Chapter 4

Empirical Study

4.1 Bond Pricing

This section takes the bond-pricing formula shown in equation (4.1) to examine the proposed method. In equation (4.1), P_{t} is the bond price at time $t ; r_{t}$ is the market rate of interest at time $t ; F$ is the face value, which generally equals $100 ; T_{0}$ is the term to maturity at time $t=0 ; C$ is the coupon payment, which equals $F r_{c} ;\lfloor\cdot\rfloor$ rounds real numeric to the nearest integer towards minus infinity. Equation (4.1) is a nonlinear closed-form equation, which owns clear and definite characteristics for it.

$$
\begin{equation*}
P_{t} \equiv \sum_{k=[t+1\rfloor}^{\left\lfloor T_{0}\right\rfloor} \frac{C}{\left(1+r_{t}\right)^{k-t}}+\frac{F}{\left(1+r_{t}\right)^{T_{0}-t}} \tag{4.1}
\end{equation*}
$$

As stated in (Sharpe and Alexander, 1990), Bond-pricing theorems characterize how bond prices move in response to changes in their yields-to-maturity: Periodic payment of fixed dollar amount and a lump sum payment at a stated date. The periodic payments are known as coupons, and the lump sum payment is known as the bond's principal (or par value or face value). A bond's coupon rate is calculated by dividing the dollar amount of the coupon payments a bondholder would receive over the course of a year by the principal. Lastly, the amount of time which is left until the last promised payment is made is known as the bond's term-to-maturity, whereas the discount rate which makes the present value of the all cash flows equal to the market price of the bond is known as the bond's yield-to-maturity (or, simply, yield).

Note that if a bond's market price equals to its par value, then its yield-to-maturity will equal to its coupon rate. However, if the market price is less than the par value (a situation where the bond is said to be selling at a discount), then
the bond yield-to-maturity will be greater than the coupon rate. Conversely, if the bond price is greater than the par value (a situation where the bond is said to be selling a premium), then the yield-to-maturity will be less than the coupon rate.

Five theorems dealing with the bond-pricing have been derived (cf. Malkiel, 1962). Assume that there is one coupon payment per year (that is, coupon payments are made every 12 months). The theorems are as follows:

1. If a bond's market price increases, then its yield must decrease; conversely, if a bond's market price decreases, then its yield must increase. That is,

$$
\begin{equation*}
\frac{\partial P_{t}}{\partial r_{t}}<0 \tag{4.2}
\end{equation*}
$$

2. If a bond's yield does not change over its life, then the size of its discount or premium will decrease as its life gets shorter. That is,

$$
\begin{equation*}
\frac{\partial^{2} P_{t}}{\partial T_{t} \partial r_{t}}<0 \tag{4.3}
\end{equation*}
$$

where $T_{t} \equiv T_{0}-t$ is the term to maturity at time t.
3. If a bond's yield does not change over its life, then the size of its discount or premium will decrease at an increasing rate as its life get shorter. That is,

$$
\begin{cases}\frac{\partial^{3} P_{t}}{\partial T_{t}{ }^{2}}<0 & \text { if } r_{c}>r_{t} \tag{4.4}\\ \frac{\partial^{3} P_{t}}{\partial T_{t}{ }^{2}}>0 & \text { if } r_{c}<r_{t}\end{cases}
$$

4. A decrease in a bond's yield will raise the bond's price by an amount which is greater in size than the corresponding fall in the bond's price which would occur if there is an equal-sized increase in the bond's yield. That is,

$$
\begin{equation*}
\frac{\partial^{2} P_{t}}{\partial r_{t}{ }^{2}}>0 \tag{4.5}
\end{equation*}
$$

5. The amount change in a bond's price due to a change in its yield will be higher if its coupon rate is higher. (Note: This theorem does not apply to bonds with a life of one year or to bonds that have no maturity date, known as consols, or perpetuities.)

That is,

$$
\begin{equation*}
\frac{\partial^{2} P_{t}}{\partial r_{c} \partial r_{t}}<0 \tag{4.6}
\end{equation*}
$$

4.2 Data Collection and Method Application

We assume that there are 80 trading days and that coupon payments are made yearly, and derive r_{t} from a normal random number generator of $N\left(2 \%,(0.1 \%)^{2}\right)$,. Then we select 6 kinds of short-term bonds as shown in Table 4.1, and use the equation (4.1) for the bond pricing to generate the data with $t=1 / 80,2 / 80, \ldots, 80 / 80$.

Table 4.1: The $\mathbf{6}$ selected short-term bonds

Term to maturity (T)	Contractual interest rate $\left(r_{c}\right)$
2	0.0%
4	1.5%
2	3.0%
4	0.0%
2	1.5%
4	3.0%

So there are 480 training samples with input variables T_{t}, r_{c} and r_{t}, and the desired output P_{t}. These variables are normalized via equation (4.7) (cf. Smith, 1993) to generate $T_{t}^{\prime}, r_{c}^{\prime}$, r_{t}^{\prime} and P_{t}^{\prime}, stated in equations (4.8) to (4.11). In equation (4.7), the normalized variable Tar is a transformation of the raw value of the original variable Val, where Vmax and Vmin are the maximum and minimum values of the original variable respectively, and Tmax and Tmin are the desired maximum and minimum normalized values respectively.

$$
\begin{gather*}
\text { Tar }=\operatorname{Tmin}+\left(\frac{V a l-V \min }{V \max -V \min \mathrm{n}}(\text { Tmax }- \text { Tmin })\right) \tag{4.7}\\
P_{t}^{\prime}=-0.9+\left(\frac{P_{t}-92}{106-92}(0.9-(-0.9))\right) \tag{4.8}\\
T_{t}^{\prime}=-1+\left(\frac{T_{t}-1}{4-1}(1-(-1))\right) \tag{4.9}
\end{gather*}
$$

$$
\begin{gather*}
r_{c}^{\prime}=-1+\left(\frac{r_{c}-0.00}{0.03-0.00}(1-(-1))\right) \tag{4.10}\\
r_{t}^{\prime}=-1+\left(\frac{r_{t}-0.016}{0.023-0.016}(1-(-1))\right) \tag{4.11}
\end{gather*}
$$

We use the normalized variables to train 100 ANNs, each of which has 4 hidden nodes. The one with the minimum sum of square error is shown in Figure 4.1, where ${ }_{3} \theta^{\prime}=$ $-0.055,{ }_{2} \theta_{1}{ }^{\prime}=-0.817,{ }_{2} \theta_{2}{ }^{\prime}=-0.630,{ }_{2} \theta_{3}{ }^{\prime}=-0.827,{ }_{2} \theta_{4}{ }^{\prime}=0.450,{ }_{3} \mathbf{w}^{\mathrm{H}}=(-0.711,-0.256$, $0.595,-0.112),{ }_{2} \mathbf{w}_{1}^{\prime}{ }^{\mathrm{t}}=(0.589,-0.545,0.056),{ }_{2} \mathbf{w}_{2}^{\prime}{ }^{\mathrm{t}}=(0.218,-0.611,-0.129),{ }_{2} \mathbf{w}_{3}^{\prime t}=$ ($0.613,0.680,-0.219)$, and ${ }_{2} \mathbf{w}_{4}^{\prime t}{ }^{t}=(0.041,0.757,0.353)$. This ANN can be transformed back to following equations (4.12) to (4.16) with original variables:

Figure 4.1: The structure and links of the ANN with 4 hidden nodes and the normalized bond pricing variables.

$$
\begin{align*}
h_{1} & =\tanh \left(-0.817+0.589 T_{t}^{\prime}-0.545 r_{c}^{\prime}+0.056 r_{t}^{\prime}\right) \\
& =\tanh \left(-1.565+0.393 T_{t}-36.344 r_{c}+15.955 r_{t}\right) \tag{4.12}\\
h_{2} & =\tanh \left(-0.630+0.218 T_{t}^{\prime}-0.611 r_{c}^{\prime}-0.219 r_{t}^{\prime}\right) \\
& =\tanh \left(0.335+0.145 T_{t}-40.733 r_{c}-36.784 r_{t}\right) \tag{4.13}\\
h_{3} & =\tanh \left(-0.827+0.613 T_{t}^{\prime}+0.068 r_{c}^{\prime}-0.219 r_{t}^{\prime}\right)
\end{align*}
$$

$$
\begin{equation*}
=\tanh \left(-1.310+0.409 T_{t}+45.318 r_{c}-62.477 r_{t}\right) \tag{4.14}
\end{equation*}
$$

$$
\begin{align*}
h_{4} & =\tanh \left(0.450+0.041 T_{t}^{\prime}+0.757 r_{c}^{\prime}+0.353 r_{t}^{\prime}\right) \tag{4.14}\\
& =\tanh \left(-2.341+0.027 T_{t}+50.463 r_{c}+100.840 r_{t}\right) \tag{4.15}\\
y_{t} & =\hat{P}_{t}=98.571-5.531 h_{1}-1.995 h_{2}+4.625 h_{3}-0.871 h_{4} \tag{4.16}
\end{align*}
$$

Thus

$$
\begin{align*}
& t_{1}=0.393 T_{t}-36.344 r_{c}+15.955 r_{t} \tag{4.17}\\
& t_{2}=0.145 T_{t}-40.733 r_{c}-36.784 r_{t} \tag{4.18}\\
& t_{3}=0.409 T_{t}+45.318 r_{c}-62.477 r_{t} \tag{4.19}\\
& t_{4}=0.027 T_{t}+50.463 r_{c}+100.840 r_{t} \tag{4.20}\\
& \mathrm{~g}_{1}\left(t_{1}\right)= \begin{cases}g_{11}\left(t_{1}\right)=1.000 & \text { if } t_{1} \geq 3.561 \\
g_{12}\left(t_{1}\right)=-2.183+1.788 t_{1}-0.251 t_{1}{ }^{2} & \text { if } 1.565 \leq t_{1} \leq 3.561 \\
g_{13}\left(t_{1}\right)=-0.953+0.216 t_{1}+0.251 t_{1}{ }^{2} & \text { if }-0.431 \leq t_{1} \leq 1.565 \\
g_{14}\left(t_{1}\right)=-1.000 & \text { if } t_{1} \leq-0.431\end{cases} \tag{4.21}\\
& \mathrm{g}_{2}\left(t_{2}\right)= \begin{cases}g_{21}\left(t_{2}\right)=1.000 & \text { if } t_{2} \geq 1.661 \\
g_{22}\left(t_{2}\right)=0.307+0.834 t_{2}-0.251 t_{2}{ }^{2} & \text { if }-0.335 \leq t_{2} \leq 1.661 \\
g_{23}\left(t_{2}\right)=0.363+1.170 t_{2}+0.251 t_{2}{ }^{2} & \text { if }-2.331 \leq t_{2} \leq-0.335 \\
g_{24}\left(t_{2}\right)=-1.000 & \text { if } t_{2} \leq-2.331\end{cases} \tag{4.22}\\
& \mathrm{g}_{3}\left(t_{3}\right)= \begin{cases}g_{31}\left(t_{3}\right)=1.000 & \text { if } t_{3} \geq 3.306 \\
g_{32}\left(t_{3}\right)=-1.744+1.660 t_{3}-0.251 t_{3}{ }^{2} & \text { if } 1.310 \leq t_{3} \leq 3.306 \\
g_{33}\left(t_{3}\right)=-0.882+0.344 t_{3}+0.251 t_{3}{ }^{2} & \text { if }-0.686 \leq t_{3} \leq 1.310 \\
g_{34}\left(t_{3}\right)=-1.000 & \text { if } t_{3} \leq-0.686\end{cases} \tag{4.23}\\
& \mathrm{g}_{4}\left(t_{4}\right)= \begin{cases}g_{41}\left(t_{4}\right)=1.000 & \text { if } t_{4} \geq 4.337 \\
g_{42}\left(t_{4}\right)=-3.721+2.177 t_{4}-0.251 t_{4}{ }^{2} & \text { if } 2.341 \leq t_{4} \leq 4.337 \\
g_{43}\left(t_{4}\right)=-0.970-0.173 t_{4}+0.251 t_{4}{ }^{2} & \text { if } 0.345 \leq t_{4} \leq 2.341 \\
g_{44}\left(t_{4}\right)=-1.000 & \text { if } t_{4} \leq 0.345\end{cases} \tag{4.24}\\
& y_{t}^{\prime}=98.571-5.531 \mathrm{~g}_{1}\left(t_{1}\right)-1.995 \mathrm{~g}_{2}\left(t_{2}\right)+4.625 \mathrm{~g}_{3}\left(t_{3}\right)-0.871 \mathrm{~g}_{4}\left(t_{4}\right) \tag{4.25}
\end{align*}
$$

The extra constraints applied to the input variables are as follows:

$$
\begin{equation*}
\left(1 \leq T_{t} \leq 4\right) \text { AND }\left(0 \leq r_{c} \leq 0.030\right) \text { AND }\left(0.016 \leq r_{t} \leq 0.023\right) \tag{4.26}
\end{equation*}
$$

For instance, the condition, $\left(-0.431 \leq t_{1} \leq 1.565\right)$ AND $\left(-2.331 \leq t_{2} \leq-0.335\right)$ AND $\left(-0.686 \leq t_{3} \leq 1.310\right) \mathrm{AND}\left(0.345 \leq t_{4} \leq 2.341\right) \mathrm{AND}\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND ($0.016 \leq r_{t} \leq 0.023$), is expressed as the following form:

$$
\begin{align*}
& \mathbf{A}_{[3,3,3,3]} \mathbf{x} \geq \mathbf{b}_{[3,3,3,3]} \tag{4.27}\\
& \mathbf{x}=\left[\begin{array}{l}
T_{t} \\
r_{c} \\
r_{t}
\end{array}\right], \mathbf{A}_{[3,3,3,3]}=\left[\begin{array}{rrr}
0.393 & -36.344 & 15.955 \\
-0.393 & -36.344 & -15.955 \\
0.145 & -40.733 & -36.784 \\
-0.145 & 40.733 & 36.784 \\
0.409 & 45.318 & -62.477 \\
-0.409 & -45.318 & 62.477 \\
0.027 & 50.463 & 100.840 \\
-0.027 & -50.463 & -100.840 \\
1.000 & 0.000 & 0.000 \\
-1.000 & 0.000 & 0.000 \\
0.000 & 1.000 & 0.000 \\
0.000 & -1.000 & 0.000 \\
0.000 & 0.000 & 1.000 \\
0.000 & 0.000 & -1.000
\end{array}\right], \mathbf{b}_{[3,3,3,3]}=\left[\begin{array}{r}
-0.431 \\
-1.565 \\
-2.331 \\
0.335 \\
-0.686 \\
-1.310 \\
0.345 \\
-2.341 \\
1.000 \\
-4.000 \\
0.000 \\
-0.030 \\
0.016 \\
-0.023
\end{array}\right] \\
& \text { Minimize: constant } \\
& \text { Subject to: } \mathbf{A}_{[3,3,3,3]} \mathbf{x} \geq \mathbf{b}_{[3,3,3,3]} \tag{4.28}
\end{align*}
$$

There are 256 potential rules associated with ANN. For each rule, we can check if the region formed from the condition of the rule is empty via Simplex method. For instance, the equation (4.27) has a solution if and only if the LP problem (4.28) has an optimal solution. If equation (4.27) has a solution, then the corresponding rule exists. Otherwise, the rule fails to exist. With such analysis, we obtain the following 11 rules.

Rule 1:

If $\left(1.565 \leq t_{1} \leq 2.561\right)$ and $\left(-0.335 \leq t_{2} \leq 1.661\right)$ AND $\left(-0.686 \leq t_{3} \leq 1.310\right)$ and $(2.341 \leq$ $\left.t_{4} \leq 4.337\right)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND $\left(0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=$ 109.193-2.061 $T_{t}+426.212 r_{c}-389.823 r_{t}-1.955 T_{t} r_{c}-46.049 T_{t} r_{t}-4459.398 r_{c} r_{t}+$ $0.419 T_{t}^{2}+5605.512 r_{c}^{2}+7785.223 r_{t}^{2}$

Rule 2:

If ($1.565 \leq t_{1} \leq 2.561$) AND $\left(-0.335 \leq t_{2} \leq 1.661\right)$ AND $\left(-0.686 \leq t_{3} \leq 1.310\right)$ AND
$\left(0.345 \leq t_{4} \leq 2.341\right)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND $\left(0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=106.798-2.033 T_{t}+477.854 r_{c}-286.627 r_{t}-3.154 T_{t} r_{c}-48.446 T_{t} r_{t}+$ $8908.414 r_{c} r_{t}+0.418 T_{t}^{2}+4492.314 r_{c}^{2}+3339.985 r_{t}^{2}$

Rule 3:

If ($1.565 \leq t_{1} \leq 2.561$) AND $\left(-2.331 \leq t_{2} \leq-0.335\right)$ AND ($-0.686 \leq t_{3} \leq 1.310$) AND $\left(2.341 \leq t_{4} \leq 4.337\right) \mathrm{AND}\left(1 \leq T_{t} \leq 4\right) \mathrm{AND}\left(0 \leq r_{c} \leq 0.030\right) \mathrm{AND}\left(0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=109.081-2.110 T_{t}+439.863 r_{c}-377.496 r_{t}+9.905 T_{t} r_{c}-35.338 T_{t} r_{t}-$ $7460.240 r_{c} r_{t}+0.398 T_{t}^{2}+3944.0091 r_{c}^{2}+6430.268 r_{t}^{2}$

Rule 4:

If ($1.565 \leq t_{1} \leq 2.561$) AND $\left(-2.331 \leq t_{2} \leq-0.335\right)$ AND $\left(-0.686 \leq t_{3} \leq 1.310\right)$ AND $\left(0.345 \leq t_{4} \leq 2.341\right)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND $\left(0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=106.686-2.082 T_{t}+491.505 r_{c}-274.300 r_{t}+8.706 T_{t} r_{c}-37.735 T_{t} r_{t}-$ $11909.255 r_{c} r_{t}+0.397 T_{t}^{2}+2830.810 r_{c}^{2}+1985.030 r_{t}^{2}$

Rule 5:

If $\left(-0.341 \leq t_{1} \leq 1.565\right)$ AND $\left(-0.335 \leq t_{2} \leq 1.661\right)$ AND ($-0.686 \leq t_{3} \leq 1.310$) AND $\left(0.345 \leq t_{4} \leq 2.341\right)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND $\left(0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=99.997-0.327 T_{t}+319.917 r_{c}-217.292 r_{t}+76.108 T_{t} r_{c}-83.242 T_{t} r_{t}-$ $5688.151 r_{c} r_{t}-0.010 T_{t}^{2}+824.6264 r_{c}^{2}+2633.130 r_{t}^{2}$

Rule 6:

If $\left(-0.341 \leq t_{1} \leq 1.565\right)$ AND ($-2.331 \leq t_{2} \leq-0.335$) AND ($1.310 \leq t_{3} \leq 3.306$) AND $\left(2.341 \leq t_{4} \leq 4.337\right)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND $\left(0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=98.294+0.840 T_{t}+419.799 r_{c}-498.237 r_{t}+3.154 T_{t} r_{c}+48.446 T_{t} r_{t}+$ $8908.414 r_{c} r_{t}-0.418 T_{t}^{2}-4492.314 r_{c}{ }^{2}-3339.985 r_{t}^{2}$

Rule 7:

If $\left(-0.341 \leq t_{1} \leq 1.565\right)$ AND $\left(-2.331 \leq t_{2} \leq-0.335\right)$ AND ($\left.-0.686 \leq t_{3} \leq 1.310\right)$ AND $\left(2.341 \leq t_{4} \leq 4.337\right)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND $\left(0.016 \leq r_{t} \leq 0.023\right)$,
then $y_{t}^{\prime}=102.280-0.403 T_{t}+281.926 r_{c}-308.161 r_{t}+89.168 T_{t} r_{c}-70.135 T_{t} r_{t}-$ $4239.977 r_{c} r_{t}-0.031 T_{t}^{2}+276.322 r_{c}^{2}+5723.413 r_{t}^{2}$

Rule 8:

If $\left(-0.341 \leq t_{1} \leq 1.565\right)$ AND $\left(-2.331 \leq t_{2} \leq-0.335\right)$ AND ($\left.-0.686 \leq t_{3} \leq 1.310\right)$ AND $\left(0.345 \leq t_{4} \leq 2.341\right)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND $\left(0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=99.885-0.376 T_{t}+333.567 r_{c}-204.965 r_{t}+87.968 T_{t} r_{c}-72.532 T_{t} r_{t}-$ $8688.992 r_{c} r_{t}-0.031 T_{t}^{2}-836.877 r_{c}^{2}+1278.175 r_{t}^{2}$

Rule 9:

If $\left(-0.341 \leq t_{1} \leq 1.565\right)$ AND $\left(-2.331 \leq t_{2} \leq-0.335\right)$ AND $\left(t_{3} \leq-0.686\right)$ AND $\left(2.341 \leq t_{4}\right.$ $\leq 4.337)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND ($\left.0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=$ 101.734-1.676T $+140.840 r_{c}-113.656 r_{t}+46.161 T_{t} r_{c}-10.845 T_{t} r_{t}+2334.218 r_{c} r_{t}-$ $0.225 T_{t}^{2}-2107.996 r_{c}^{2}+1191.714 r_{t}^{2}$

Rule 10:

If $\left(-0.341 \leq t_{1} \leq 1.565\right)$ AND $\left(-2.331 \leq t_{2} \leq-0.335\right)$ AND $\left(t_{3} \leq-0.686\right)$ AND $\left(0.345 \leq t_{4}\right.$ $\leq 2.341)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND ($\left.0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=$ 99.339-1.648T $T_{t}+192.482 r_{c}-10.460 r_{t}+44.962 T_{t} r_{c}-13.241 T_{t} r_{t}-2114.797 r_{c} r_{t}-$ $0.225 T_{t}^{2}-3221.195 r_{c}^{2}-3253.524 r_{t}^{2}$

Rule 11:

If $\left(t_{1} \leq-0.431\right)$ AND $\left(-2.331 \leq t_{2} \leq-0.335\right)$ AND $\left(-0.686 \leq t_{3} \leq 1.310\right)$ AND $\left(2.341 \leq t_{4}\right.$ $\leq 4.337)$ AND $\left(1 \leq T_{t} \leq 4\right)$ AND $\left(0 \leq r_{c} \leq 0.030\right)$ AND $\left(0.016 \leq r_{t} \leq 0.023\right)$, then $y_{t}^{\prime}=$ $102.538+0.920 T_{t}+159.473 r_{c}-254.404_{t}+49.537 T_{t} r_{c}-52.737 T_{t} r_{t}-5850.108 r_{c} r_{t}+$ $0.184 T_{t}^{2}+2110.166 r_{c}^{2}+6076.841 r_{t}^{2}$

Table 4.2 displays the rule number and corresponding coefficients of variables in each multivariate polynomial associated with each existing rule.

Table 4.2: The rule number and corresponding coefficients in each multivariate polynomial associated with each existing rule.

Rule No.	1				coefficients									
	l_{1}	l_{2}	l_{3}	l_{4}	Constant	T_{t}	r_{c}	r_{t}	$T_{t} r_{c}$	$T_{t} r_{t}$	$r_{c} r_{t}$	T_{t}^{2}	$r_{c}{ }^{2}$	r_{t}^{2}
R1	2	2	3	2	109.193	-2.061	426.212	-389.823	-1.955	-46.049	-4459.398	0.419	5605.512	7785.223
R2	2	2	3	3	106.798	-2.033	477.854	-286.627	-3.154	-48.446	-8908.414	0.418	4492.314	3339.985
R3	2	3	3	2	109.081	-2.110	439.863	-377.496	9.905	-35.338	-7460.240	0.398	3944.009	6430.268
R4	2	3	3	3	106.686	-2.082	491.505	-274.300	8.706	-37.735	-11909.255	0.397	2830.810	1985.030
R5	3	2	3	3	99.997	-0.327	319.917	-217.292	76.108	-83.242	-5688.151	-0.010	824.626	2633.130
R6	3	3	2	2	98.294	0.840	419.799	-498.237	3.154	48.446	8908.414	-0.418	-4492.314	-3339.985
R7	3	3	3	2	102.280	-0.403	281.926	-308.161	89.168	-70.135	-4239.977	-0.031	276.322	5723.413
R8	3	3	3	3	99.885	-0.376	333.567	-204.965	87.968	-72.532	-8688.992	-0.031	-836.877	1278.175
R9	3	3	4	2	101.734	-1.676	140.840	-113.656	46.161	-10.845	2334.218	-0.225	-2107.996	1191.714
R10	3	3	4	3	99.339	-1.648	192.482	-10.460	44.962	-13.241	-2114.797	-0.225	-3221.195	-3253.524
R11	4	3	3	2	102.538	0.920	159.473	-254.404	49.537	-52.737	-5850.108	0.184	2110.166	6076.841

The 11 rules will be examined to obtain knowledge. For example, for rule $\mathbf{A}_{[3,3,3,3]}$ $\mathbf{x} \geq \mathbf{b}_{[3,3,3,3]}$

$$
\begin{equation*}
\frac{\partial y_{t}^{\prime}}{\partial r_{t}}=-204.965-72.532 T_{t}-8688.992 r_{c}+2556.351 r_{t} \tag{4.40}
\end{equation*}
$$

Thus to examine the feature $\frac{\left.\left.\left.\partial y_{t}\right|^{\partial r_{t}}\right|_{\mathbf{x}\left\{\left\{\left.\mathbf{x}\right|_{\mid 3,3,3,3]} \geq \mathbf{x}\right.\right.} \mathbf{b}_{[3,3,3]}\right\}}{}<0$ is to check whether the maximal value of the LP problem (4.41) is less than zero.

$$
\text { Maximize: } \frac{\partial y_{t}^{\prime}}{\partial r_{t}}=-204.965-72.532 T_{t}-8688.992 r_{c}+2556.351 r_{t}
$$

$$
\begin{equation*}
\text { Subject to: } \mathbf{A}_{[3,3,3,3]} \mathbf{x} \geq \mathbf{b}_{[3,3,3,3]} \tag{4.41}
\end{equation*}
$$

As for examining the feature $\left\{\begin{array}{ll}\frac{\partial^{2} y_{t}^{\prime}}{\partial T_{t}^{2}}<0 & \text { if } r_{c}>r_{t} \\ \frac{\partial^{2} y_{t}^{\prime}}{\partial T_{t}^{2}}>0 & \text { if } r_{c}<r_{t}\end{array}\right.$, there is a different analysis. For example, for rule $\mathbf{A}_{[3,3,3,3]} \mathbf{x} \geq \mathbf{b}_{[3,3,3,3]}$

$$
\begin{equation*}
\frac{\partial^{2} y_{t}^{\prime}}{\partial T_{t}^{2}}=-0.062 \tag{4.42}
\end{equation*}
$$

Thus $\frac{\partial^{2} y_{t}^{\prime}}{\partial T_{t}^{2}}<0$ if $r_{c}>r_{t}$ is true if only if $\frac{\partial^{2} y_{t}{ }^{\prime}}{\partial T_{t}^{2}}<0$ and the LP problem (4.43) has a optimal solution, or $\frac{\partial^{2} y_{t}^{\prime}}{\partial T_{t}^{2}}>0$ if $r_{c}<r_{t}$ is true if only if $\frac{\partial^{2} y_{t}{ }^{\prime}}{\partial T_{t}^{2}}>0$ and the LP problem (4.44) has a optimal solution.

Minimize: constant

$$
\text { Subject to: }\left[\begin{array}{c}
\mathbf{A}_{[3,3,3,3]} \tag{4.43}\\
{[0,1,-1]}
\end{array}\right] \mathbf{x} \geq\left[\begin{array}{c}
\mathbf{b}_{[3,3,3,3]} \\
0
\end{array}\right]
$$

Minimize: constant

$$
\text { Subject to: }\left[\begin{array}{l}
\mathbf{A}_{[3,3,3,3]} \tag{4.44}\\
{[0,-1,1]}
\end{array}\right] \mathbf{x} \geq\left[\begin{array}{c}
\mathbf{b}_{[3,3,3,3]} \\
0
\end{array}\right]
$$

4.3 Results and Analysis

We can adopt the sign test (Hogg and Tains, 1997b), a binomial test about median of nonparametric methods, to the rules derived from the layered feed-forward neural network to find out features about the bond-pricing. Take as illustration of the sign test of the relationship between y_{t}^{\prime} and r_{t}. Let the significance level of the test α be 0.01 . The null hypothesis H_{0} is that there is not a relationship between y_{t}^{\prime} and r_{t}, while the alternative hypothesis H_{1} is that there is a negative relationship between y_{t}^{\prime} and r_{t} (that is, $\frac{\partial y_{t}^{\prime}}{\partial r_{t}}<0$). If H_{0} is true, the conditional probability $\operatorname{Pr}\left(\left.\frac{\partial y_{t}^{\prime}}{\partial r_{t}}<0 \right\rvert\,\right.$ $\left.\mathrm{H}_{0}\right)$ equal 0.5 . If H_{1} is true, the conditional probability $\operatorname{Pr}\left(\left.\frac{\partial y_{t}^{\prime}}{\partial r_{t}}<0 \right\rvert\, \mathrm{H}_{1}\right)$ is great than 0.5. Let n^{-}be the count of the maximal value of $\frac{\partial y_{t}^{\prime}}{\partial r_{t}}$ associated with 11 LP problems stated in (4.45) that are less than 0.

$$
\begin{gather*}
\text { Maximize: } \frac{\partial y_{t}^{\prime}}{\partial r_{t}} \\
\text { Subject to: } \mathbf{A}_{\mathrm{t}} \mathbf{x} \geq \mathbf{b}_{\mathbf{t}} \tag{4.45}
\end{gather*}
$$

If H_{0} is true, then n^{-}has a binomial distribution, $b(11,0.5)$. We reject H_{0} and accept H_{1} if only if n^{-}is greater than $n_{0}{ }^{-}$, where $n_{0}{ }^{-}$is 10 when $\alpha=0.01$. For example, if $n^{-}=11$,
we reject the null hypothesis H_{0}, and say that $\frac{\partial y_{t}^{\prime}}{\partial r_{t}}<0$ is significant at $\alpha=0.01$.

Table 4.3: The count of the optimal value of $\frac{\partial y_{t}^{\prime}}{\partial r_{t}}$ associated with 11 LP problems that are greater or less than 0 .

Char- acter- istic	$\frac{\partial y_{t}^{\prime}, t}{\partial T_{t}}$	$\frac{\partial y_{t}^{\prime}}{\partial r_{c}}$	$\frac{\partial y_{t}^{\prime}}{\partial r_{t}}$	$\frac{\partial^{2} y_{t}^{\prime}}{\partial T_{t} \partial r_{c}}$	$\frac{\partial^{2} y_{t}^{\prime}}{\partial T_{t} \partial r_{t}}$	$\frac{\partial^{2} y^{\prime}}{\partial r_{c} \partial r_{t}}$	$\frac{\partial^{2} y_{t}^{\prime}}{\partial T_{t}{ }^{2}}$	$\frac{\partial^{2} y^{\prime} t}{\partial r_{c}{ }^{2}}$	$\frac{\partial^{2} y_{t}^{\prime}}{\partial r_{t}^{2}}$
>0	1	$11^{* * *}$	0	9^{*}	1	2	5	7	$9 *$
<0	5	0	$11^{* * *}$	2	$10^{* *}$	$9 *$	6	4	2
other- wise	5	0	0	0	0	0	0	0	0
, ${ }^{ *}$, and ${ }^{* * *}$ denote that the sign test statistic is significant at $\alpha=0.050,0.010$, and 0.001 , respectively.									

Table 4.3 lists the results of sign tests associated the interested features of bond-pricing. Table 4.3 shows that $\frac{\partial y_{t}{ }^{\prime}}{\partial r_{c}}>0, \frac{\partial y_{t}{ }^{\prime}}{\partial r_{t}}<0, \frac{\partial^{2} y_{t}{ }^{\prime}}{\partial T_{t} \partial r_{c}}>0, \frac{\partial^{2} y_{t}{ }^{\prime}}{\partial T_{t} \partial r_{t}}<0$, $\frac{\partial^{2} y_{t}^{\prime}}{\partial r_{c} \partial r_{t}}<0$ and $\frac{\partial^{2} y_{t}{ }^{\prime}}{\partial r_{t}^{2}}>0$ are significant features at $\alpha=0.050$. However, we make a mistake (Type I error) (Hogg and Tains, 1997a) for $\frac{\partial^{2} y^{\prime}}{\partial T_{t} \partial r_{c}}>0$ because $\frac{\partial^{2} y^{\prime}}{\partial T_{t} \partial r_{c}}>0$ is not an unequivocal characteristic in the bond-pricing field. There are some relationships between T_{t} and r_{c} by intuition; for example, the price increases if T_{t} and r_{c} both increase and the price decreases if T_{t} and r_{c} both decrease. But we do not know exactly whether the price increases or decreases when one of T_{t} as well as r_{c} decreases and the other increases. Thus $\frac{\partial^{2} y_{t}{ }^{\prime}}{\partial T_{t} \partial r_{c}}>0$ is not an unequivocal characteristic in the bond-pricing field.

On the other hand, we can investigate whether each rule satisfies the features associated with the bond-pricing. The results of the examination of rules are shown in Table 4.4. Table 4.4 shows that these rules have a mean of 100.00%
$((100.00+100.00) / 2)$ in satisfaction of both features $\frac{\partial y_{t}{ }^{\prime}}{\partial r_{c}}>0$ and $\frac{\partial y_{t}{ }^{\prime}}{\partial r_{t}}<0$, and a mean of $72.24 \%((90.91+81.82+66.67+40.00+81.82) / 5)$ in satisfaction of other four features. Besides, each rule has an average satisfaction of 82.90% on these six features. In sum, the result is consistent with the notion that these extracted rules are reasonable.

Table 4.4: The results of the examination of rules

	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	Ratio(\%) ${ }^{1}$
$\frac{\partial y^{\prime}}{\partial r_{c}}>0$	Yes	100.00										
$\frac{\partial y^{\prime}}{\partial r_{t}}<0$	Yes	100.00										
$\frac{\partial^{2} y^{\prime}}{\partial T_{t} \partial r_{t}}<0$	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	90.91
$\frac{\partial^{2} y^{\prime}}{\partial r_{c} \partial r_{t}}<0$	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes	81.82
$\frac{\partial^{3} y^{2}}{\partial T_{t}^{2}}<0$, if $r_{c}>r_{i}$	- ${ }^{-}$	-	-	-	-	Yes	Yes	-	-	-	No	66.67
$\frac{\partial^{3} y^{\prime}}{\partial T_{t}^{2}}>0$, if $r_{c}<r_{i}$	Yes	Yes	Yes	Yes	No	No	No	No	No	No	-	40.00
$\frac{\partial^{2} y^{\prime}}{\partial r_{t}{ }^{2}}>0$	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	81.82
Ratio ${ }^{2}$	100	100	100	100	83.33	42.86	85.72	83.33	66.67	66.67	83.33	-

1. (The number of "Yes") / (The total number of "Yes" and "No") in one characteristic.
2. (The number of "Yes") / (The total number of "Yes" and "No") in one rule.
3. There is not a region that $r_{c}>r_{t}$ or $r_{c}<r_{t}$.
