Chapter 3

Methodology

3.1 Definition

The network system considered in this study is shown in Figure 3.1. It is a feed-forward neural network with one hidden layer and one output node.

Figure 3.1: The ANN with one hidden layer and one output node.
In Figure 3.1, y denotes the output value of the neural network, and $\mathbf{x}^{\mathbf{t}} \equiv\left(x_{1}, x_{2}, \ldots\right.$, $\left.x_{\mathrm{m}}\right)$ where x_{i} denotes the i-th outside stimulus input, with i from 1 to $m .{ }_{2} \mathbf{W}_{j}^{\mathrm{t}} \equiv\left({ }_{2} w_{j 1}\right.$, $\left.{ }_{2} w_{j 2}, \ldots,{ }_{2} w_{j m}\right)$ stands for the weights between the j-th hidden node and the input layer, with j from 1 to p, and ${ }_{3} \mathbf{w}^{\mathrm{t}} \equiv\left({ }_{3} w_{1},{ }_{3} w_{2}, \ldots,{ }_{3} w_{p}\right)$ stands for the weights between the output node and all hidden nodes. The following $\tanh (t)$ activation function is used in hidden nodes and the linear activation function is used in the output node.

$$
\begin{equation*}
\tanh (t) \equiv \frac{e^{t}-e^{-t}}{e^{t}+e^{-t}} \tag{3.1}
\end{equation*}
$$

For the c-th input ${ }_{c} \mathbf{x}$, the hidden node activation value ${ }_{c} h_{j}$ and its output value ${ }_{c} y$ are computed as follows:

$$
\begin{gather*}
h_{j}=\tanh \left(\sum_{i=1}^{m}{ }_{2} w_{j i c} x_{i}+{ }_{2} \theta_{j}\right) \tag{3.2}\\
y=\sum_{j=1}^{p}{ }_{3} w_{j c} h_{j}+{ }_{3} \theta \tag{3.3}
\end{gather*}
$$

3.2 Method of Extracting Rules from Neural Networks

3.2.1 The Approximation of Hidden Node Activation Function

To extract comprehensible rules from the ANN with the $\tanh (t)$ activation function, we use the following function $g(t)$ to approximate $\tanh (t)$:

$$
g(t) \equiv \begin{cases}1 & \text { if } t \geq \kappa \tag{3.4}\\ \beta_{1} t+\beta_{2} t^{2} & \text { if } 0 \leq t \leq \kappa \\ \beta_{1} t-\beta_{2} t^{2} & \text { if }-\kappa \leq t \leq 0 \\ -1 & \text { if } t \leq-\kappa\end{cases}
$$

where $\left(\beta_{1}, \beta_{2}, \kappa\right) \equiv \arg \left(\min _{\beta_{1}, \beta_{2}, \kappa} \int_{-\infty}^{\infty}(\tanh (t)-g(t))^{2} \mathrm{~d} t\right.$ subject to $\left.\beta_{1} \kappa+\beta_{2} \kappa^{2}=1\right)$. Then, using the numerical analysis of Sequential Quadratic Programming (The MathWorks, Inc. 2002), we obtain $\beta_{1} \cong 1.0020101308531, \beta_{2} \cong-0.251006075157012, \kappa \cong$ 1.99607103795966, and $\min _{\beta_{1}, \beta_{2}, \mathrm{~K}} \int_{-\infty}^{\infty}(\tanh (t)-g(t))^{2} \mathrm{~d} t \cong 0.00329781871956464$. Note that $g(t)$ is continuous at the boundaries of four regions ($\kappa \leq t, 0 \leq t \leq \kappa,-\kappa \leq t \leq 0, t \leq$ $-\kappa$), because we set $\lim _{t \rightarrow \kappa^{-}} \beta_{1} t+\beta_{2} t^{2}=1, \lim _{t \rightarrow 0^{+}} \beta_{1} t+\beta_{2} t^{2}=0, \lim _{t \rightarrow 0^{-}} \beta_{1} t-\beta_{2} t^{2}=0$, and $\lim _{t \rightarrow-\mathrm{K}^{+}} \beta_{1} t-\beta_{2} t^{2}=-1$.

For the j-th hidden node, let $t_{j} \equiv{ }_{2} \mathbf{W}_{j}^{\dagger} \mathbf{x}$. Thus $\tanh \left(t_{j}+{ }_{2} \theta_{j}\right)$ can be approximated with $g\left(t_{j}+{ }_{2} \theta_{j}\right)$, which is defined by

$$
g\left(t_{j}+{ }_{2} \theta_{j}\right)= \begin{cases}1 & \text { if } t_{j} \geq \kappa-{ }_{2} \theta_{j} \tag{3.5}\\ \left(\beta_{12} \theta_{j}+\beta_{22} \theta_{j}{ }^{2}\right)+\left(\beta_{1}+2 \beta_{22} \theta_{j}\right) t_{j}+\beta_{2} t_{j}{ }^{2} & \text { if }-{ }_{2} \theta_{j} \leq t_{j} \leq \kappa-{ }_{2} \theta_{j} \\ \left(\beta_{12} \theta_{j}-\beta_{2{ }_{2}} \theta_{j}{ }^{2}\right)+\left(\beta_{1}-2 \beta_{2}{ }_{2} \theta_{j}\right) t_{j}-\beta_{2} t_{j}{ }^{2} & \text { if }-\kappa-{ }_{2} \theta_{j} \leq t_{j} \leq-{ }_{2} \theta_{j} \\ -1 & \text { if } t_{j} \leq-\kappa-{ }_{2} \theta_{j}\end{cases}
$$

In other words, for the j-th hidden node, the activation value is approximated with a form of single-variate polynomial in each of four separate regions in the t_{j} space. For example, if ${ }_{-2} \theta_{j} \leq t_{j} \leq \kappa-{ }_{2} \theta_{j}$, then $\tanh \left(t_{j}+{ }_{2} \theta_{j}\right)$ is approximated with $\beta_{22} \theta_{j}^{2}+\beta_{12} \theta_{j}+\left(\beta_{1}\right.$
$\left.+2 \beta_{22} \theta_{j}\right) t_{j}+\beta_{2} t_{j}^{2}$.
To better represent the condition, let's introduce some notations. Set l_{j} be 1 , if the condition $\kappa-{ }_{2} \theta_{j} \leq{ }_{2} \mathbf{W}_{j}^{\dagger} \mathbf{x}$ holds; 2 , if the condition ${ }_{-2} \theta_{j} \leq{ }_{2} \mathbf{w}_{j}^{\dagger} \mathbf{x} \leq \kappa-{ }_{2} \theta_{j}$ holds; 3, if the condition $-\kappa-{ }_{2} \theta_{j} \leq{ }_{2} \mathbf{w}_{j}^{\dagger} \mathbf{x} \leq-{ }_{2} \theta_{j}$ holds; and 4, if the condition ${ }_{2} \mathbf{w}_{j}^{\dagger} \mathbf{x} \leq-\kappa-{ }_{2} \theta_{j}$ holds. Also, set $\omega_{j 1} \equiv{ }_{2} \mathbf{w}_{j}^{\mathrm{t}}, \omega_{j 2} \equiv\left[\begin{array}{c}2_{2} \mathbf{w}_{j}^{t} \\ -{ }_{-2} \mathbf{w}_{j}^{t}\end{array}\right], \omega_{j 3} \equiv\left[\begin{array}{c}2 \mathbf{w}_{j}^{t} \\ -\mathbf{w}_{j}^{t}\end{array}\right], \omega_{j 4} \equiv{ }_{-2} \mathbf{w}_{j}^{\mathrm{t}}, v_{j 1} \equiv \kappa-{ }_{2} \theta_{\mathrm{j}}, v_{j 2} \equiv\left[\begin{array}{c}-\theta_{2} \theta_{j} \\ -\kappa+{ }_{2} \theta_{j}\end{array}\right]$, $v_{j 3} \equiv\left[\begin{array}{c}-\kappa-{ }_{2} \theta_{j} \\ { }_{2} \theta_{j}\end{array}\right], v_{j 4} \equiv \kappa+{ }_{2} \theta_{j}, g_{j 1}\left(t_{j}\right) \equiv 1, g_{j 2}\left(t_{j}\right) \equiv\left(\beta_{12} \theta_{j}+\beta_{2}{ }_{2} \theta_{j}{ }^{2}\right)+\left(\beta_{1}+2 \beta_{2} \theta_{j}\right) t_{j}+\beta_{2}$ $t_{j}^{2}, g_{j 3}\left(t_{j}\right) \equiv\left(\beta_{12} \theta_{j}-\beta_{22} \theta_{j}^{2}\right)+\left(\beta_{1}-2 \beta_{2} \theta_{j}\right) t_{j}-\beta_{2} t_{j}^{2}$, and $g_{j 4}\left(t_{j}\right) \equiv-1$. Then, when the \mathbf{v}_{j}-th condition $\omega_{j_{j}} \mathbf{x} \geq v_{j_{j}}$ holds, the activation value of the j-th hidden node is approximated with $g_{j_{j}}\left(t_{j}\right)$. Furthermore, $y^{\prime} \equiv{ }_{3} \theta+\sum_{j=1}^{p}{ }_{3} w_{j} \tanh \left(t_{j}+{ }_{2} \theta_{j}\right)$ is approximated with ${ }_{3} \theta$ $+\sum_{j=1}^{p} 3 w_{j} g_{j_{j}}\left(t_{j}\right)$.

Let $\mathfrak{l} \equiv\left[\mathfrak{l}_{1}, \mathfrak{l}_{2}, \ldots, \mathfrak{l}_{p}\right]$ with $\mathfrak{l}_{j} \in\{1,2,3,4\} \forall j=1,2, \ldots, p$. Thus, the conditions associated with p hidden nodes can be expressed as ${ }_{1} \mathbf{A}_{t} \mathbf{x} \geq{ }_{1} \mathbf{b}_{\mathbf{t}}$, where

$$
\begin{array}{r}
{ }_{1} \mathbf{A}_{\mathrm{t}} \equiv\left[\begin{array}{c}
\omega_{\mathrm{ll}_{1}} \\
\omega_{2 \mathrm{l}_{2}} \\
\vdots \\
\omega_{p \mathrm{l}_{\mathrm{p}}}
\end{array}\right] \\
{ }_{1} \mathbf{b}_{\mathrm{\imath}} \equiv\left[\begin{array}{c}
v_{\mathrm{ll}_{1}} \\
v_{21_{2}} \\
\vdots \\
v_{p l_{p}}
\end{array}\right] \tag{3.7}
\end{array}
$$

For example, the condition $\left[{ }_{2} \theta_{j} \leq{ }_{2} \mathbf{w}_{j} \mathbf{x} \mathbf{x} \leq \kappa-{ }_{2} \theta_{j} \forall j=1,2, \ldots, p\right]$ can be expressed as ${ }_{1} \mathbf{A}_{\mathbf{i}} \mathbf{x} \geq{ }_{1} \mathbf{b}_{\mathfrak{l}}$ with $\mathbf{l}_{j}=2$ for every j.

In addition, the independent variables may have some extra constraints corresponding to the application. The extra constraints are usually linear as follows.

$$
\begin{equation*}
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i m} x_{m} \geq b_{2 i}, i=1,2, \ldots, n_{2} \tag{3.8}
\end{equation*}
$$

Let

$$
\begin{gather*}
{ }_{2} \mathbf{A} \equiv\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 2} 2 & a_{n 22} & \cdots & a_{n 2 m}
\end{array}\right] \tag{3.9}\\
 \tag{3.10}\\
{ }_{2} \mathbf{b} \equiv\left[\begin{array}{c}
b_{21} \\
b_{22} \\
\vdots \\
b_{2 n 2}
\end{array}\right]
\end{gather*}
$$

Thus the extra constrains are expressed as

$$
\begin{equation*}
{ }_{2} \mathbf{A x} \geq_{2} \mathbf{b} \tag{3.11}
\end{equation*}
$$

Therefore, the full constrains associated with the 1 -th region are

$$
\begin{equation*}
\mathbf{A}_{t} \mathbf{x} \geq \mathbf{b}_{\mathbf{r}} \tag{3.12}
\end{equation*}
$$

where $\mathbf{A}_{\imath} \equiv\left[\begin{array}{l}\mathbf{A}_{\imath} \\ { }_{2} \mathbf{A}\end{array}\right]$ and $\mathbf{b}_{\imath} \equiv\left[\begin{array}{l}\mathbf{b}_{\imath} \\ { }_{2} \mathbf{b}\end{array}\right]$.
In sum, when the approximation is applied to a layered feed-forward neural network, there are 4^{p} separate regions in the input space where the corresponding output value y^{\prime} is approximated in a form of multivariate polynomial. The \mathbf{l}-th region is $\{\mathbf{x} \mid$ $\left.\mathbf{A}_{t} \mathbf{x} \geq \mathbf{b}_{i}\right\}$, and its associated y^{\prime} equates ${ }_{3} \theta+\sum_{j=1}^{p} w_{j} g_{j_{j}}\left(t_{j}\right)$. In other words, there is a rule associated with each separate region in the input space:

$$
\begin{equation*}
\text { If } \mathbf{A}_{\mathrm{t}} \mathbf{x} \geq \mathbf{b}_{\mathrm{t}} \text {, then } y^{\prime}={ }_{3} \theta+\sum_{j=1}^{p}{ }_{3} w_{j} g_{j_{j}}\left(t_{j}\right) \tag{3.13}
\end{equation*}
$$

$\mathbf{A}_{1} \mathbf{x} \geq \mathbf{b}_{1}$ is a convex polyhedral set in the input space because $\mathbf{A}_{1} \mathbf{x} \geq \mathbf{b}_{1}$ consists of linear inequality constraints. Furthermore, $\mathbf{A}_{1} \mathbf{x} \geq \mathbf{b}_{1}$ has a feasible solution if and only if the linear programming (LP) problem (3.14) has an optimal solution.

Minimize: constant

$$
\begin{equation*}
\text { Subject to: } \mathbf{A}_{t} \mathbf{x} \geq \mathbf{b}_{\mathbf{r}} \tag{3.14}
\end{equation*}
$$

If equation (3.14) has an optimal solution, then the corresponding rule exists.

Otherwise, the rule fails to exist.

3.2.2 The Differential Analysis of Rules

$$
\begin{align*}
& \text { Since } t_{j} \equiv{ }_{2} \mathbf{w}_{j}^{\mathrm{t}} \mathbf{x}=\sum_{i=1}^{m}{ }_{2} w_{j i} x_{i} \text { and } \\
& \quad \mathrm{g}_{j}\left(t_{j}\right)= \begin{cases}1 & \text { if } t_{j} \geq \kappa-{ }_{2} \theta_{j} \\
\left(\beta_{12} \theta_{j}+\beta_{22} \theta_{j}{ }^{2}\right)+\left(\beta_{1}+2 \beta_{22} \theta_{j}\right) t_{j}+\beta_{2} t_{j}{ }^{2} & \text { if }-{ }_{2} \theta_{j} \leq t_{j} \leq \kappa-{ }_{2} \theta_{j} \\
\left(\beta_{12} \theta_{j}-\beta_{22} \theta_{j}{ }^{2}\right)+\left(\beta_{1}-2 \beta_{22} \theta_{j}\right) t_{j}-\beta_{2} t_{j}{ }^{2} & \text { if }-\kappa-{ }_{2} \theta_{j} \leq t_{j} \leq-{ }_{2} \theta_{j} \\
-1 & \text { if } t_{j} \leq-\kappa-{ }_{2} \theta_{j}\end{cases} \tag{3.15}
\end{align*} .
$$

Thus

$$
\begin{gather*}
\frac{\partial \mathrm{g}_{j}\left(t_{j}\right)}{\partial x_{k}}= \begin{cases}0 & \text { if } t_{j}>\kappa-{ }_{2} \theta_{j} \\
2_{j k} w_{j k}\left(\beta_{1}+2 \beta_{22} \theta_{j}\right)+2_{2} w_{j k} \beta_{2} t_{j} & \text { if }--_{2} \theta_{j}<t_{j}<\kappa-{ }_{2} \theta_{j} \\
2 w_{j k}\left(\beta_{1}-2 \beta_{22} \theta_{j}\right)-2_{2} w_{j k} \beta_{2} t_{j} & \text { if }-\kappa-_{2} \theta_{j}<t_{j}<-{ }_{2} \theta_{j} \\
0 & \text { if } t_{j}<-\kappa-{ }_{2} \theta_{j}\end{cases} \tag{3.16}\\
\frac{\partial^{2} \mathrm{~g}_{j}\left(t_{j}\right)}{\partial x_{l} \partial x_{k}}= \begin{cases}0 & \text { if } t_{j}>\kappa--_{2} \theta_{j} \\
2 w_{j l_{2}} w_{j k} \beta_{2} & \text { if }--_{2} \theta_{j}<t_{j}<\kappa-{ }_{2} \theta_{j} \\
-2_{2} w_{j l_{2}} w_{j k} \beta_{2} & \text { if }-\kappa-{ }_{2} \theta_{j}<t_{j}<-{ }_{2} \theta_{j} \\
0 & \text { if } t_{j}<-\kappa-{ }_{2} \theta_{j}\end{cases} \tag{3.17}\\
\frac{\partial^{3} \mathrm{~g}_{j}\left(t_{j}\right)}{\partial x_{r} \partial x_{l} \partial x_{k}}=0 \tag{3.18}
\end{gather*}
$$

where $r, l, k=1,2, \ldots, m . \quad y^{\prime}={ }_{3} \theta+\sum_{j=1}^{p}{ }_{3} w_{j} \mathrm{~g}_{j}\left(t_{j}\right) . \quad$ Thus

$$
\begin{gather*}
\frac{\partial y^{\prime}}{\partial x_{k}}=\sum_{j=1}^{p}{ }_{3} w_{j} \frac{\partial \mathrm{~g}_{j}\left(t_{j}\right)}{\partial x_{k}} \tag{3.19}\\
\frac{\partial^{2} y^{\prime}}{\partial x_{l} \partial x_{k}}=\sum_{j=1}^{p}{ }_{3} w_{j} \frac{\partial^{2} \mathrm{~g}_{j}\left(t_{j}\right)}{\partial x_{l} \partial x_{k}} \tag{3.20}\\
\frac{\partial^{3} y^{\prime}}{\partial x_{r} \partial x_{l} \partial x_{k}}=\sum_{j=1}^{p}{ }_{3} w_{j} \frac{\partial^{3} g_{j}\left(t_{j}\right)}{\partial x_{r} \partial x_{l} \partial x_{k}}=0 \tag{3.21}
\end{gather*}
$$

For example, for the $\mathbf{\imath}$-th region with $\mathbf{1}_{j}=2 \forall j=1,2, \ldots, p, y^{\prime}={ }_{3} \theta+\sum_{j=1}^{p} w_{j} w_{j_{j}}\left(t_{j}\right)$, and

$$
\begin{gather*}
\frac{\partial y^{\prime}}{\partial x_{k}}=\sum_{j=1}^{p}{ }_{3} w_{j} \frac{\partial \mathrm{~g}_{j}\left(t_{j}\right)}{\partial x_{k}}=\sum_{j=1}^{p}{ }_{3} w_{j 2} w_{j k}\left(\beta_{1}+2 \beta_{22} \theta_{j}^{2}\right)+\sum_{j=1}^{p} 2_{3} w_{j 2} w_{j k} \beta_{2} \mathbf{w}_{j}^{\mathrm{t}} \mathbf{x} \tag{3.22}\\
\frac{\partial^{2} y^{\prime}}{\partial x_{l} \partial x_{k}}=\sum_{j=1}^{p}{ }_{3} w_{j} \frac{\partial^{2} \mathrm{~g}_{j}\left(t_{j}\right)}{\partial x_{l} \partial x_{k}}=\sum_{j=1}^{p} 2{ }_{3} w_{j 2} w_{j l 2} w_{j k} \beta_{2} \tag{3.23}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial^{3} y^{\prime}}{\partial x_{r} \partial x_{l} \partial x_{k}}=0 \tag{3.24}
\end{equation*}
$$

If $\left.\frac{\partial y^{\prime}}{\partial x_{k}}\right|_{\mathbf{x}\left\{\left\{\mathbf{x} \mid \mathbf{A}_{\mathbf{l}} \geq \geq \mathbf{b}_{\mathbf{l}}\right\}\right.} \geq 0$, the optimal solution of the LP problem (3.25) shall be greater than zero. Similarly, if $\left.\frac{\partial y^{\prime}}{\partial x_{k}}\right|_{\mathbf{x} \in\left\{\mathbf{x} \mid \mathbf{A}_{\mathbf{A}} \times \geq \mathbf{b}_{\mathbf{k}}\right\}}<0$, the optimal solution of the LP problem (3.26) shall be less than zero.

$$
\begin{align*}
& \text { Minimize: } \frac{\partial y^{\prime}}{\partial x_{k}} \\
& \text { Subject to: } \mathbf{A}_{\mathrm{t}} \mathbf{x} \geq \mathbf{b}_{\imath} \tag{3.25}\\
& \text { Maximize: } \frac{\partial y^{\prime}}{\partial x_{k}} \\
& \text { Subject to: } \mathbf{A}_{\mathrm{t}} \mathbf{x} \geq \mathbf{b}_{\mathrm{b}} \tag{3.26}
\end{align*}
$$

If $\frac{\partial y^{\prime}}{\partial x_{k}}$ is a linear equation, we can adopt the Simplex method to solve LP problems (3.25) and (3.26). Such LP problems can analyze if $\frac{\partial y^{\prime}}{\partial x_{k}}$ is great or less than zero for every point in the region, $\mathbf{A}_{\mathrm{t}} \mathbf{x} \geq \mathbf{b}_{\mathrm{l}}$, without any dataset.

Note that the differentiations of y^{\prime} are not defined at $t_{j}=-\kappa+{ }_{2} \theta_{\mathrm{j}}, 2 \theta_{\mathrm{j}}$, or $\kappa+{ }_{2} \theta_{\mathrm{j}}$. Also, since $\frac{\partial^{3} y^{\prime}}{\partial x_{r} \partial x_{l} \partial x_{k}}$ always equals zero, this approximation loses the information of higher order differentials.

After differential analyses, we can derive (differential) features via applying the sign test on our extracted rules. Take as illustration of the sign test of the relationship between y^{\prime} and x_{k}. Let the significance level of the test be α (generally equals 0.05 or 0.01). The null hypothesis H_{0} is that there is not a relationship between y^{\prime} and x_{k}, while the alternative hypothesis H_{1} is that there is a negative relationship between y^{\prime}
and x_{k}. (that is, $\frac{\partial y^{\prime}}{\partial x_{k}}<0$). If H_{0} is true, the conditional probability $\operatorname{Pr}\left(\left.\frac{\partial y^{\prime}}{\partial x_{k}}<0 \right\rvert\, \mathrm{H}_{0}\right)$ equals 0.5 . If H_{1} is true, the conditional probability $\operatorname{Pr}\left(\left.\frac{\partial y^{\prime}}{\partial x_{k}}<0 \right\rvert\, \mathrm{H}_{1}\right)$ is great than 0.5 . Let n^{-}be the count of the maximal value of $\frac{\partial y^{\prime}}{\partial x_{k}}$ associated with n_{e} (the number of extracted rules) LP problems stated in (3.27) that are less than 0 .

$$
\begin{equation*}
\text { Maximize: } \frac{\partial y^{\prime}}{\partial x_{k}} \tag{3.27}
\end{equation*}
$$

Subject to: $\mathbf{A}_{\mathbf{t}} \mathbf{x} \geq \mathbf{b}_{\mathrm{v}}$

If H_{0} is true, then n^{-}has a binomial distribution, $b\left(n_{\mathrm{e}}, 0.5\right)$. We reject H_{0} and accept H_{1} at significant α if only if n^{-}is greater than n_{0}^{-}, where $\sum_{n^{-}=n_{0}^{-}}^{n_{\delta}} C_{n^{-}}^{n_{e}} 0.5^{n^{-}} \leq \alpha$.

3.2.3 The Rule Extraction Process

We summarize the rule extraction process in the Table 3.1.

Table 3.1: The Rule Extraction Process

1. Give a trained ANN with $\tanh (\mathrm{t})$ activation functions in hidden layer.

$$
y=\sum_{j=1}^{p}{ }_{3} w_{j} \tanh \left(\sum_{i=1}^{m}{ }_{2} w_{j i} x_{i}+{ }_{2} \theta_{j}\right)+{ }_{3} \theta
$$

2. Use $\mathrm{g}_{j}\left(t_{j}\right)$ to approximation the $\tanh \left(t_{j}+{ }_{2} \theta_{j}\right)$.

$$
\mathrm{g}_{f}\left(t_{j}\right)= \begin{cases}1 & \text { if } t_{j} \geq \kappa-_{2} \theta_{j} \\ \left(\beta_{12} \theta_{j}+\beta_{22} \theta_{j}{ }^{2}\right)+\left(\beta_{1}+2 \beta_{22} \theta_{j}\right) t_{j}+\beta_{2} t_{j}{ }^{2} & \text { if }-{ }_{2} \theta_{j} \leq t_{j} \leq \kappa-_{2} \theta_{j} \\ \left(\beta_{12} \theta_{j}-\beta_{22} \theta_{j}{ }^{2}\right)+\left(\beta_{1}-2 \beta_{22} \theta_{j}\right) t_{j}-\beta_{2} t_{j}{ }^{2} & \text { if }-\kappa-\kappa-\theta_{j} \leq t_{j} \leq-{ }_{2} \theta_{j} \\ -1 & \text { if } t_{j} \leq-\kappa-_{2} \theta_{j}\end{cases}
$$

where $t_{j} \equiv{ }_{2} \mathbf{W}_{j}^{\mathrm{t}} \mathbf{x}=\sum_{i=1}^{m}{ }_{2} w_{j i} x_{i}, \beta_{1} \cong 1.0020101308531, \beta_{2} \cong-0.251006075157012$, and $\kappa \cong 1.99607103795966$.
3. Give the extra conditions as follows:

$$
\mathbf{A}_{2} \mathbf{x} \geq \mathbf{b}_{2}
$$

Then, the full constrains associated with the 1-th region are
$\mathbf{A}_{t} \mathbf{x} \geq \mathbf{b}_{t}$
where $\mathbf{A}_{\mathrm{l}} \equiv\left[\begin{array}{l}\mathbf{A}_{11} \\ \mathbf{A}_{2}\end{array}\right]$ and $\mathbf{b}_{\mathrm{l}} \equiv\left[\begin{array}{l}\mathbf{b}_{11} \\ \mathbf{b}_{2}\end{array}\right]$.
4. Get 4^{p} potential rules as follows:

$$
\text { If } \mathbf{A}_{\mathbf{t}} \mathbf{x} \geq \mathbf{b}_{\mathrm{t}} \text {, then } y^{\prime}={ }_{3} \theta+\sum_{j=1}^{p} w_{j} w_{j_{j}}\left(t_{j}\right)
$$

5. Extract our interesting rules via determining if the following optimal problem has an optimal solution.

> Minimize: constant

Subject to: $\mathbf{A}_{\mathbf{t}} \mathbf{x} \geq \mathbf{b}_{\mathrm{t}}$
6. For each extracted rule, we check if $\left.\frac{\partial y^{\prime}}{\partial x_{k}}\right|_{\mathbf{x}\left\{\left\{\mathbf{x} \mid \mathbf{A}_{\mathbf{A}} \geq \mathbf{b}_{\mathbf{b}}\right\}\right.} \geq$ or <0, via solving the following optimal problems.

$$
\begin{aligned}
& \text { Minimize: } \quad \frac{\partial y^{\prime}}{\partial x_{k}} \\
& \text { Subject to: } \mathbf{A}_{\star} \mathbf{x} \geq \mathbf{b}_{\star} \\
& \text { Maximize: } \frac{\partial y^{\prime}}{\partial x_{k}} \\
& \text { Subject to: } \mathbf{A}_{\star} \mathbf{x} \geq \mathbf{b}_{\star}
\end{aligned}
$$

And we can easily determine if $\left.\frac{\partial^{2} y^{\prime}}{\partial x_{l} \partial x_{k}}\right|_{\mathbf{x} \in\left\{\mathbf{x} \mid \mathbf{A}_{\mathbf{l}} \times \mathbf{b}_{\mathbf{b}}\right\}} \geq$ or <0.
7. Generalize these important differential features via the sign test from these differential analyses in Step 6.

