

nomial regression rules from the ANN with tanh(t) activation functions in hidden

nodes.

