
A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Chapter 3 Research Method

In this chapter we further describe the integration problems and present our

research method and research structure. We propose the approach to tackle the

research problems addressed in Chapter One. We focus on the resolution of the

heterogeneity problems among information integration over the Internet. This

research approach hopes to provide systematic and methodological information

integration.

3.1. Research Method

Liang (1997) summarized the MIS research methods. He stated that MIS scholars

held a series of conferences on research methods in 1989, and identified the five

primary research methods including (1) case study, (2) survey, (3) experiment, (4)

model driven, and (5) prototyping. Taking the five methods into consideration,

prototyping is suitable and fit to be applied in this research.

3.2. Research Structure

According to the literature reviewed in Chapter Two, there have been many works

focusing on heterogeneous information integration. Typical information integration

systems have adopted mediator/wrapper architecture (Wiederhold, 1993). Under such

architecture, the mediator provides an integrated and global view of different

heterogeneous information sources. With this view, queries can be formulated by the

clients. Besides, wrappers provide local views of information sources in a uniform

data model. The local views can be queried in a limited way according to wrapper

 29

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

capabilities.

TSIMMIS, DISCO, Garlic, Information Manifold and so on as described in Chapter

Two were the methods which have adopted mediator/wrapper architecture. They

focused on providing an integrated data model that is an object model. However,

beginning in the 21st century, XML has taken the place of object model as the pivot

model. XML has become an emerging standard of data exchange and has many

advantages to become the best candidate to be the common data model when

performing heterogeneous information integration.

However, the information integration studies which adopt mediator/wrapper

architecture and use XML as the common data model to capture heterogeneous

sources have met with semantic problems, but only syntactical and structure ones.

Ontology from the field of artificial intelligence describes the knowledge

representation that provides definitions of vocabulary in certain domain. The use of

ontology to explicate and explore the implicit and hidden knowledge seems to be a

promising approach to tackle the problems of semantic heterogeneity. Therefore, we

add ontology and develop an information integration model and method that is based

on mediator/wrapper architecture to solve the heterogeneity problems over the

heterogeneous information sources. Users can thus access heterogeneous information

sources via one uniform and seamless platform.

The research structure is illustrated in Figure 3-1.

 30

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Figure 3-1: Research Structure

At the bottom of Figure 3-1 there are a number of information sources which

contain diverse information that needs in

In the following, we describe the research structure in detail. The components in

tegration. Different information sources

present their own data in a different data model so the client has to use different

access interfaces to get the data, and at the same time, take the following details into

consideration, such as the location of data, effectiveness and efficiency of accessing

different information sources, data quality, and consistency if an update is performed.

To overcome the above difficulties, we construct corresponding wrappers for different

types of information sources. The wrapper is used to translate data access and

manipulation requests between mediator and information sources. Above each

wrapper in the figure is a mediator, in charge of query processing in the research

structure. In addition, the mediator provides the client with the integrated view of the

underlying heterogeneous information sources and processes clients’ queries against

the information sources. We will describe the data model integration issues and

process in Section 3.3, query resolution process in Section 3.4.

Wrapper Wrapper Wrapper

Mediator

Integrated
Schema <?xml>

>

a>

<xs:schema
xmlns:xs=...>
<xs:element…
…….
…………
</xs:schem

Integrated
Ontology

Info.
Source

Info.
Source

Client

Info.
Source

 31

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

th

As the Figure 3-2 shows, there are two major parts in our research structure: (1)

M

First, the components in the mediator:

(a) Query reformulation is used to receive the query from system query interface

an

e research structure are depicted in Figure 3.2.

XML DocumentXQuery

Integrated
Ontology

Inference
Engine

Medi

Query
Reformulation

Figure 3-2: Components in Research Structure

ediator (2) Wrapper. We describe the functions of the individual component of each

part as follows.

d then send out a reasoning request according to the query from the interface to the

inference engine in order to find out the implicit knowledge and relationships in that

query. The inference engine then gets the reasoning result and passes it back to the

ator

Query
Decomposition

Result
Composition

Information Source

Wrapp

Query
Translation

Result
Packaging

Client

er

Integrated
Schema

<?xml>
<xs:schema
xmlns:xs=...>
<xs:element…>
…….
…………
</xs:schema>

 32

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

mediator, in which query reformulation component receives this result. The

component, according to the result, reformulates the query to represent the facts in an

explicit form. Afterwards, it passes the reformulated queries to the query

decomposition component for further process.

(b) Query decomposition receives the reformulated query from query

re

(c) Result composition receives the packaged results from wrappers and

re

Second, the components in the wrapper:

(a) Query translation is used to receive the sub-query of the target source and then

tra

(b) Result packaging gathers the native results and packages them in a form that is

kn

In the following Section 3.3, we illustrate the information integration method in

re

formulation component. After receiving the query, it decomposes the query into

several sub-queries according to the integrated schema and the specified mapping

between global schema and local schemas. Then it passes those sub-queries to the

corresponding wrappers.

combines the results into an XML document according to the user request. It may

also require the assistance of the integrated schema while composing the results.

nslate it into native query of that information source. After that, it sends the native

query into the underlying information source for finding out the data demanded.

own by the mediator. Then, it sends the packaged result to the mediator for further

process.

search structure. That is the backbone of our research structure.

 33

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

3.3. Information Integration Method in Research Structure

In this section, we detail our methods of information integration in our research

structure. Our goal is to provide a convenient and effective way for users to access a

number of heterogeneous information sources simultaneously and get an integrated

result just like accessing only one information source. Users who interact with the

information integration structure do not have to consider the details of the information

sources they face. To achieve this goal, we must integrate the underlying sources and

provide users with a unified view of the structure and content of these sources.

Providing the unified view depends on the integration of different data models of the

underlying information sources. Hence, integrating different data models of the

underlying sources is significant and helpful.

But before performing the data model integration, we must identify problems that

we will meet in the information integration. Problems coming from heterogeneity of

the data are already well known within the distributed database systems community:

(Cui, Jones, & O’Brien, 2001; Wache, Vögele, Visser, Stuckenschmidt, Schuster,

Neumann, & Hübner, 2001).

1. The system level of heterogeneity includes incompatible hardware and software

systems, which results in a variety of different access mechanisms and protocols.

2. The syntactic level of heterogeneity refers to different languages and data

representations;

3. The structural level includes different data models;

4. The semantic level considers the contents of an information item and its intended

meaning.

 34

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

XML is widely predicted to improve the degree of interoperation on the Internet.

Yet XML does not address ontology and provides only a syntactic and structure

representation of knowledge. For this reason, we use XML as the uniform data model

for performing HII with ontology assisted for the dimension of the semantics. We

would like to present the details of our methods of HII as follows. And we use an

example which is about the domain of university to explain our method of

information integration.

3.3.1. The Creation of Global Schema

When performing heterogeneous information integration, we first encounter the

representation problem for the structure of different data models. Parent et al. 1998

formalized the database integration process in order to develop an integrated schema

(see Figure 3-3). To establish the integrated schema as a unified view of existing

information sources, the heterogeneous schemas of the corresponding underlying

information sources are usually transformed to make them as homogeneous as

possible. Researchers in database integration generally assume that input schemas are

all expressed using the same data model, the so-called “common” data model.

 35

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Figure 3-3: The Global Integration Process

 (Data Source: Parent, & Spaccapietra, 1998)

In this subsection, we extend the published database integration process to our

information integration method to create the global view of the underlying

information sources. In contrast to the traditional HII, they use an expert-dependent

method to create their global schema. However, in this research, we try to provide a

more general method to handle this issue. We use XML as the common data model to

enable HII and propose two steps for the creation of global schema in our method,

which are: (1) Generic Construct Oriented Schema Rewriting, and (2) Schema

Integration. Performing the schema transformation by using the method of generic

construct oriented schema rewriting is a more general and convienent way to apply to

most kinds of information sources in contrast to the taditional method. That is our

emphatic point.

 36

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

3.3.1.1. Generic Construct Oriented Schema Rewriting

In order to homogenize the representations of the data models using in

heterogeneous information sources, we have to create rules for rewriting between

XML and the native data models. Since our information integration model is regarded

as a generic model, it is expected to tackle any kinds of information sources. The

heterogeneous information sources that we most often encounter can be roughly

classified into three categories, which are: structured information sources,

semi-structured information sources, and unstructured information sources. Structured

information sources include Relational Database Management System (RDBMS) and

Enterprise Information System (EIS, such as ERP, SCM, and CRM) files, among

others. One example of semi-structured information sources may be Object Database

Management System (ODBMS) or XML data files. Unstructured information sources

may include HTML pages, multimedia files, office flies, and legacy files, and so on.

We deign to apply the generic construct oriented schema rewriting process to the

structured and semi-structured information sources. The unstructured information

source here is hard pressed to receive this type of HII pre-processes because it is lack

of the structure definition, schema. As such, in our research structure we treat the

unstructured information sources as special cases and they need an additional process

described in the later sections.

To transform the data models of the structured and semi-structured information

sources into XML, we have to specify one-to-one rewriting rules for every native data

model. Before specifying the rewriting rules, we have to identify the correspondences

between the constructs of XML and other native data models. Here we provide the

 37

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

correspondences between XML and two representative data models of structured and

semi-structured information sources, which are a relational model and an object

model as explained. Table 3-1 shows the correspondences of relational schema

constructs and XML Schema constructs. According to the specified correspondences,

the relational schema can be rewritten into a W3C XML Schema just as the example

shown in Figure 3-5 & 3-6 describes.

Table 3-1: Correspondences between Relational Schema Constructs and W3C XML
Schema Constructs

Relational Schema Constructs W3C XML Schema Constructs
Relation element (with xs:complexType)
Attribute element
date type date type (primitive type / xs:simpleType)
Cardinality multiplicity (minOccurs / maxOccurs)
primary key (PK) key (xs:key)
foreign key (FK) keyref (xs:keyref)

 Relational Data Model:

Course Name course_id department_id credit t_id

 FK

 PK
Teacher name teacher_id dept_id rank office phone email

 XML Data Model:

Teacher

office

teacher_id

rank
phone

email

name

dept_id
name

credit

Course

course_id

department_id
t_id

 38

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Figure 3-4: Transform Relational Data Model into XML Data Model

 Relational schema:

Course (course_name(string), course_id(string), department_id(string), credit(int),
t_id(string))

Teacher (name(string), teacher_id(string), dept_id(string), rank(string),
office(string), phone(string), email(string))

 W3C XML Schema (S1):

 <?xml version="1.0" encoding="Big5" ?>

- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

- <xs:element name="Course">

- <xs:complexType>

- <xs:sequence>

 <xs:element name="course_name" type="xs:string" />

 <xs:element name="course_id" type="xs:string" />

 <xs:element name="department_id" type="xs:string" />

 <xs:element name="credit" type="xs:integer" />

 <xs:element name="t_id" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

- <xs:key name="Course_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="course_id" />

 </xs:key>

- <xs:keyref name="Course_To_Teacher" refer="Teacher_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="t_id" />

 </xs:keyref>

- <xs:keyref name="Course_To_Department"

refer="Department_PrimaryKey">

 <xs:selector xpath="." />

 39

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

 <xs:field xpath="department_id" />

 </xs:keyref>

 </xs:element>

- <xs:element name="Teacher">

- <xs:complexType>

- <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="teacher_id" type="xs:string" />

 <xs:element name="dept_id" type="xs:string" />

 <xs:element name="rank" type=" xs:string" />

 <xs:element name="office" type="xs:string" />

 <xs:element name="phone" type="xs:string" />

 <xs:element name="email" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

- <xs:key name="Teacher_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="teacher_id" />

 </xs:key>

- <xs:keyref name="Teacher_To_Department"

refer="Department_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="dept_id" />

 </xs:keyref>

 </xs:element>

</xs:schema>

Figure 3-5: Rewrite Relational Schema into W3C XML Schema According to the
Generic Constructs Correspondence

Table 3-2 shows the correspondences between object database schema constructs

and XML Schema constructs. Similar to rewriting relational schema into W3C XML

Schema, we provide a simple example in Figure 3-7 & 3-8 to illustrate the

transformation between object database schema and XML Schema according to the

specified correspondences in Table 3-2.

Table 3-2: Correspondences between Object Database Schema Constructs and W3C

 40

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

XML Schema Constructs

Object Database Schema
Constructs

W3C XML Schema Constructs

class element (with xs:complexType)
attribute (simple) element
primitive type data type (primitive type)
struct (user-defined type) data type (xs:simpleType / xs:complexType)
key key (xs:key)
extend (inheritance) only single inheritance supported

(xs:extension / xs:restriction)
relationship/inverse
extent
method

Not Supported

We use an object data model that is illustrated in (Elmasri, & Navathe, 2000) to be

an example. We use just two classes, “Person” and “Faculty”, of the entire data model

in order to show how to rewrite an ODL schema for object database into W3C XML

Schema.

 Object Data Model:
(Data Source: Elmasri, & Navathe, 2004)

 41

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

 XML Data Model:

salary

birthdate

rank

phone

office

name

address mname
lname fname

ssn

sex

no
street

aptno
city

state

Faculty

Figure 3-6: An Example of Transforming Object Data Model to XML Data Model

 ODL schema for object database:
(Data Source: Elmasri, & Navathe, 2004)

class Person
(extent persons

key ssn)
{
 attribute struct Pname {string fname, string mname, string lname}
 name;
 attribute string ssn;
 attribute date birthdate;
 attribute enum Gender{M, F} sex;
 attribute struct Address

{short no, string street, short aptno, string city, string state,
short zip}

 address;
 short age();
}

 42

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

class Faculty extends Person
(extent faculty)
{
 attribute string rank;
 attribute float salary;
 attribute string office;
 attribute string phone;
 relationship Department works_in inverse Department::has_faculty;
 relationship set<GradStudent> advises inverse GradStudent::advisor;
 relationship set<GradStudent> on_committee_of

inverse GradStudent::committee;
 void give_raise(in float raise);
 void promote(in string new_rank);
}

 W3C XML Schema (S2):

 <?xml version="1.0" encoding="Big5" ?>

- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

- <xs:element name="Person">

- <xs:complexType name="PersonType">

- <xs:sequence>

 <xs:element name="name" type="Pname" />

 <xs:element name="ssn" type="xs:string" />

 <xs:element name="birthdate" type="xs:date" />

 <xs:element name="sex" type="Gender" />

 <xs:element name="address" type="Address" />

 </xs:sequence>

 </xs:complexType>

- <xs:key name="Person_Key">

 <xs:selector xpath="." />

 <xs:field xpath="ssn" />

 </xs:key>

 </xs:element>

 43

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

- <xs:complexType name="Pname">

- <xs:sequence>

 <xs:element name="fname" type="xs:string" />

 <xs:element name="mname" type="xs:string" />

 <xs:element name="lname" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

- <xs:simpleType name="Gender">

- <xs:restriction base="xs:string">

 <xs:enumeration value="M" />

 <xs:enumeration value="F" />

 </xs:restriction>

 </xs:simpleType>

- <xs:complexType name="Address">

- <xs:sequence>

 <xs:element name="no" type="xs:short" />

 <xs:element name="street" type="xs:string" />

 <xs:element name="aptno" type="xs:short" />

 <xs:element name="city" type="xs:string" />

 <xs:element name="state" type="xs:string" />

 <xs:element name="zip" type="xs:short" />

 </xs:sequence>

 </xs:complexType>

- <xs:element name="Faculty">

- <xs:complexType>

- <xs:complexContent>

- <xs:extension base="PersonType">

- <xs:sequence>

 <xs:element name="rank" type="xs:string" />

 <xs:element name="salary" type="xs:float" />

 <xs:element name="office" type="xs:string" />

 <xs:element name="phone" type="xs:string" />

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 44

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Figure 3-7: An Example of Transforming Object Database Schema to XML Schema

In this thesis, we show just the generic construct correspondences between XML

and two structured information sources, RDBMS and ODBMS, as explained.

According to the correspondences, we can rewrite the native data model using in local

information source into XML. Different information sources use different data model

to describe their own data. To enable heterogeneous information integration, the

one-to-one generic construct correspondences to rewrite the local data model into the

common data model, XML, by using our integration structure is necessary.

3.3.1.2. Schema Integration

Before we integrate the schemas, we have to identify the commonalities between

different schemas and characterize the inter-schema relationships. Schema integration

uses the correspondences to find similar structures in heterogeneous schemas, which

are then used as integration points.

However, in order to find out the correspondences between a set of independently

developed schemas, we must recognize the causes for the structural heterogeneity

between them in advance. We must gain the interoperability among the underlying

sources by solving the heterogeneity problems between them so that we will achieve

information integration. But the causes of the heterogeneity must be clarified first, and

then we can deal with the heterogeneity problems by pointing out the correspondences

between different schemas. Kashyap et al. (1996) and Visser et al. (2003) have

categorized the causes for structural heterogeneity. We summarize the reasons for

them in Table 3-3.

 45

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Table 3-3: Causes for Structural Heterogeneity

Causes Explanations
Naming Conflict These are of two types. Synonyms are the one which

means that two attributes (or entities) that are
semantically alike might have different names.
Homonyms are the other one which means that two
attributes (or entities) that are semantically unrelated
might have the same names.

Domain Conflict Two attributes that are semantically similar might have
different domains or data types.

Default Value Conflict This one depends on the definition of the domain of the
concerned attributes. For example, the default value for
age of an adult might be defined as 18 in one data source
and as 21 in another.

Identifier Conflict The primary keys of two entities in two sources are
incompatible, because they use identifier records that
semantically different. For example, the key of student
entity might be defined as ID# in one source and as
NAME in another.

Integrity Constraint
Conflict

Two semantically similar attributes might be restricted
by constraints which might not be consistent with each
other. For example, the age of adult is defined to over 18
in one source and as to over 21 in another.

Missing Data Item
Conflict

This conflict arises when, of the entity descriptors
modeling semantically similar entities, one has a missing
attribute.

Aggregation Conflict These conflicts arise when an aggregation is used in one
source to identify a set of entities (or attributes) in
another source.

Attribute – Entity
Conflict

This one arises when the same thing is being modeled as
an attribute in one source and an entity in another source.

Data Value – Entity
Conflict

It arises when the value of an attribute in one source
corresponds to an entity in another source.

Data Value – Attribute
Conflict

This conflict arises when the value of an attribute in one
source correspond to an attribute in another source.

 46

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Those mentioned above are possible structural heterogeneity problems likely

encountered while performing the schema integration to construct a global, unified

schema to be the foundation of the information integration. It deserves consideration

to construct a global schema with correspondences or mappings between the different

source schemas to solve the structural conflicts between them and then gain the

interoperability.

Therefore, we can analyze the structural heterogeneity problems between the

schemas that are rewritten in XML we want to integrate according to the listed causes

of recognition. In the following, we continue to use the example addressed in the

previous subsection to explain the process of correspondences identification.

1. Naming Conflict: element “Teacher” using in schema S1 and element “Faculty”

using in schema S3 are semantically the same but have different names.

Correspondence: S1.Teacher = S2.Faculty

2. Aggregation Conflict: the aggregation of element “fname”, “mname”, and

“lname” using in schema S2 is semantically the same.

Correspondence:

S1.Teacher.name = S2.Person.name (S2.Person.name.fname +

S2.Person.name.mname + S2.Person.name.lname)

3. Identifier Conflict: the primary key of entity “Teacher” in source schema S1 is

“teacher_id”, but the primary key of class “Faculty” in source schema S2 is not

specified explicitly, that is “ssn” which is inherited from its parent class

“Person”.

 47

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Afterward, we can specify the integration rules according to the identified

correspondences to integrate the independent schemas into the global schema.

Continuing the previous example, we can specify the following integration rules:

1. Correspondence: S1.Teacher = S2.Faculty

Integration rule: G.Faculty

2. Correspondence: S1.Teacher.name = S2.Person.name (S2.Person.name.fname +

S2.Person.name.mname + S2.Person.name.lname)

Integration rule:

G.Faculty.name (G.Faculty.name.fname + G.Faculty.name.mname +

G.Faculty.name.lname)

3. Identifier Conflicts:

Integration rule:

Because the semantics of these two identifiers is a little different, we keep them

separately in the integrated schema and use “teacher_id” to be the identifier of

the integrated element “Faculty”.

However, identifying the structural conflicts and correspondences between the

independent schemas and specifying the integration rules for our method still needs

the intervention of human experts. There are still some research efforts for automatic

schema matching (Rahm, & Bernstein, 2001) for producing correspondences between

different schemas. Once they are identified, matching elements can be unified under a

coherent, integrated schema or viewed by using techniques like schema merge.

Finally, Figure 3-9 is a continuing example to illustrate an integrated schema built

 48

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

according to the integration rules we specify.

 <?xml version="1.0" encoding="Big5" ?>

- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

- <xs:element name="GlobalSchemaRoot">

- <xs:complexType>

- <xs:sequence>

 <xs:element ref="Person" minOccurs="0" maxOccurs="unbounded"

/>

 <xs:element ref="Faculty" minOccurs="0"

maxOccurs="unbounded" />

 <xs:element ref="Course" minOccurs="0" maxOccurs="unbounded"

/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

- <xs:element name="Person">

- <xs:complexType name="PersonType">

- <xs:sequence>

 <xs:element name="ssn" type="xs:string" />

 <xs:element name="name" type="Pname" />

 <xs:element name="birthdate" type="xs:date" />

 <xs:element name="sex" type="Gender" />

 <xs:element name="address" type="Address" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

- <xs:complexType name="Pname">

- <xs:sequence>

 <xs:element name="fname" type="xs:string" />

 <xs:element name="mname" type="xs:string" />

 <xs:element name="lname" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

- <xs:simpleType name="Gender">

- <xs:restriction base="xs:string">

 <xs:enumeration value="M" />

 49

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

 <xs:enumeration value="F" />

 </xs:restriction>

 </xs:simpleType>

- <xs:complexType name="Address">

- <xs:sequence>

 <xs:element name="no" type="xs:short" />

 <xs:element name="street" type="xs:string" />

 <xs:element name="aptno" type="xs:short" />

 <xs:element name="city" type="xs:string" />

 <xs:element name="state" type="xs:string" />

 <xs:element name="zip" type="xs:short" />

 </xs:sequence>

 </xs:complexType>

- <xs:element name="Faculty">

- <xs:complexType>

- <xs:complexContent>

- <xs:extension base="PersonType">

- <xs:sequence>

 <xs:element name="teacher_id" type="xs:string" />

 <xs:element name="dept_id" type="xs:string" />

 <xs:element name="rank" type="xs:string" />

 <xs:element name="salary" type="xs:float" />

 <xs:element name="office" type="xs:string" />

 <xs:element name="phone" type="xs:string" />

 <xs:element name="email" type="xs:string" />

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

- <xs:key name="Faculty_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="teacher_id" />

 </xs:key>

- <xs:keyref name="Faculty_To_Department"

refer="Department_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="dept_id" />

 </xs:keyref>

 50

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

 </xs:element>

- <xs:element name="Course">

- <xs:complexType>

- <xs:sequence>

 <xs:element name="course_name" type="xs:string" />

 <xs:element name="course_id" type="xs:string" />

 <xs:element name="department_id" type="xs:string" />

 <xs:element name="credit" type="xs:int" />

 <xs:element name="t_id" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

- <xs:key name="Course_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="course_id" />

 </xs:key>

- <xs:keyref name="Course_To_Faculty" refer="Faculty_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="t_id" />

 </xs:keyref>

- <xs:keyref name="Course_To_Department"

refer="Department_PrimaryKey">

 <xs:selector xpath="." />

 <xs:field xpath="department_id" />

 </xs:keyref>

 </xs:element>

 </xs:schema>

Figure 3-8: An Integrated Schema in W3C XML Schema for the Example

3.3.1.3. Special Process for the Unstructured Information Sources

Unstructured information sources such as static web pages, multimedia files, etc. do

not have “schema”, so we must treat such information sources as a special case and

provide special process for them. We create indexes of those sources and do not

perform transformation on them. We simply wait until the global schema is created

 51

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

and specify the mapping between them, which will be described in a later section.

3.3.2. The Creation of Ontology

XML is a representation language for specifying the structure of the underlying

information sources and thus their structure dimension. The structural representation

can represent some semantic properties but it is not clear how this can be deployed

outside of a special purpose application. To allow for a real semantic interpretation for

HII, the common data model, XML, must be complemented by a conceptual model

that adequately describes the domain we want to perform the information integration.

This role cannot be filled by just XML data model (Erdmann, & Decker, 2000).

Using an ontology containing facts and relationships about the application domain

of interest as the conceptual model to capture real world knowledge may be a

promising approach. However, most ontology creation is carried out on a manual

basis. There are a number of publications about ontological development that have

been published. Uschold & Grüniger 1996 proposed four main phases when

developing ontologies, which are: (1) identifying a purpose and scope, (2) building

the ontology: this includes three sub-phases, which are: (a) ontology capturing, (b)

ontology coding, (c) integrating existing ontologies. The later two phases are (3)

evaluation and (4) guidelines for each phase. Furthermore, Sugumaran & Storey 2002

provided a heuristics-based ontology creation methodology to create a domain

ontology.

For our research, we follow the proposed principles to create the needed ontology

on a manual basis. We create ontology in order to allow for real semantic

interpretation for HII to complement the shortcoming of just using XML in the task of

 52

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

information integration. Besides defining the terms and relationships for the domain

in which we perform HII on the ontology, the semantic heterogeneity should also be

considered when creating the needed ontology. We recognize the reasons for the

semantic heterogeneity problems that the ontology in our research structure wants to

handle. Visser et al. (2003) have also categorized the reasons for semantic

heterogeneity. We list and explain the reasons for semantic heterogeneities in Table

3-4.

Table 3-4: Causes for Semantic Heterogeneity

Causes Explanations
Conflicts with Scale and
Currency

Two attributes that semantically similar might be
represented using different units and measures.

Representation Conflicts Two attributes are semantically similar, but they might
be represented in different formats, for example, school
grade: {1, 2, 3, 4, 5} vs. {A, B, C, D, E}

Subjective Mapping
Conflicts

The subjective of two attributes is the same, but they are
represented in their own styles. For example, German
grades: {15, 14, …, 0} vs. American grades: {A, B, C,
D, E}

Subsumption Conflicts The content of an attribute is subsumed by the other one.
For example, “hotels” includes “congress-hotels”, but
the latter, with smaller scope of concept, is only part of
the former.

Overlapping Conflicts Parts of the content of two attributes are the same, but
they are not equal to each other. For example, hostels
and hotels vs. hotels and camp-sites.

Incompatibilities The concepts of two attributes are the same, but actual
meanings of them are still a little different. For example,
hostels and hotels all mean the places for
accommodation when traveling, but hostels are cheaper,
some are only for youth. In contrast, hotels are more
expensive.

Aggregation Conflicts The concept of two attribute are different, but the

 53

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

concept of one of them is the aggregative concept of the
other one. For example, hotel company vs. hotel. Hotel
company means a company that operates hotels, but
hotel means the place for accommodation when
traveling.

We take the above conflicts into consideration when performing the conceptual

modeling for the underlying information sources for the creation of the needed

ontology. Afterward, we must create a connection between the global schema and the

created ontology for the use in our research structure in the following.

Because the ontology defines terms and relationships with axioms of a domain, we

view the elements in the global schema as the instance of the resources defined in the

ontology. In other words, we use the ontology to define the relationships between the

elements in the global schema. For instance,

<owl:Class rdf:ID=”Faculty”>
 <rdfs:subClassOf>
 <owl:Class rdf:about=”#Employee”>
 </rdfs:subClassOf>
</owl:Class>

The fragment of the above ontology defines a resource “Faculty” and represents the

relationship between resource “Faculty” and resource “Employee” which means

faculty must be an employee. We use such definition to define the element “Faculty”

in the global schema as follow:

<Faculty rdf:ID=”schema_Faculty”>
 …
</Faculty>

 54

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Under such kind of connection between the two different data model, semantics

defined in the ontology itself can be appended to the elements in the global schema

which is represented in XML format. We provide another example that the semantics

only can be caught by ontology to address the importance of the combination:

<owl:Class rdf:ID=”TeachingAssistant”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID=”mustbe”/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource=”#GraduateStudent”/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Assistant" />
</owl:Class>

We can hardly describe the relationship that a teaching assistant “must be” a

graduate student in XML data model. However, such kind of relationship is common

in the real world. To complement such a shortcoming of XML, we catch the

relationship and define it in the ontology. And then we connect the two data model by

defining the element about teaching assistant in the global schema as the instance of

the resource in the ontology like:

<TeachingAssistant rdf:ID="schema_TeachingAssistant">
 …
 </TeachingAssistant>

Afterwards, we can obtain the knowledge that a teahing assistant must be a

graduate student by inferencing against the ontology. Obtaining more knowledge

about the real world can help enhance the accuracy and precision of the interoperation

 55

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

between the underlying heterogeneous information sources.

Although an XML data model could represent certain kinds of semantics, for

instance inheritance, there are still some relationships that cannot be represented by

the XML data model, for instance intersection, union and so on. We use ontology to

define the complete relationships of the domain and then use it to define the

relationships between the elements in the global schema by viewing the global

schema as an instance of the ontology.

Only while creating the connection between global schema and ontology, we can

enable reasoning over the ontology to assist the query against the global schema in the

research structure and reach the interoperability of structure and semantics.

3.3.3. Mapping Global Schema to Local Data Sources

After we create the integrated schema, we still have to consider the mapping

between global schema and the local data source schema. Since we view the

integration structure as an independent system from the local data source, we must

build some bridges between the schemas of the integration system and those local

data sources. The mapping is the bridge of the global schema and the local data source

schema. However, there have been several proposed approaches to specify the

mapping between global schema and local schema, which are global-as-view (GAV),

local-as-view (LAV) (Levy, 2000; Manolescu, Florescu, & Kossmann, 2001). The

first approach is to define the global schema as a view over the local schemas. In

contrast, the second approach is to define the local sources as views over the global

schema. The fundamental comparison between these three approaches is presented in

Table 3-5.

 56

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Table 3-5: Comparison between GAV and LAV

 GAV LAV

Query
Reformulation

Translating the query on the
global schema into queries on
the local schemas is a simple
process of view unfolding.

The query on the global schema
needs to be reformulated in the
terms of the local data sources’
schemas; this process is
traditionally known as
“rewriting queries using views”
and is a known hard problem.

Data
Modification

To handle modifications in the
local data sources set or in their
schemas, the new global schema
needs to be redesigned
considering the whole modified
set of sources.

A local change to a data source
can be handled locally, by
adding, removing or updating
only the view definitions
concerning this source.

Data Format If the local data sources do not
have the same data format (e.g.
some are relational while others
are XML), it would be difficult
to define the global schema as a
view over sources in different
formats.

Each source can be described in
isolation, by a view definition
mechanism appropriate to its
format.

We adopt the GAV approach to specify the mapping between global schema and

local data source schema because its query reformulation process is easier than the

LAV approaches. Although the evolution process of GAV approach is harder than

LAV approach, the query reformulation process is our prior consideration of adopting

which approach for specifying the mapping. We also apply this approach to the

unstructured information sources to specify the mapping between the global schema

and the index created in the previous section. In Figure 3-9, we show a fragment of

 57

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

the mapping by continuing the previous example.

G.Person :- S2.Person
G.Person.name :- S2.Person.name
G.Person.name.fname :- S2.Person.name.fname
G.Person.name.mname :- S2.Person.name.mname
G.Person.name.lname :- S2.Person.name.lname
G.Person.ssn :- S2.Person.ssn
G.Person.birthdate :- S2.Person.birthdate
G.Person.sex :- S2.Person.sex
G.Person.address :- S2.Person.address
G.Person.address.no :- S2.Person.address.no
G.Person.address.street :- S2.Person.address.street
G.Person.address.aptno :- S2.Person.address.aptno
G.Person.address.city :- S2.Person.address.city
G.Person.address.state :- S2.Person.address.state
G.Person.address.zip :- S2.Person.address.zip
G.Faculty :- S1.Teacher, S2.Faculty
G.Faculty.name :- S1.Teacher(name), S2.Faculty.name
G.Faculty.name.fname :- S2.Faculty.name.fname
G.Faculty.name.mname :- S2.Faculty.name.mname
G.Faculty.name.lname :- S2.Faculty.name.lname
G.Faculty.ssn :- S2.Faculty.ssn
G.Faculty.birthdate :- S2.Faculty.birthdate
G.Faculty.sex :- S2.Faculty.sex
G.Faculty.address :- S2.Faculty.address
G.Faculty.address.no :- S2.Faculty.address.no
G.Faculty.address.street :- S2.Faculty.address.street
G.Faculty.address.aptno :- S2.Faculty.address.aptno
G.Faculty.address.city :- S2.Faculty.address.city
G.Faculty.address.state :- S2.Faculty.address.state
G.Faculty.address.zip :- S2.Faculty.address.zip
G.Faculty.teacher_id :- S1.Teacher(teacher_id)
G.Faculty.dept_id :- S1.Teacher(dept_id)
G.Faculty.rank :- S1.Teacher(rank), S2.Faculty.rank
G.Faculty.salary :- S2.Faculty.salary
G.Faculty.office :- S1.Teacher(office), S2.Faculty.office
G.Faculty.phone :- S1.Teacher(phone), S2.Faculty.phone

 58

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

G.Faculty.email :- S1.Teacher(email)
…

Figure 3-9 A Fragment of the Example of the Mapping between Global Schema and

Source Schema

Creating the mapping between global schema and local source schema gains the

interoperability of different systems. That is also the goal of this research. In the

following, we describe how to apply the integrated model in our research structure.

3.4. Query Resolution in Research Structure

In this section, we describe the course of query processing we designed for our

research structure.

In the beginning, the query interface was designed according to XQuery because

we used XML for the common data model of our research structure. As a result, users

have to formulate their query request in an XQuery form against the integrated

schema. Figure 3-10 shows the steps of query processing in the research structure. We

explain every step in more details as follow:

 59

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Figure 3-10: Query Processing in Research Structure

1. Query Reformulation:

After a user issues an XQuery request from the query interface against the unified

Native results Native queries

Query
Translation

Result
Packaging

Information
Source

R
eform

ulated
X

Q
uery

Reasoning
result

Reasoning
request

Sub-queries

Query
Decomposition Packaged results

Result
Composition

X
M

L D
ocum

ent
to the interface

X
Q

uery request
from

 the interface

Query
ReformulationInference

engine

Integrated
Ontology

Integrated
Schema

<!Element >
<!Attribute >
<!Element >
<!Element >
……….
…………
…………..

 60

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

view we provide, this query request would be sent into the mediator, where the query

reformulation component in the mediator would receive it. The query reformulation

component would pass a reasoning request according to the original XQuery request

issued by the user to the inference engine and then inference engine would access the

ontology in order to find out the relationships that are implicit in the user’s original

XQuery request.

Since we want to find out the implicit relationships in the user original XQuery

request, we have to take the user query apart. We identify and extract entities in the

user query for issuing the reasoning request to the ontology. According to the

reasoning request, inference engine can have the reasoning results.

The reasoning results are sent back to the query reformulation component. Hence,

the query reformulation component could reformulate the original XQuery request on

the basis of the reasoning results. For example, the user might not discover the

implicit relationships between the entities specified in the global schema because the

global schema just gives the user the sketch of the structure of the underlying

information sources. Therefore, the reasoning results can be used to complement the

path expression that formulate by the user original that can clear the relationships

specified in the user query. Besides, the reasoning results may help to find out much

more and related answers of the query by adding new query expression.

Afterward, the query reformulation component would send the reformulated query

to the query decomposition component.

2. Query Decomposition:

After the query decomposition component received the reformulated query, the

 61

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

reformulated query would be decomposed with the assistance of the mapping between

integrated schema and local source schema. So query decomposition component

could use such information to decompose the query into several sub-queries that are

respectively applicable to their target information sources. Afterwards, query

decomposition component would send these sub-queries to the corresponding

wrappers.

3. Query Translation:

The wrapper would then receive the corresponding sub-queries. However, due to

the limited capability of the underlying information source, the wrapper would have

to translate the generic sub-queries (used in this framework) into native queries (e.g.

SQL) according to the capability. Afterwards, such native queries would be issued to

the corresponding source in order to find out the data really needed.

To enable query translation, we have to identify the correspondences between

XQuery expression used in our research structure and the local source query

expression. In this research, we also use the representative heterogeneous information

sources that are RDBMS and ODBMS as the explanation. We identify the

correspondences between the different query languages and list them in Table 3-5 and

Table 3-6.

Table 3-6: The Correspondences between XQuery Expression and SQL Expression

XQuery Expression SQL Expression
For
Let

No Corresponding function

Where Where
Order by Order by
Return Select

 62

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

Aggregation function Aggregation function
Comparison Comparison
Path expression No Corresponding function
included in XPath expression From

Group by No Corresponding function
Having

Table 3-7: The Correspondences between XQuery Expression and OQL Expression

XQuery Expression OQL Expression
For
Let

No Corresponding function

Where Where
Order by Order by
Return Select
Aggregation function Aggregation function
Comparison Comparison
Path expression Path expression
included in XPath expression From

Group by No Corresponding function
Having

According to the list of correspondences between the two different query languages,

we can find out some kinds of the query expression cannot be completely mapped to

another one. However, we just treat the exception of the mapping as a special case and

markup it for the further process that might be the requirement for writing additional

rules at the execution time.

4. Result Packaging:

After the information source processes those native queries, it would send the

native results (e.g. record set) back to the wrapper. Because it is one-on-one between a

wrapper and a type of information source, this makes sure that the results would be

 63

A Schema and Ontology-Assisted Heterogeneous Information Integration Study

sent back to the corresponding wrapper. After receiving the results, the wrapper would

package the results into a normal form and send it back to the mediator.

5. Result Composition:

It is the query composition component in the mediator that would collect several

packaged results sent back from several wrappers according to the previous

decomposed result. And with the aids of the integrated schema, the individual results

could be composed in a complete XML document. Finally, it would send the XML

document to the interface for the user.

To construct an integration system, we must consider execution rate, completeness

of the query result, and consistency of all the underlying data. And the optimization

issue must be taken into consideration while performing the query process. However,

because the optimization issue is out of our scope, we won’t discuss it here in this

research.

 64

