Chapter 4

Empirical Study

4.1 Bond Pricing

This section takes the bond-pricing formula shown in equation (4.1) to examine
the proposed method. In equation (4.1), P, is the bond price at time ¢; r, is the market
rate of interest at time ¢; F' is the face value, which generally equals 100; 7j is the term
to maturity at time ¢ = 0; C is the coupon payment, which equals F' r.; ¢( rounds real
numeric to the nearest integer towards minus infinity. Equation (4.1) is a nonlinear

closed-form equation, which owns clear and definite characteristics for it.
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As stated in (Sharpe and Alexander, 1990), Bond-pricing theorems characterize
how bond prices move in response to changes in their yields-to-maturity: Periodic
payment of fixed dollar amount and a lump sum payment at a stated date. The peri-
odic payments are known as coupons, and the lump sum payment is known as the
bond's principal (or par value or face value). A bond's coupon rate is calculated by di-
viding the dollar amount of the coupon payments a bondholder would receive over the
course of a year by the principal. Lastly, the amount of time which is left until the last
promised payment is made is known as the bond's term-to-maturity, whereas the dis-
count rate which makes the present value of the all cash flows equal to the market
price of the bond is known as the bond's yield-to-maturity (or, simply, yield).

Note that if a bond's market price equals to its par value, then its
yield-to-maturity will equal to its coupon rate. However, if the market price is less

than the par value (a situation where the bond is said to be selling at a discount), then
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the bond yield-to-maturity will be greater than the coupon rate. Conversely, if the
bond price is greater than the par value (a situation where the bond is said to be sell-
ing a premium), then the yield-to-maturity will be less than the coupon rate.

Five theorems dealing with the bond-pricing have been derived (cf. Malkiel,
1962). Assume that there is one coupon payment per year (that is, coupon payments
are made every 12 months). The theorems are as follows:

1. If a bond's market price increases, then its yield must decrease; conversely, if a
bond's market price decreases, then its yield must increase. That is,
1P

—L 4.2
" <0 4.2)

2. If a bond's yield does not change over its life, then the size of its discount or pre-

mium will decrease as its life gets shorter. That is,
TP
179,

where T,° T, - t is the term to maturity at time ¢.

<0 (4.3)

3. If a bond's yield does not change over its life, then the size of its discount or pre-

mium will decrease at an increasing rate as its life get shorter. That is,

i TP
(TS0 ifnn
B (4.4)
fgr 0 Y
T

4. A decrease in a bond's yield will raise the bond's price by an amount which is
greater in size than the corresponding fall in the bond's price which would occur if

there is an equal-sized increase in the bond's yield. That is,
T7A
T

5. The amount change in a bond's price due to a change in its yield will be higher if its

0 (4.5)

coupon rate is higher. (Note: This theorem does not apply to bonds with a life of

one year or to bonds that have no maturity date, known as consols, or perpetuities.)
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That is,
1P

arg 0 (4.6)

4.2 Data Collection and Method Application

We assume that there are 80 trading days and that coupon payments are made
yearly, and derive , from a normal random number generator of N(2%, (O.l%)z),.
Then we select 6 kinds of short-term bonds as shown in Table 4.1, and use the equa-
tion (4.1) for the bond pricing to generate the data with = 1/80, 2/80, ..., 80/80.

Table 4.1: The 6 selected short-term bonds

Term to maturity | Contractual
(T) interest rate (7.)
0.0%
1.5%
3.0%
0.0%
1.5%
3.0%

RN NN

So there are 480 training samples with input variables 7, r. and r, and the de-
sired output P,. These variables are normalized via equation (4.7) (cf. Smith, 1993) to
generate 7,, r., r! and P/, stated in equations (4.8) to (4.11). In equation (4.7), the
normalized variable 7ar is a transformation of the raw value of the original variable
Val, where Vmax and Vmin are the maximum and minimum values of the original
variable respectively, and 7max and Tmin are the desired maximum and minimum

normalized values respectively.

Tar = Tmin + (Val_—Vrni_QTmax - Tmin)) 4.7)
Fma xVmil n
Vo P-92 .
P, 0.9+( 106-92 (0.9-(-0.9))) (4.8)
': - T; - 1 - -
;=14 1 (1-C-1))) (4.9)
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r. - 0.00

rc'=-1+(m(l-(-l))) (4.10)
. rn-0016
=1 0.023- 0.016(1 DY 1D

We use the normalized variables to train 100 ANNs, each of which has 4 hidden nodes.
The one with the minimum sum of square error is shown in Figure 4.1, where ;q' =
-0.055, ,q,' = -0.817, ,q,' = -0.630, ,q;' = -0.827, ,q,' = 0.450, ;w" = (-0.711, -0.256,
0.595, -0.112), ,w"' = (0.589, -0.545, 0.056), ,w',' = (0.218, -0.611, -0.129), ,w';' =
(0.613, 0.680, -0.219), and ,w',' = (0.041, 0.757, 0.353). This ANN can be transformed

back to following equations (4.12) to (4.16) with original variables:

Figure 4.1: The structure and links of the ANN with 4 hidden nodes and the

normalized bond pricing variables.

h, =tanh( -0.817 + 0.5897; - 0.545r." + 0.0567,)

= tanh(-1.565 + 0.3937, - 36.344r. + 15.955r)) (4.12)
h, =tanh(-0.630 + 0.2187; - 0.611r,' - 0.219~7,")

= tanh(0.335 + 0.1457, - 40.733r. - 36.784r,) (4.13)

hy = tanh(-0.827 + 0.6137, + 0.0687.' - 0.2197,)
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= tanh(-1.310 + 0.4097, + 45.318r. - 62.477r,)
hy =tanh(0.450 + 0.0417} + 0.757r.! + 0.353r/)

= tanh(-2.341 + 0.0277, + 50.463r. + 100.840r,)

Vi =P,=98.571 -5.531h, - 1.995h, + 4.625h; - 0.871h,

Thus

t,=0.393T, - 36.344r.+ 15.955r,

=0.145T, - 40.733r,.- 36.784r,

t;,=0.409T,+ 45.318r.- 62.477r,

=0.027T,+ 50.463r. + 100.8407,

1.g11(4) =1.000
ot lglz(tl)——2183+1788t1 0.2514
L gis(1)=-0.953+0.216t, +0.2514°
§gu(t)=-1.000
1 g21(12) =1.000
g(t)_|g22(t2) 0.307 +0.834t, - 0.2511,
£ @3(t:) =0.363+1.170t, +0.2515,°
§ @24(t,) =- 1.000
‘|g31(t3) =1.000
o ()] 1 g0(ts) =- 1.744+1.660; - 0251,
 g3s(t5) = - 0.882+0.3441, +0.25 11,
fg1(1) =-1.000
‘| gu(2:) =1.000
ai(t)=1
£ gis(ts) = 0.970- 0.173, +0.251r,”
§ gua(t) =- 1.000

tgnt) =-3.721+2.177, - 0251,

if t,3 3.561
if 1.565 £ 1, £3.561
if - 0.431£¢ £1.565
if t, £-0.431

if % 1.661
if - 0.335£1, £1.661
if - 2.331£4, £-0.335
if t, £-2.331

if t,% 3.306
if 1.310£1, £3.306
if - 0.686£1 £1.310
i t, £-0.686

if 1,3 4337

if 2.341£1, £4.337
if 0.345E 1, £2.341
if t, £0.345

1! =98.571 -5.531g,(t,) - 1.995g,(t,) + 4.625g,(t;) - 0.871g4(t.)

The extra constraints applied to the input variables are as follows:

(1£T,£4)AND (0 £ 7. £0.030) AND (0.016 £ 7, £ 0.023)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

For instance, the condition, (-0.431 £ ¢, £ 1.565) AND (-2.331 £ t,£ -0.335) AND

(-0.686 £ ¢, £ 1.310) AND (0.345 £¢, £ 2.341) AND (1 £ T, £ 4) AND (0 £ 7, £ 0.030)

AND (0.016 £ r, £ 0.023), is expressed as the following form:
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Aps33X 2 bssg (4.27)

é 0393 -36.344  15.955(0 é 0.4310
é G é U
§ 0393 -36344  -15955 & 1:565
8 0.145 -40.733 - 36.784U & 2.3310
& 0.145 40733 36.784 & 0335
€ 0409 45318 - 624770 & 0.686U
e u e u
. & 0409 - 45318  62.477( a- 1.310(
u A - A -
& 0 € 0.027 50463  100.840U € 0.345U
X= érc a’ A[3,3 3317 ? '-;l, 33331 ? '-;'
& i & 0.027 -50.463 - 100.840( & 2.341(
, é G é G
g 1.000  0.000 0.000; g 1.000¢
- 1.000  0.000 0.0004 & 4.0000
€ 0000  1.000  0.0004 & 0.000;
€ 0.000 -1.000 0.000U & 0.030U
e u e u
& 0.000  0.000 1.000y & 0.016y
€ 0.000  0.000 - 1.000{ & 0.023H
Minimize: constant
Subject to: Ajs35X 3 bpasys (4.28)

There are 256 potential rules associated with ANN. For each rule, we can check if the
region formed from the condition of the rule is empty via Simplex method. For in-
stance, the equation (4.27) has a solution if and only if the LP problem (4.28) has an
optimal solution. If equation (4.27) has a solution, then the corresponding rule exists.
Otherwise, the rule fails to exist. With such analysis, we obtain the following 11
rules.

Rule 1:

If (1.565 £ t,£2.561) and (-0.335 £ #,£ 1.661) AND (-0.686 £ ;£ 1.310) and (2.341 £
t,£4.337) AND (1 £ T, £4) AND (0£ r. £ 0.030) AND (0.016 £ r, £ 0.023), then y, =
109.193 - 2.0617, + 426.212r. - 389.823r,- 1.955T,r.- 46.0497,r, - 4459.398r.r, +
0.4197; + 5605.512r. +7785.223r, (4.29)
Rule 2:

If (1.565 £ #, £ 2.561) AND (-0.335 £ #,£ 1.661) AND (-0.686 £ £ 1.310) AND
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(0.345 £ t,£ 2.341) AND (1£ T, £4) AND (0£ r. £0.030) AND (0.016£ r, £0.023),
then y, = 106.798 - 2.0337, + 477.854r, - 286.627r, - 3.154T, r. - 48.446T, r, +
8908.414r, r,+ 0.41877 + 4492 .314r. + 3339.985r (4.30)
Rule 3:

If (1.565 £ 1, £ 2.561) AND (-2.331 £ 1,£ -0.335) AND (-0.686 £ ;£ 1.310) AND
(2.341 £1,£4.337) AND (1 £ T, £ 4) AND (0 £ . £ 0.030) AND (0.016 £ r, £ 0.023),
then y' = 109.081 - 2.1107, + 439.863r, - 377.496r, + 9.905T, r. - 35.3387, r, -
7460.240r, r,+ 0.3987, +3944.0091r.” +6430.268r, (4.31)
Rule 4:

If (1.565 £ t,£ 2.561) AND (-2.331 £ t,£ -0.335) AND (-0.686 £ ;£ 1.310) AND
(0.345 £ 1,£ 2.341) AND (1 £ T, £ 4) AND (0 £ r. £ 0.030) AND (0.016 £ r, £ 0.023),
then y' = 106.686 - 2.082T, + 491.505 r. - 274.300 r,+ 8.7067T, r. - 37.735 T, r, -
11909.255 r, r,+ 0.397 T + 2830.810 r.” + 1985.030r, (4.32)
Rule 5:

If (-0.341 £ t,£ 1.565) AND (-0.335 £ 1,£ 1.661) AND (-0.686 £ ;£ 1.310) AND
(0.345 £ t,£ 2.341) AND (1£ T, £4) AND (0£ r. £0.030) AND (0.016£ r, £0.023),
then y, = 99.997- 0.327T, + 319.917r. - 217.292r, + 76.108T, r. - 83.242T, r, -
5688.151r, r,- 0.0107, +824.6264r.” + 2633.130r, (4.33)
Rule 6:

If (-0.341 £ £, £ 1.565) AND (-2.331 £ t,£ -0.335) AND (1.310 £ £ 3.306) AND
(2.341 £ t,£ 4.337) AND (1£ T, £4) AND (0£ r. £0.030) AND (0.016£ r, £0.023),
then y' = 98.294 + 0.8407, + 419.799r, - 498.237r, + 3.154T, r. + 48.446T, r, +
8908.414r. r,- 0.4187, - 4492.314r. - 3339.985r] (4.34)
Rule 7:

If (-0.341 £ 1,£ 1.565) AND (-2.331 £ t,£ -0.335) AND (-0.686 £ 1,£ 1.310) AND

(2.341 £ 1,£ 4.337) AND (1£ T, £4) AND (0£ 7. £0.030) AND (0.016£ 7, £0.023),
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then y' = 102.280 - 0.4037, + 281.926r. - 308.161r, + 89.1687, r. - 70.135T, r, -
4239.977r. r,- 0.03177 +276.322r> + 5723.413r] (4.35)
Rule 8:
If (-0.341 £ t,£ 1.565) AND (-2.331 £ t,£ -0.335) AND (-0.686 £ t,£ 1.310) AND
(0.345 £ t,£ 2.341) AND (1£ T, £4) AND (0£ r. £0.030) AND (0.016£ r, £0.023),
then y, = 99.885 - 0.3767, + 333.567r. - 204.965r, + 87.9687T, r. - 72.532T, r, -
8688.992r. r,- 0.0317 - 836.877r. + 1278.175r, (4.36)
Rule 9:
If (-0.341 £ £, £ 1.565) AND (-2.331 £ ©,£ -0.335) AND (1, £ -0.686) AND (2.341 £ ¢,
£ 4.337) AND (1£ T, £4) AND (0£ r. £0.030) AND (0.016£ r, £0.023), then y,' =
101.734 - 1.6767T, + 140.840r, - 113.656r, + 46.1617, . - 10.845T, r, + 2334.218r. r, -
0.2257; - 2107.996r + 1191.714r] (4.37)
Rule 10:
If (-0.341 £ 1, £ 1.565) AND (-2.331 £ t,£ -0.335) AND (1 £ -0.686) AND (0.345 £ ¢,
£ 2.341) AND (1£ T, £4) AND (0£ r. £0.030) AND (0.016£ r, £0.023), then y,' =
99.339 - 1.6487, + 192.482r, - 10.460r, + 44.962T, r. - 13.241T, r, - 2114.797r, r, -
0.2257; - 3221.195r - 3253.524r] (4.38)
Rule 11:
If (1, £ -0.431) AND (-2.331 £ ©,£ -0.335) AND (-0.686 £ t,£ 1.310) AND (2.341 £ ¢,
£ 4.337) AND (1£ T, £4) AND (0£ r. £0.030) AND (0.016£ r, £0.023), then y,' =
102.538 + 0.9207, + 159.473r, - 254.404,+ 49.537T, r. - 52.737T,r,- 5850.108r, r, +
0.18477 +2110.166r.” + 6076.841r (4.39)
Table 4.2 displays the rule number and corresponding coefficients of variables in

each multivariate polynomial associated with each existing rule.
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Table 4.2: The rule number and corresponding coefficients in each multivariate

polynomial associated with each existing rule.

i coefficients
Rul N

NN 2 2 2
i]i5]is]is|C Os t T, 7. 7 T,r. T, r Ty T, 7. 7,

R1 212(3(2] 109.193|-2.061|426.212(-389.823| -1.955(-46.049| -4459.398( 0.419| 5605.512| 7785.223

R2 212(3(3] 106.798]-2.033|477.854(-286.627| -3.154|-48.446| -8908.414( 0.418| 4492.314| 3339.985

R3 213(3(2] 109.081|-2.110{439.863(-377.496] 9.905(-35.338| -7460.240( 0.398| 3944.009| 6430.268

R4 213(3(3] 106.686|-2.082|491.505(-274.300| 8.706(-37.735[-11909.255( 0.397| 2830.810| 1985.030

R5 312(3(3] 99.997|-0.327|319.917(-217.292|76.108(-83.242| -5688.151(-0.010| 824.626| 2633.130

R 6 313]1212| 98.294| 0.840|419.799|-498.237( 3.154| 48.446 8908.414|-0.418|-4492.314|-3339.985

R7 313(3(2] 102.280]-0.403|281.926(-308.161| 89.168|-70.135 -4239.977(-0.031| 276.322| 5723.413

R8 313(3(3] 99.885|-0.376|333.567(-204.965|87.968|-72.532| -8688.992(-0.031| -836.877| 1278.175

R9 313(4(2]101.734|-1.676|140.840(-113.656|46.161(-10.845 2334.218(-0.225|-2107.996| 1191.714

R10 |3|3|4

w

99.339(-1.648|192.482| -10.460(44.962|-13.241| -2114.797]-0.225(-3221.195|-3253.524

R11 [4|3|3

[\S]

102.538| 0.920(159.473|-254.404(49.537|-52.737| -5850.108| 0.184| 2110.166 6076.841

The 11 rules will be examined to obtain knowledge. For example, for rule A ;3
X3 bpssg

' 204.965 - 72.5327,- 8688.992r.+2556.351r, (4.40)

)17

2%

T g {X\A|3.3.3,3]X3 b|3.3.3,3]}

Thus to examine the feature < 0 1s to check whether the maximal

value of the LP problem (4.41) is less than zero.

Maximize: . 204.965 - 72.5327, - 8688.992r.+2556.351r,

Tn
Subject to: Apz33 X3 bpasy (4.41)
9%y,
:[ﬂyé <0 if'r.>r
As for examining the feature | 111127; ' , there is a different analysis. For
i y; >0 ifr<n
197
example, for rule A;;535 X3 bsss
2
1 Y —_0.062 (4.42)
17
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Thus ﬂy,

2.1
<0 if r, > r,is true if only if 11117)2 < 0 and the LP problem (4.43) has a

t t

ﬂy’>01fr < r,is true if only if ﬂy,

t t

optimal solution, or >0 and the LP problem

(4.44) has a optimal solution.

Minimize: constant

@

. éApsss U 333U
Subject to: a [3333](, x3 a [3333]Q (4.43)
go.1,-11d ~ & 0 4§
Minimize: constant
: eAssaU 33330
Subject to: A [3’333]Q x3 a 3 d (4.44)
g0,-1,11g é 0 U

4.3 Results and Analysis

We can adopt the sign test (Hogg and Tains, 1997b), a binomial test about me-
dian of nonparametric methods, to the rules derived from the layered feed-forward
neural network to find out features about the bond-pricing. Take as illustration of
the sign test of the relationship between y,' and r,. Let the significance level of the
test a be 0.01. The null hypothesis H, is that there is not a relationship between ;'

and r, while the alternative hypothesis H, is that there is a negative relationship be-

T, ﬂy,<0|
f

7

<0). If H, 1s true, the conditional probability Pr(

tween y,' and 7, (that s,

‘lbu

Hy) equal 0.5. If H, is true, the conditional probability Pr( < 0| H)) is great than

L)

i

0.5. Let n be the count of the maximal value of associated with 11 LP prob-

lems stated in (4.45) that are less than 0.

Maximize: L
n
Subject to: A; x 3 b, (4.45)

If H, is true, then n has a binomial distribution, b(11, 0.5). We reject H, and accept H,

if only if n is greater than n, , where n, is 10 when a = 0.01. For example, if n = 11,
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we reject the null hypothesis Hy, and say that % <0 is significant at a = 0.01.

i

Table 4.3: The count of the optimal value of ﬂy—r" associated with 11 LP prob-
i
lems that are greater or less than 0.
" g g Ty | Ty | Ty | Ty | Ty | Ty
17, . T | W | 0 | TV | 9T Tn.” 78
1 1" 0 9 1 2 5 7 9
5 0 1" 2 10" 9 6 4 2
5 0 0 0 0 0 0 0 0

* ** and *** denote that the sign test statistic is significant at a = 0.050, 0.010, and 0.001, respec-

tively.

Table 4.3 lists the results of sign tests associated the interested features of

M>0’ 1-[yt'<() M>0 M<O,
7,

bond-pricing. Table 4.3 shows that , ,
fir. fIr: 7.9 179

2 ] 2 (]
! <0 and ﬂy;
[IA|IA )|[7

> 0 are significant features at a = 0.050. However, we make a

2 2
Ty > 0 because Ty
tﬂrc ﬂ];ﬂrc

>01s

mistake (Type I error) (Hogg and Tains, 1997a) for

not an unequivocal characteristic in the bond-pricing field. There are some relation-
ships between T, and r, by intuition; for example, the price increases if 7; and r. both
increase and the price decreases if 7, and r. both decrease. But we do not know ex-

actly whether the price increases or decreases when one of 7; as well as . decreases

ﬂzyt'

T,

and the other increases. Thus > (0 is not an unequivocal characteristic in the

bond-pricing field.
On the other hand, we can investigate whether each rule satisfies the features as-
sociated with the bond-pricing. The results of the examination of rules are shown in

Table 4.4. Table 4.4 shows that these rules have a mean of 100.00%
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((100.00+100.00)/2) in satisfaction of both features T >0 and T <0, and a

. |17
mean of 72.24% ((90.91+81.82+66.67+40.00+81.82)/5) in satisfaction of other four
features. Besides, each rule has an average satisfaction of 82.90 % on these six fea-
tures. In sum, the result is consistent with the notion that these extracted rules are

reasonable.

Table 4.4: The results of the examination of rules

Rule

R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | RI0 | RIl | Ratio(%)'

Characteristic

1

—>0 Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes 100.00

TIr.
ﬂk<0 Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes 100.00
7,
%
<0 Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes 90.91
ﬂTtﬂT’t
Ty
<0 Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes 81.82
A7
3.
:]]Tyz <0,if . >n 2 = - - - | Yes | Yes | - - - No 66.67
E}yz>0,f <r | Yes | Yes | Yes | Yes| No | No | No | No | No | No - 40.00
17y
q 5 >0 Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | No | Yes 81.82
14
Ratioz 100 | 100 | 100 | 100 |83.33(42.86(85.72(83.33|66.67|66.67|83.33 -

1. (The number of "Yes") / (The total number of "Yes" and "No") in one characteristic.
2. (The number of "Yes") / (The total number of "Yes" and "No") in one rule.

3. There is not a region that r, > r, or r. <r..
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