Chapter 3

Methodology

3.1 Definition

The network system considered in this study is shown in Figure 3.1. It is a

feed-forward neural network with one hidden layer and one output node.

y

Figure 3.1: The ANN with one hidden layer and one output node.

In Figure 3.1, y denotes the output value of the neural network, and x' © (x,, x,...,
X.) where x; denotes the i-th outside stimulus input, with i from 1 to m. ,w; ® (wji,
W, .., 2W;,) stands for the weights between the j-th hidden node and the input layer,
with j from 1 to p, and w'o (sW1, sWy,..., sW,,) stands for the weights between the out-
put node and all hidden nodes. The following tanh(#) activation function is used in
hidden nodes and the linear activation function is used in the output node.

e-e’

et +e-t

tanh(z) © (3.1)

For the c-th input .x, the hidden node activation value .4; and its output value .

are computed as follows:
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c‘hj = tanh( g Wi X + 2q/) (32)
i=1

P

Cy = S ?chhj + 3q (33)

3.2 Method of Extracting Rules from Neural Networks

3.2.1 The Approximation of Hidden Node Activation Function

To extract comprehensible rules from the ANN with the tanh(¢) activation func-

tion, we use the following function g(¢) to approximate tanh(¢):

il ift3k

I .

jbit-byt™ if -KELEQ
F-1 if t£-k

¥
where (b, b,, k) © arg( bmblr}( Q (tanh(7)- g(¢))*ds subject to bk + b,k’= 1). Then, us-

ing the numerical analysis of Sequential Quadratic Programming (The MathWorks,
Inc. 2002), we obtain b, @ 1.0020101308531, b, @ -0.251006075157012, k @

¥
1.99607103795966, and  min () (tanh(r)- g(r))’dr € 0.00329781871956464. Note

that g(¢) is continuous at the boundaries of four regions (K£E#, 0EtEK,-KEt£0, ¢ £

-k), because we set lim b, ¢ + b, =1, limb, ¢+ b, =0, limb, - b,f =0, and
®k” ®0* ®0

lim b, z-b,/ =-1.
®-k*

For the j-th hidden node, let #° ,w;x. Thus tanh(#; + ,0;) can be approximated
with g(t, + ,0;), which is defined by

11 ift;3k-10;

gt +,9) = J::(buq]' +b,,0,7)+(b, +2b,,q,)t; +byt,” if -,q; £1; £k-,q, (3.5
7 (b120; - b25q;7)+(by - 2b55q, )t - bat,” if - k=10, £1; £- 50,
f-1 if't; £-k-,0q;

In other words, for the j-th hidden node, the activation value is approximated with a
form of single-variate polynomial in each of four separate regions in the # space. For

example, if -,0; £ ¢ £ K - ,q|, then tanh(z, + ,0}) is approximated with b,,q’+ b, ,q; +(b,
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+2by,q) 4, +bs 1
To better represent the condition, let’s introduce some notations. Set i;be 1, if the
condition K - ,g; £ ,w;'x holds; 2, if the condition -,q; £ ,w;x £ K - ,q; holds; 3, if the

condition -k - ,g; £ ,w;x £ -,q; holds; and 4, if the condition ,w,'x £ -k - ,q, holds. Also,

é,w’ u é,w’ u € -.q;, u
set W, oW/, Wp© an g, Wa® @n g, Wi W) Ui % K- 00, Up° ke.q 0
&:W;0 & W, & K00

0 é-k_zqu 0 0 0 2
Us~ & g Uu® K40, g1(5) ° 1, go(5) © (D) 20 40,20, )+ (b, +2 b, ,q) £+ b,

é 20, 0
02, @x() © (0 5G; - bs g )+ (By - 2 by 2q) £ - by £, and gu(£) © -1. Then, when the i -th

condition W X 3 U, holds, the activation value of the j-th hidden node is approxi-
p
mated with gA,-ij(t,—). Furthermore, y' © ;g + S1 sw; tanh(¢; + ,0) is approximated with 5
j:
p
+S 5w g (1)
J=1 4

Leti © [iy, iy, ..., 0,] withi,1 {1,2,3,4}" j=1,2,.., p. Thus, the conditions as-

sociated with p hidden nodes can be expressed as |A;x 2 |b;, where

(3.6)

I'e
o
> (D;
[ ey el ey ety

u

U
U 3.7
d (3.7)
u
u

For example, the condition [-,q, £ ,w/x £K -,q," j=1, 2, ..., p] can be expressed as
Aix 3 b, with i,=2 for every j.
In addition, the independent variables may have some extra constraints corre-

sponding to the application. The extra constraints are usually linear as follows.
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anX;t ApXot oo T A X2 by i=1,2, .., 1, (3.8)

Let
éai an amqg
§a2] an az l;J
A° & : u 3.9)
(S u
é a
&n2 A2 Anom (]
€bx U
€h,, U
bo €U (3.10)
¢
€ u
@an 0
Thus the extra constrains are expressed as
JAx3 b (3.11)
Therefore, the full constrains associated with the i-th region are
Ai x3 bi (3 12)
5 AU ébiu
where A, ° gl 'Q and b;° a 'Q.
E2A( &by

In sum, when the approximation is applied to a layered feed-forward neural net-
work, there are 4” separate regions in the input space where the corresponding output

value y' is approximated in a form of multivariate polynomial. The i-th region is {x|
A;x 3 b}, and its associated y' equates ;q +§] W gﬁj(tj). In other words, there is a
rule associated with each separate region in the input space:
If Aix 3 b, then y'=,q +§1 W g(,-ij(tj) (3.13)
A;x 3 b; is a convex polyhedral set in the input space because A;x 3 b; consists
of linear inequality constraints. Furthermore, A;x 3 b; has a feasible solution if and
only if the linear programming (LP) problem (3.14) has an optimal solution.
Minimize: constant
Subject to: A;jx 2 b; (3.14)

If equation (3.14) has an optimal solution, then the corresponding rule exists.
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Otherwise, the rule fails to exist.

3.2.2 The Differential Analysis of Rules

m
t._ 8

W X=Q Wi,
i=1

Since ¢,° and

|1
gj(t) I(blij"'bzzq] )+(b1+2b22q1)f +b2f

if't;%k-1q;
l:f"ijEtj£k'2qj .

|(b12ql b22q/ )+(bl 2b22q )t if'k'zq_/Et]' £'2q]-
T 1 ift; £-kK-,0q;
Thus
i0 if't; >k-,q;
Tig, (2)) ZJI 2w (D1 +205,0,) + 2w bat;  if-,q, <t; <k-,q;
T[xk ij(bl' szij)' 22ijb2tj l:f'k-ij <tj <-2qj
TO iftj <-k- 20,
i0 if't; >k-,q;
5 !
M={22wﬂzwjkb2 if -.q;<t;<k-,q;
e T ':" 2, wi,wyby if - k-,q; <t; <-,Q;
TO iftj <-k- 2qj
Tg, ) -0
ﬁmﬂmﬂxk
wherer, [, k=1,2,..,m. y'=,q+ S sw; g(t). Thus
k:g‘ W, Yig, ()
ﬂxk j=1 ﬂxk
Ty _g ., Te)
ﬂxlﬂxk Jj=1 ! ﬂxlﬂxk
Ty _53 Tg,t) _
e o Tx =1 JﬂXTWAh%

For example, for the i-th region with i,=2" j=1,2,.

and
»_4g ‘ﬂg/(t )
S
T fl T J=
Ty g Tet)_
= —=L S2
e T 653 KT
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(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
(3.20)

(3.21)

gﬂ/(tj)ﬂ

(3.22)

(3.23)



ﬂSy!

WY (3.24)
ﬂxrﬂxlﬂxk

If&

3 0, the optimal solution of the LP problem (3.25) shall be
ﬂxk x| {x‘Aix3bi}

greater than zero. Similarly, if — < 0, the optimal solution of the LP prob-
klxi {X‘Ai x3 bj }

lem (3.26) shall be less than zero.

Minimize: Bl
e
Subject to: A;x 3 b, (3.25)
Maximize: Bl
e
Subject to: A;jx 3 b; (3.26)
If ﬂk is a linear equation, we can adopt the Simplex method to solve LP problems
Xk

(3.25) and (3.26). Such LP problems can analyze if ﬂk is great or less than zero for
Xk

every point in the region, A; x 3 b;, without any dataset.

Note that the differentiations of ' are not defined at #,= -k + ,q,,0};, or K + ,q;.

3.0

Ty

Also, since
P, TP,

always equals zero, this approximation loses the information

r

of higher order differentials.

After differential analyses, we can derive (differential) features via applying the
sign test on our extracted rules. Take as illustration of the sign test of the relationship
between )' and x;. Let the significance level of the test be a (generally equals 0.05 or
0.01). The null hypothesis H, is that there is not a relationship between )' and x;.,

while the alternative hypothesis H, is that there is a negative relationship between )'
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and x,. (that is, s < 0). If H, is true, the conditional probability Pr(% < 0| Hy)
k k
equals 0.5. If H, is true, the conditional probability Pr(‘”M < 0| H,) is great than 0.5.
Xk

'

k

Let n be the count of the maximal value of associated with . (the number of

extracted rules) LP problems stated in (3.27) that are less than 0.

Maximize: M
Toex
Subject to: A; x3 b, (3.27)

If H, is true, then » has a binomial distribution, b(n., 0.5). We reject H, and accept H,

at significant a if only if # is greater than n, , where é cr 0.5" £a.

3.2.3 The Rule Extraction Process

We summarize the rule extraction process in the Table 3.1.

Table 3.1: The Rule Extraction Process

1. Give a trained ANN with tanh(t) activation functions in hidden layer.
p m
y= S,witanh(a ,w,x; +,09) +:q
J=1 i=1

2. Use g(t)) to approximation the tanh(z + ,g).

il if 1,2 k-,0q;

g(t)= 1(b12q/ +b,,0,") + (b, +2b,,9, ), "‘bzf if-29; £, £k-,Q;
(blij b22q1)+(b1 2b,,q,)t; - if -k-,q,£t, £-,Q;
T 1 iftjE'k'zcb'

where £° ,w!x=8 2w;x;, b, @1.0020101308531, b, @-0.251006075157012,

i=1
and K @1.99607103795966.
3. Give the extra conditions as follows:
A,x3 b,
Then, the full constrains associated with the i-th region are
Aix3 b
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. éu
where A;°® a ]Q and b;° a IQ.
A1 () gbzu

4. Get 4" potential rules as follows:
p
IfA X2 by, then =10+ S w; €,(8)
]:

5. Extract our interesting rules via determining if the following optimal problem
has an optimal solution.
Minimize: constant
Subject to: A;x 3 b,
6. For each extracted rule, we check if i 8 or <0, via solving the fol-

ﬂxk xi {X‘Ai X2 b }

lowing optimal problems.

1
Minimize: ﬂ

Toex
Subject to: A;x 3 b,
Maximize: k
e
Subject to: A;jx 3 b;
7y
e 9x

And we can easily determine if 3 or<0.

ki {x‘Aix3 bi }

7. Generalize these important differential features via the sign test from these dif-
ferential analyses in Step 6.
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