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Chapter 3 

Methodology 

3.1 Definition 

The network system considered in this study is shown in Figure 3.1. It is a 

feed-forward neural network with one hidden layer and one output node. 

Figure 3.1: The ANN with one hidden layer and one output node. 

In Figure 3.1, y denotes the output value of the neural network, and xt ≡ (x1, x2,… , 

xm) where xi denotes the i-th outside stimulus input, with i from 1 to m. 2wj
t ≡ (2wj1, 

2wj2,… , 2wjm) stands for the weights between the j-th hidden node and the input layer, 

with j from 1 to p, and 3wt ≡ (3w1, 3w2,… , 3wp) stands for the weights between the out-

put node and all hidden nodes. The following tanh(t) activation function is used in 

hidden nodes and the linear activation function is used in the output node. 

 tanh(t) ≡ tt
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For the c-th input cx, the hidden node activation value chj and its output value cy 

are computed as follows: 
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 chj = tanh(
m

i 1=
∑ 2wji

 
cxi + 2θj) (3.2) 

 cy = 
p

j 1=
Σ 3wj

 
chj + 3θ (3.3) 

3.2 Method of Extracting Rules from Neural Networks 

3.2.1 The Approximation of Hidden Node Activation Function 

To extract comprehensible rules from the ANN with the tanh(t) activation func-

tion, we use the following function g(t) to approximate tanh(t): 
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where (β1, β2, κ) ≡ arg( ttgt d))()(tanh(min 2

,, 21 ∫
∞

∞−
−

κββ
subject to β1κ + β2κ

2 = 1). Then, us-

ing the numerical analysis of Sequential Quadratic Programming (The MathWorks, 

Inc. 2002), we obtain β1 ≅ 1.0020101308531, β2 ≅ -0.251006075157012, κ ≅ 

1.99607103795966, and ttgt d))()(tanh(min 2

,, 21 ∫
∞

∞−
−

κββ
 ≅  0.00329781871956464. Note 

that g(t) is continuous at the boundaries of four regions (κ ≤ t, 0 ≤ t ≤ κ, -κ ≤ t ≤ 0, t ≤ 

-κ), because we set 
−→κt

lim  β1 t + β2 t
2 = 1, 

+→0
lim
t

β1 t + β2 t
2 = 0, 

−→0
lim
t

β1 t - β2 t
2 = 0, and 

+−→ κt
lim β1 t - β2 t

2 = -1. 

For the j-th hidden node, let tj ≡ 2wj
t x. Thus tanh(tj + 2θj) can be approximated 

with g(tj + 2θj), which is defined by 

g(tj + 2θj) = 











−−≤−
≤−≤−−−−+−
−≤≤−++++

−≥

jj

jjjjjjjj

jjjjjjjj

jj

tif
tiftt

tiftt
tif

θκ
θθκβθββθβθβ

θκθβθββθβθβ
θκ

2

22
2

2221
2

2221

22
2

2221
2

2221

2

 1
 )2()(
 )2()(
 1

 (3.5) 

In other words, for the j-th hidden node, the activation value is approximated with a 

form of single-variate polynomial in each of four separate regions in the tj space. For 

example, if -2θj ≤ tj ≤ κ - 2θj, then tanh(tj + 2θj) is approximated with β2 2θj
2 + β1 2θj + (β1 
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+ 2 β2 2θj) tj + β2 tj
2. 

To better represent the condition, let’s introduce some notations. Set ιj be 1, if the 

condition κ - 2θj ≤ 2wj
t x holds; 2, if the condition -2θj ≤ 2wj

t x ≤ κ - 2θj holds; 3, if the 

condition -κ - 2θj ≤ 2wj
t x ≤ -2θj holds; and 4, if the condition 2wj

t x ≤ -κ - 2θj holds. Also, 

set ωj1 ≡ 2wj
t, ωj2 ≡ 
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, υj4 ≡ κ + 2θj, gj1(tj) ≡ 1, gj2(tj) ≡ (β1 2θj +β2 2θj

2
)+ (β1 + 2 β2 2θj) tj + β2 

tj
2, gj3(tj) ≡ (β1 2θj - β2 2θj

2
)+ (β1 - 2 β2 2θj) tj - β2 tj

2, and gj4(tj) ≡ -1. Then, when the ιj-th 

condition ωjιj 
x ≥ υjιj

 holds, the activation value of the j-th hidden node is approxi-

mated with g jιj
(tj). Furthermore, y' ≡ 3θ +

p

j 1=
Σ 3wj tanh(tj + 2θj) is approximated with 3θ 

+
p

j 1=
Σ 3wj g jιj

(tj). 

Let ι ≡ [ι1, ι2, ..., ιp] with ιj ∈ {1, 2, 3, 4} ∀ j = 1, 2,..., p. Thus, the conditions as-

sociated with p hidden nodes can be expressed as 1Aι x ≥ 1bι, where 
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For example, the condition [-2θj ≤ 2wj
t x ≤ κ - 2θj ∀ j = 1, 2, ..., p] can be expressed as 

1Aι x ≥ 1bι with ιj = 2 for every j. 

In addition, the independent variables may have some extra constraints corre-

sponding to the application.  The extra constraints are usually linear as follows. 
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 ai1 x1 + ai2 x2 + ... + aim xm ≥ b2i, i = 1, 2, ..., n2 (3.8) 

Let 
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Thus the extra constrains are expressed as 

 2A x ≥ 2b  (3.11) 

Therefore, the full constrains associated with the ι-th region are 

 Aι x ≥ bι  (3.12) 

where Aι ≡ 

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In sum, when the approximation is applied to a layered feed-forward neural net-

work, there are 4p separate regions in the input space where the corresponding output 

value y' is approximated in a form of multivariate polynomial. The ι-th region is {x| 

Aι x ≥ bι}, and its associated y' equates 3θ +
p

j 1=
Σ 3wj g jιj

(tj).  In other words, there is a 

rule associated with each separate region in the input space: 

 If Aι x ≥ bι, then y' = 3θ +
p

j 1=
Σ 3wj g jιj

(tj) (3.13) 

Aι x ≥ bι is a convex polyhedral set in the input space because Aι x ≥ bι consists 

of linear inequality constraints. Furthermore, Aι x ≥ bι has a feasible solution if and 

only if the linear programming (LP) problem (3.14) has an optimal solution. 

 Minimize: constant 

 Subject to: Aι x ≥ bι (3.14) 

If equation (3.14) has an optimal solution, then the corresponding rule exists. 
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Otherwise, the rule fails to exist. 

3.2.2 The Differential Analysis of Rules 

Since tj ≡ 2wj
t x=∑

=

m

i
iji xw
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Thus 

 
k

jj

x
t

∂
∂ )(g

=











−−<
<−<−−−−
−<<−++

−>

jj

jjjjjkjjk

jjjjjkjjk

jj

tif
tiftww

tiftww
tif

θκ
θθκβθββ

θκθβθββ
θκ

2

22222212

22222212

2

 0
 2)2(
 2)2(
 0

 (3.16) 

 
kl

jj

xx
t

∂∂
∂ )(g2

=











−−<
<−<−−−
−<<−

−>

jj

jjjjkjl

jjjjkjl

jj

tif
tifww

tifww
tif

θκ
θθκβ

θκθβ
θκ

2

22222

22222

2

 0
 2
 2
 0

 (3.17) 

 
klr

jj

xxx
t
∂∂∂

∂ )(g3

=0 (3.18) 

where r, l, k = 1, 2, ..., m.  y' = 3θ +
p

j 1=
Σ 3wj gj(tj).  Thus 
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For example, for the ι-th region with ιj = 2 ∀ j = 1, 2, ..., p, y' = 3θ +
p

j 1=
Σ 3wj g jιj

(tj), 

and 
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klr xxx

y
∂∂∂

∂ '3

= 0 (3.24) 

If 
{ }ιι bxAxx ≥∈∂

∂

kx
y'

≥ 0, the optimal solution of the LP problem (3.25) shall be 

greater than zero. Similarly, if 
{ }ιι bxAxx ≥∈∂

∂

kx
y'

< 0, the optimal solution of the LP prob-

lem (3.26) shall be less than zero. 

 Minimize: 
kx

y
∂
∂ '

 

 Subject to: Aι x ≥ bι (3.25) 

 Maximize: 
kx

y
∂
∂ '

 

 Subject to: Aι x ≥ bι (3.26) 

If 
kx

y
∂
∂ '

 is a linear equation, we can adopt the Simplex method to solve LP problems 

(3.25) and (3.26). Such LP problems can analyze if 
kx

y
∂
∂ '

 is great or less than zero for 

every point in the region, Aι x ≥ bι, without any dataset. 

Note that the differentiations of y' are not defined at tj
 = -κ + 2θj, 2θj, or κ + 2θj. 

Also, since 
klr xxx

y
∂∂∂

∂ '3

 always equals zero, this approximation loses the information 

of higher order differentials. 

After differential analyses, we can derive (differential) features via applying the 

sign test on our extracted rules. Take as illustration of the sign test of the relationship 

between y' and xk. Let the significance level of the test be α (generally equals 0.05 or 

0.01). The null hypothesis H0 is that there is not a relationship between y' and xk., 

while the alternative hypothesis H1 is that there is a negative relationship between y' 
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and xk. (that is, 
kx

y
∂
∂ '

< 0). If H0 is true, the conditional probability Pr(
kx

y
∂
∂ '

< 0 | H0) 

equals 0.5. If H1 is true, the conditional probability Pr(
kx

y
∂
∂ '

< 0 | H1) is great than 0.5. 

Let n− be the count of the maximal value of 
kx

y
∂
∂ '

 associated with ne (the number of 

extracted rules) LP problems stated in (3.27) that are less than 0. 

 Maximize: 
kx

y
∂
∂ '

 

 Subject to: Aι x ≥ bι (3.27) 

If H0 is true, then n− has a binomial distribution, b(ne, 0.5). We reject H0 and accept H1 

at significant α if only if n− is greater than n0
−, where ∑
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3.2.3 The Rule Extraction Process 

We summarize the rule extraction process in the Table 3.1.  

Table 3.1: The Rule Extraction Process 

1. Give a trained ANN with tanh(t) activation functions in hidden layer. 

y = 
p

j 1=
Σ 3wj

 tanh(
m

i 1=
∑ 2wji

 xi + 2θj) + 3θ 

2. Use gj(tj) to approximation the tanh(tj + 2θj). 

gj(tj)=
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where tj ≡ 2wj
t x=∑

=

m

i
iji xw

1
2 , β1 ≅ 1.0020101308531, β2 ≅ -0.251006075157012, 

and κ ≅ 1.99607103795966. 
3. Give the extra conditions as follows:  

 A2 x ≥ b2 
Then, the full constrains associated with the ι-th region are 

 Aι x ≥ bι 
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where Aι ≡ 

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4. Get 4p potential rules as follows:  

 If Aι x ≥ bι, then y' = 3θ +
p

j 1=
Σ 3wj g jιj

(tj) 

5. Extract our interesting rules via determining if the following optimal problem 
has an optimal solution. 

 Minimize: constant 

 Subject to: Aι x ≥ bι 

6. For each extracted rule, we check if 
{ }ιι bxAxx ≥∈∂

∂

kx
y'

≥ or < 0, via solving the fol-

lowing optimal problems. 

 Minimize: 
kx

y
∂
∂ '

 

 Subject to: Aι x ≥ bι 

 Maximize: 
kx

y
∂
∂ '

 

 Subject to: Aι x ≥ bι 

And we can easily determine if 
{ }ιι bxAxx ≥∈

∂∂
∂

kl xx
y'2

≥ or < 0. 

7. Generalize these important differential features via the sign test from these dif-
ferential analyses in Step 6. 


